关于影响土壤酶活性因素的研究.
- 格式:doc
- 大小:63.51 KB
- 文档页数:9
土壤酶的研究进展摘要:土壤酶作为土壤组分中最活跃的有机成分之一不仅可以表征土壤物质能量代谢旺盛程度,而且可以作为评价土壤肥力高低、生态环境质量优劣的一个重要生物指标,并且,在土壤生态系统的物质循环和能量流动方面扮演重要的角色。
本文通过分析、总结国内外土壤酶研究进展,研究土壤酶的来源、作用及其影响因素,展望土壤酶学的发展前景,将有助于该学科研究的纵深发展与广泛利用。
关键字:土壤酶作用影响因素进展前言土壤酶( soil enzyme)是指土壤中的聚积酶, 包括游离酶、胞内酶和胞外酶, 其活性变化规律及与生态因子的相互作用关系研究引起众多学者的重视, 它是评价土壤质量的重要手段之一[1], 同时也是评价土壤自净能力的一个重要指标[2]。
对土壤酶的研究,让我们能更好地去了解土壤酶是土壤有机体的代谢动力, 在生态系统中起着重要的作用, 以及与土壤理化性质、土壤类型、施肥、耕作以及其它农业措施的密切关系。
而土壤酶活性在土壤中的表现, 在一定程度上反映了土壤所处的状况, 且对环境等外界因素引起的变化较敏感, 成为土壤生态系统变化的预警和敏感指标。
关于土壤酶的研究历史可以追溯到19世纪末,自Woods( 1898) 首次从土壤中检测出过氧化氢酶活性以来, 土壤酶研究经历了一个较长的奠定和发展时期( 关松荫, 1986) 。
一般认为, 20 世纪50 年代以前为土壤酶学的奠定时期, 许多土壤学者从各种土壤中共检测出了40 余种土壤酶的活性,并发展了土壤酶活性的研究方法和理论, 土壤酶研究逐渐发展成一门介于土壤生物学和生物化学之间的一门新兴边缘交叉学科( Burns, 1978)[3]。
20 世纪50~ 80 年代中期为土壤酶学迅速发展的时期。
由于生物化学和土壤生物学所取得的巨大成就, 土壤酶的检测技术和方法不断改进, 一些新的土壤酶活性逐渐被检测出来。
到20 世纪80 年代中期, 大约有60 种土壤酶活性被检测出来, 土壤酶学的理论和体系逐渐完善。
不同处理方式对土壤酶活性的影响土壤是生态系统的重要组成部分,其中微生物和酶是如何参与碳、氮、磷和其他生物元素循环的关键。
因此,对土壤酶活性的研究非常重要。
本文将探讨不同处理方式对土壤酶活性的影响,包括化肥施用、有机肥施用、农药使用和除草剂使用等方面。
化肥施用对土壤酶活性的影响化肥施用可以提供植物的营养素,从而增加碳、氮、磷等元素的固定和转化。
然而,化肥的使用可能对土壤中的微生物和酶产生负面影响。
早期的研究表明,氮肥可以抑制多种土壤酶活性,如芳香族氧化酶、脲酶和蔗糖酶等。
此外,过量的氮肥使用可能导致土壤酸化、微生物群落的转移和土壤中氮素的累积,这些也会影响土壤酶活性。
有机肥施用对土壤酶活性的影响相对于化肥,有机肥具有更多优点,如增加土壤有机质含量,改善土壤结构和水分保持能力等。
这些优点往往也有利于土壤酶的活性。
在有机肥施用后,有些酶活性(如蔗糖酶、硫酸还原酶)有所增大,而其他一些酶活性(如纤维素酶、脲酶等)则可能减小。
农药使用对土壤酶活性的影响农药是一类广泛应用于耕作地的化学物质,往往会对土壤生态系统产生重要影响。
一些农药因其生物毒性而直接杀死土壤微生物,其他一些农药则可能通过其他机制影响土壤酶活性。
例如,除草剂苯醚类可以通过阻断土壤微生物呼吸链的某些关键酶而导致土壤酶活性降低。
一些杀虫剂也能通过改变土壤微生物的细胞膜结构而影响土壤酶活性。
除草剂使用对土壤酶活性的影响除草剂是一类专门用于控制杂草和其他不良植被的化学物质。
除草剂可以影响土壤中的微生物和植物生长,从而影响土壤酶活性。
一些研究表明,除草剂使用后,土壤中的硝化酶和草酸水解酶活性会降低,而蔗糖酶和多酚氧化酶活性则会增加。
总体来说,不同处理方式对土壤酶活性的影响具有显著差异。
化肥和农药等化学药剂的使用可能对土壤酶活性产生负面影响,而有机肥和其他增加土壤有机质的管理方式则可能有利于土壤酶的活性。
这一信息可以用于为农业生产和土地管理提供指导,以提高农业生产的可持续性和生态系统的健康状况。
长期施肥对土壤微生物量及土壤酶活性的影响分析随着农业现代化的发展,农业生产中施肥是不可或缺的环节。
合理施肥可以提高土壤肥力,增加作物产量,从而保障粮食生产。
但是长期施肥对土壤微生物量及土壤酶活性会产生一定的影响,这也是当前农业生产中急需解决的问题之一。
本文将对长期施肥对土壤微生物量及土壤酶活性的影响进行分析,以期为农业生产提供一定的科学依据。
1. 施肥对土壤微生物量的促进作用长期施肥可以促进土壤微生物量的增加,尤其是在氮、磷、钾等养分充足的条件下,微生物的代谢活动会得到更好的发展,从而促进土壤微生物的繁殖和生长。
有机肥的施用还可以增加土壤微生物数量,有机肥中的有机物质能够提供微生物生长所需的碳源和能量源,促进土壤微生物的多样性和数量的增加。
长期施肥也会对土壤微生物量造成一定的抑制作用。
一方面,化肥中的高浓度养分会对土壤微生物产生一定的毒害作用,抑制其生长繁殖;长期施用化肥,土壤中的有机质会逐渐减少,微生物的生存条件将会变得更加苛刻,微生物群落的结构可能发生变化,使土壤微生物量减少。
二、长期施肥对土壤酶活性的影响长期施肥可以促进土壤酶活性的增加。
施用化肥可以提高土壤中的养分含量,同时也会刺激土壤中的酶活性。
氮、磷、钾元素是影响土壤酶活性的重要因素,养分充足的土壤中,土壤酶的活性将得到很好的发展。
有机肥的施用也可以促进土壤酶活性的增加,有机质中含有大量的酶和酶原,可以为土壤中的酶提供良好的生存环境和丰富的底物。
长期施用有机肥可以增加土壤酶的种类和数量,提高土壤酶活性。
长期施肥也会对土壤酶活性产生一定的抑制作用。
有研究表明,长期施用高浓度的化肥会降低土壤中的酶活性,尤其是氮素肥料。
长期施用单一种类的肥料会导致土壤中酶的种类和数量的减少,进而影响土壤酶的活性。
化肥的过量使用还会导致土壤酶的变性或失活,抑制土壤酶的活性。
长期施肥对土壤微生物量及土壤酶活性都会产生一定的影响。
一方面,施肥可以促进土壤微生物量的增加和土壤酶活性的提高,提高土壤肥力,增加农作物产量;长期施肥也会导致土壤微生物量的减少和土壤酶活性的抑制,降低土壤肥力,影响土壤生态系统的稳定性。
微生物对土壤酶活性的影响研究随着人们对土壤的认识不断深入,微生物在土壤生态系统中的作用受到了广泛关注。
土壤中的微生物群落可以通过多种途径对土壤酶活性产生影响,进而影响土壤质量与生态功能。
本文将针对微生物对土壤酶活性的影响进行研究与探讨。
一、微生物介绍微生物是指以单细胞或简单细胞团聚形式存在的生物体,包括细菌、真菌、放线菌等多种类型。
在土壤中,微生物可以通过分解有机物质、固定氮气、释放有益气体等活动,发挥着重要作用。
特别是微生物酶的产生与活性对土壤生态系统具有重要影响。
二、土壤酶活性的重要性土壤酶活性是衡量土壤生态系统功能的重要指标之一。
不同类型的土壤酶具有不同的功能,如脲酶、蔗糖酶、脂肪酶等,它们参与了土壤有机物质的分解和转化过程。
土壤酶活性的水平反映了土壤中微生物的代谢状态与活力,对维持土壤肥力、有机物质循环以及农作物生长发育具有重要影响。
三、微生物对土壤酶活性的影响因素1. 微生物群落结构:不同类型的土壤微生物群落结构差异较大,不同微生物对酶活性有不同的影响。
一些研究显示,细菌能够促进多种酶的产生,而真菌则更适合分解难降解的有机物质。
2. 土壤环境因素:土壤的氧化还原环境、温度、湿度等因素对土壤微生物代谢产生直接影响,从而影响土壤酶活性。
例如,高温环境下,酶活性常常受到抑制;而适宜的湿度则有利于酶活性的发挥。
3. 微生物代谢产物:微生物通过代谢产物与土壤中的有机物质相互作用,进而对土壤酶活性产生影响。
一些研究表明,某些微生物代谢产物能够促进酶活性的释放与提高。
四、微生物对土壤酶活性的正面影响1. 有机物质降解:微生物通过分解有机物质产生一系列酶,如脲酶、纤维素酶等,促进有机物质的降解。
这些酶能够将复杂的有机物分解为更容易被植物吸收和利用的形式。
2. 养分循环:微生物通过代谢过程使养分更易于植物吸收。
例如,微生物通过氮固定、磷解吸等活动,促进了土壤中养分的释放与再循环。
五、微生物对土壤酶活性的负面影响1. 毒性代谢产物:某些微生物产生的代谢产物具有毒性,可能对土壤酶活性产生抑制作用。
不同处理方式对土壤酶活性的影响随着全球环境问题的日益严重,土壤污染和土壤退化问题也逐渐成为了人们关注的焦点。
而土壤中的酶活性作为土壤健康的重要指标之一,对土壤中的有机质分解和养分的循环具有重要作用。
研究不同处理方式对土壤酶活性的影响,对于改善土壤质量、保护环境具有重要意义。
本文将探讨不同处理方式对土壤酶活性的影响,并探讨其在土壤生态学和环境保护领域的意义。
1. 化肥施用化肥施用是农业生产中最常见的土壤处理方式之一。
化肥中的氮、磷、钾等营养元素能够促进土壤酶活性的增加,从而促进植物生长和提高产量。
长期过量施用化肥也会导致土壤酶活性的抑制,同时影响土壤微生物多样性和土壤呼吸速率,从而对土壤生态系统造成负面影响。
2. 农药施用农药的广泛使用对土壤酶活性也产生了影响。
研究表明,有机磷类和碳酰胺类农药对土壤中的酶活性有较大的抑制作用,导致土壤呼吸速率降低,土壤微生物活性减弱。
合理使用农药,选择对土壤生态系统影响较小的产品显得尤为重要。
3. 土地利用方式不同的土地利用方式对土壤酶活性也有显著影响。
研究发现,森林土壤的酶活性通常高于耕地土壤,这是因为森林土壤中有机质含量较高,土壤微生物多样性较丰富。
而耕地土壤在长期耕作和施肥过程中,土壤酶活性会逐渐下降,从而对土壤生态系统产生负面影响。
4. 土壤改良土壤改良是改善土壤质量和保护环境的重要手段之一。
有机肥的施用和土壤覆盖等措施可以显著提高土壤的酶活性,促进土壤养分的循环和有机质的积累。
固氮植物的种植和轮作也可以改善土壤酶活性,增加土壤中的养分来源,从而提高土壤的生产力。
5. 土地复垦土地复垦是指对废弃或者退化的土地进行修复和再利用。
研究表明,土地复垦过程中的土壤改良和植被恢复可以显著提高土壤酶活性,促进土壤水土保持和生态系统的恢复。
在土地复垦过程中,合理选择土壤改良措施和植被恢复方式对于改善土壤质量和保护生态环境具有重要意义。
二、土壤酶活性在土壤生态学和环境保护中的意义1. 土壤酶活性是土壤健康的重要指标土壤酶活性反映了土壤中的微生物活性和有机物分解能力,是评价土壤健康状况的重要指标之一。
生物炭对土壤酶活和细菌群落的影响及其作用机制一、本文概述本文旨在探讨生物炭对土壤酶活性和细菌群落的影响及其潜在的作用机制。
生物炭作为一种由生物质经热解或气化产生的富含碳的固体产物,近年来在农业和环境科学领域引起了广泛关注。
由于其具有多孔性、高比表面积和良好的吸附性能,生物炭在改善土壤质量、提高土壤酶活性以及调控土壤微生物群落结构方面显示出巨大潜力。
本文首先介绍了生物炭的基本性质和制备方法,为后续研究提供基础。
接着,通过综述相关文献和实验数据,分析了生物炭对土壤酶活性的影响。
土壤酶作为土壤生物化学反应的重要催化剂,其活性直接影响着土壤中有机物的分解和养分的转化。
本文详细探讨了生物炭对几种关键土壤酶(如脲酶、磷酸酶和过氧化氢酶等)活性的影响及其机制。
本文还重点研究了生物炭对土壤细菌群落的影响。
土壤细菌作为土壤生态系统中最丰富和最重要的微生物类群之一,对土壤肥力和作物生长具有重要影响。
通过高通量测序等现代分子生物学技术,本文分析了生物炭处理下土壤细菌群落结构的变化,并探讨了生物炭对细菌群落多样性和功能的影响及其机制。
本文旨在全面解析生物炭对土壤酶活性和细菌群落的影响及其作用机制,为生物炭在农业可持续发展和生态环境保护中的应用提供科学依据。
二、生物炭对土壤酶活的影响土壤酶是土壤生物化学反应的重要驱动力,对土壤肥力和微生物活动具有重要影响。
生物炭作为一种新型的土壤改良剂,其对土壤酶活的影响一直是研究热点。
本部分将探讨生物炭对土壤酶活的影响及其可能的作用机制。
生物炭的施入可以显著提高土壤中某些酶的活性。
这主要归因于生物炭的多孔结构和巨大的比表面积,为土壤酶提供了更多的附着位点,从而增强了酶的活性。
生物炭的碱性特性也有助于提高土壤中某些酶的活性,尤其是在酸性土壤中。
生物炭对土壤酶活的影响还与其自身的理化性质密切相关。
生物炭的含碳量、灰分含量、表面官能团等特性都会影响其与土壤酶的相互作用。
例如,生物炭表面的负电荷可以吸引带正电荷的酶分子,从而增强酶的活性。
石油污染对土壤酶活性的影响石油污染是一种严重的环境问题,石油及其衍生物污染土壤会对土壤生物多样性和生态系统功能产生巨大的影响。
土壤酶活性是评价土壤质量和生态系统健康的重要指标之一。
本文将探讨石油污染对土壤酶活性的影响及其机制。
石油污染对土壤酶活性的影响主要包括两个方面:一方面是直接影响土壤酶活性的物理和化学性质的改变,另一方面是间接影响土壤酶活性的微生物群落的变化。
石油污染会改变土壤的物理和化学性质,进而影响土壤酶的活性。
当土壤遭受石油污染后,土壤中的有机质含量明显下降,同时土壤的pH值也会发生变化。
这些改变会直接影响到土壤中的酶活性。
研究表明,石油污染会降低土壤中的脱氢酶、过氧化物酶、脲酶等多种酶的活性。
石油中的有毒物质(如苯、甲苯、二甲苯等)也会对土壤酶活性产生直接的抑制作用。
这些物质与酶分子直接发生作用,改变酶的构象和功能,降低酶的催化活性。
石油污染还会改变土壤微生物群落的组成和功能,进而间接影响到土壤酶活性。
石油污染会导致土壤中的细菌、真菌等微生物群落的数量和多样性发生变化。
有研究发现,石油污染后土壤中的细菌数量明显下降,而真菌则有所增加。
这是因为石油中的有毒物质对细菌具有较强的毒性作用,而真菌具有更强的抵抗石油污染的能力。
在微生物群落变化的土壤中的酶活性也会受到影响。
微生物是土壤中酶的主要产生者,酶的活性往往与微生物群落的结构和功能密切相关。
石油污染导致的微生物群落变化,不仅会降低酶的活性,还可能改变酶的种类和功能。
石油污染会直接影响土壤的物理和化学性质,降低土壤中多种酶的活性。
石油污染还会间接影响土壤微生物群落的组成和功能,进而改变土壤酶活性。
石油污染对土壤酶活性的影响机制是一个复杂的过程,需要进一步的研究来深入理解。
研究如何通过调控土壤酶活性来修复石油污染土壤,对于解决石油污染问题具有重要的价值。
不同地被植物对土壤养分含量和土壤酶活性的影响【摘要】不同植物对土壤养分含量和土壤酶活性的影响是一个重要的研究课题。
本文通过对不同植物种类的研究,发现不同植物对土壤养分含量和土壤酶活性具有显著的影响。
土壤养分含量与土壤酶活性之间存在着密切的关系。
环境因素也对植物对土壤养分含量和土壤酶活性的影响有一定影响。
植物对土壤的影响具有重要的生态学意义。
研究不同植物对土壤的影响对于理解土壤生态系统的功能和稳定性具有重要意义。
不同植物对土壤的影响因地而异,因此未来研究方向需要更加综合考虑环境因素的影响,以期得出更加全面的结论。
本文对于不同植物对土壤的影响进行了全面的探讨,为未来相关研究提供了一定的指导。
【关键词】土壤养分含量、土壤酶活性、植物种类、环境因素、生态学意义、地方差异、研究方向、结论总结。
1. 引言1.1 研究背景土壤是生态系统中的重要组成部分,承载着植物生长所需的养分和水分。
植物通过根系吸收土壤中的养分,同时释放根系分泌物,影响土壤环境和土壤微生物的生长。
不同植物种类对土壤养分含量和土壤酶活性的影响广泛存在于自然生态系统中。
研究发现,不同植物种类能够改变土壤中的氮、磷、钾等养分含量,影响土壤中氨化酶、过氧化氢酶等酶类活性。
土壤养分含量和土壤酶活性对土壤生态系统的稳定性和健康起着至关重要的作用。
养分含量的变化会影响植物的生长和生态系统的结构与功能,而土壤酶活性则反映了土壤中微生物的代谢活动和分解速率。
了解不同植物对土壤养分含量和土壤酶活性的影响,对于揭示土壤与植物相互作用的机制,以及推动生态系统的可持续发展具有重要意义。
本文旨在探讨不同植物种类对土壤养分含量和土壤酶活性的影响,探讨土壤养分含量与土壤酶活性之间的关系,分析环境因素对植物对土壤的影响,并探讨植物对土壤的生态学意义。
通过综合研究,可以为未来的土壤生态系统管理和植物选择提供科学依据。
1.2 研究目的研究目的是为了探究不同植物种类对土壤养分含量和土壤酶活性的影响,揭示植物与土壤之间的相互作用机制。
现代园艺2018年第6期土壤酶活性的主要影响因素分析黄雪琳,杨静,贺宇纯(咸阳职业技术学院,陕西咸阳712000)土壤酶是土壤的组成成分之一,它们数量虽少,但作用颇大,它们参与各种元素的生物循环、有机质的转化、腐殖质及有机无机胶体的形成等,土壤酶是土壤生物学中的一项重要内容,对土壤肥力起重要作用。
本文介绍并分析了土壤酶活性的主要影响因素。
土壤酶;影响因素因此在进行土壤酶的研究时要适当考虑含水量对于酶活性的影响。
研究显示,温度对于酶活性的影响极大,温度过高时会影响土壤结构的稳定性,继而间接影响到酶的活性,严重时会引发酶丧失活性。
经过大量的研究事实表明,土壤的化学性质会对土壤酶活性产生比较大的影响,根据相关测试显示,棕色土土壤的pH值一般为6.3~6.5,最高可以达到7.0,因此酸性磷酸酶活性较高。
但是对于褐土、黑土、潮土、盐碱土这四种类型的土壤,pH范围在7.35~8.0之间,在这四种类型土壤中,碱性磷酸酶的活性是最强的。
大棚土壤中有机质跟过氧化氢酶之间具有显著或极显著正相关性,全氮与中性磷酸酶、全磷与脲酶和磷酸酶、无机磷与过氧化氢酶等也存在着显著正相关性,但有机磷、无机磷等却跟多酚氧化酶存在着负相关性[2]。
4土壤养分土壤微生物和植物根系是土壤酶的主要来源,他们的活动能力受到土壤养分的直接影响。
因此,土壤酶活性与土壤养分含量有密切联系。
有机质能够增强土壤的通气性和孔隙度,是土壤微生物和酶的有机载体,其组成和含量会对土壤酶的稳定性造成影响。
土壤中氮、磷、钾等营养元素的存在状况和含量也与土壤酶活性变化有关。
大量研究表明[3],土壤养分和土壤酶活性之间存在密切的关系。
5施肥等农业管理措施施肥可以改善土壤理化特性、水热状况及微生物区系,从而对土壤酶活性产生影响。
有机肥料与化学肥料的施用会对土壤酶活性产生明显的影响。
有机无机肥配施能够不同程度地增强多种土壤酶活性,而单施化肥将会显著降低酶活性。
在实际生产中,可通过增施有机肥或有机无机肥配施来改善土壤理化性质,提高土壤酶活性,提升土地利用效率,同时亦可减少化肥的施用量,实现环境的可持续发展[4]。
关于影响土壤酶活性因素的研究摘要:本文对国内外土壤酶活性影响因素的研究进行了综述,总结了土壤微生物、团聚体、农药、重金属和有机物料等对土壤酶活性的影响,并对土壤纳米粒子与土壤酶活性关系的研究发展前景进行了展望。
关键词:土壤酶活性;微生物;团聚体;重金属;有机物料Study progress on factors affecting soil enzyme activity Abstracts: In this article,the study on factors affecting soil enzyme activity in recent years was reviewed. Several aspects such as microbial,aggregation,heavy metals,organic manure and so on were included.At the same time,the effects of the soil inorganic nanometer particle (SINP) on soil enzyme activity inthe future research was forecasted.Key words: soil enzyme activity;microbial;aggregation;heavy metals;organic manure 酶是土壤组分中最活跃的有机成分之一,土壤酶和土壤微生物一起共同推动土壤的代谢过程[1]。
土壤酶来源于土壤中动物、植物和微生物细胞的分泌物及其残体的分解物,其中微生物细胞是其主要来源[1,2]。
土壤中广泛存在的酶类是氧化还原酶类和水解酶类,其对土壤肥力起重要作用。
土壤中各有机、无机营养物质的转化速度,主要取决于转化酶、蛋白酶磷酸酶、脲酶及其他水解酶类和多酚氧化酶、硫酸盐还原酶等氧化还原酶类的酶促作用[2]。
土壤酶绝大多数为吸附态,极少数为游离态,主要以物理和化学的结合形式吸附在土壤有机质和矿质颗粒上,或与腐殖物质络合共存[3]。
土壤酶活性反映了土壤中各种生物化学过程的强度和方向[4],其活性是土壤肥力评价的重要指标之一,同时也是土壤自净能力[1]评价的一个重要指标。
土壤酶的活性与土壤理化特性、肥力状况和农业措施有着显著的相关性[5]。
因此,研究土壤酶活性的影响因素,提高土壤酶活性,对改善土壤生态环境,提高土壤肥力有重要意义。
本文对土壤酶活性影响因子的研究进展进行了综述,以期为土壤酶活性的深入研究和土壤培肥理论及其应用提供研究思路和方向。
1土壤微生物在土壤酶学研究中,一直关注的是土壤贮积酶,即存在于无微生物增殖土壤中的酶[1],其理论依据是:土壤生物释出的酶极易钝化和酶解,而贮积酶活性则能保持较长时间。
但是,越来越多的研究[6,7]表明,在测得的土壤酶活性值中,活体微生物对土壤酶的影响相当大。
有报道[8]指出,脲酶、磷酸酶和纤维素酶的活性与微生物量有较密切的关系,3种酶的活性随着生物量的增加而不断增强,二者变化基本保持同步。
脱氢酶活性与土壤微生物的关系不明显,其变化规律与生物量相比呈现不规则性。
而蔗糖酶活性与土壤微生物数量、土壤呼吸强度有直接依赖性[1]。
Naseby[9]通过向根际接种遗传改性微生物,使根际土壤的碱性磷酸酶、磷酸二酯酶及芳基硫酸酯酶的活性增强,同时使β-糖苷酶、β-半乳糖苷酶及N-乙酰基氨基葡糖酶的活性减弱,该结果说明,遗传改性微生物生成的酶,对土壤的碳、磷转化具有重要作用。
还有研究[10]表明,玉米生长的中前期,土壤微生物量碳、氮与土壤过氧化氢、蔗糖酶、脲酶、蛋白酶活性及速效养分的相关性均达到显著或极显著水平。
鉴于酶与微生物之间显著的相关性,Mawdsley等[11]和Naseby等[12]曾通过测定胞表酶的活性来研究遗传改性微生物对土壤代谢的影响。
对V A菌根真菌改善植物磷营养的机理研究[13- 15]表明,V A真菌分泌的磷酸酶能矿化土壤有机磷,同时,由V A真菌分泌的谷酰胺合成酶和谷酰胺脱氢酶酶促的对氨态氮和硝态氮的同化,也改善了植物的磷营养[16]。
因此,对不同土壤微生物与不同土壤酶关系的研究,将是土壤酶未来研究的热点。
其重要意义在于,土壤微生物的生物多样性决定了其功能的多样性,而土壤微生物作为媒介,由其生成和释出的酶催化的诸多生物化学过程,是土壤功能多样性的前提和基础。
2土壤水气热条件土壤水分、空气和热量状况对土壤酶活性的影响是明显的,一方面,其与土壤微生物的活性和类型有显著的相关性,因此,必然对土壤酶的活性产生巨大影响。
另一方面,不同水分条件、空气组成和水分状况,也会直接影响土壤酶活性的存在状态与活性强弱。
一般情况下[1],土壤湿度较大时,酶活性较高,但土壤过湿时,酶活性减弱。
Birch[3]研究了具有连续雨季和旱季地区的土壤酶活性,他指出当旱季结束雨季开始时,土壤酶活性显著增强[3]。
土壤含水量减少时,酶活性也减弱。
土壤温度直接影响释放酶类的微生物种群及数量,因此,土壤温度是影响酶活性的因素之一[1]。
有研究[17,18]表明,当温度由10℃上升到60或70℃时,土壤酶活性显著增加;但随着温度的进一步升高,脲酶迅速钝化;在150℃下加热24 h或115℃下加热15 h,土壤酶会完全失活。
因为土壤CO2和O2与土壤微生物的活动状态有关,所以土壤空气对土壤酶活性有直接影响。
Overrein(1963)[1]指出,氧与脲酶活性有关;除半纤维素酶外,蔗糖酶、淀粉酶、纤维素酶、脲酶、磷酸酶和硫酸酶同土壤氧的摄取量均呈正相关。
由此可见,土壤水气热对土壤酶活性的影响是非常显著的,如同对微生物的研究要注意水气热条件的合理设置一样,对某些土壤酶的研究,也必须考虑到其所适应的最佳水气热条件的控制和选择。
尤其对污染土壤酶的修复研究及有机肥料的生化处理与制造的研究,更要强调水气热条件的分析设定。
3土壤酸碱性土壤酸碱性直接影响着土壤酶参与生化反应的速度。
有些酶促反应对pH值变化很敏感,甚至只能在较窄的pH范围内进行[1]。
和文祥等[18]、Franken-berger等[19]研究发现,土壤脲酶的两个最适pH值为pH=6.5~7.0或pH=8.8~9.0,土壤磷酸酶的最适pH值为 4.0~5.0,6.0~7.0,8.0~10.0,分别称为酸性、中性、碱性磷酸酶。
当pH在5.0以下时,过氧化氢酶和脱氢酶的活性几乎完全丧失,而转化酶和脲酶受酸度的影响较小,但与土壤腐殖质含量呈正相关[20]。
另有研究[21]表明,pH对脲酶的巯基、氨基、羧基等组成部分所处状态及蛋白质构型(三级结构)的影响,也会导致酶活性的改变。
徐冬梅等[22]研究表明,低酸度先对脲酶、中性磷酸酶产生一定的激活效应,进而转化为抑制,而[H+]离子浓度为0~55 mmol/kg时,外源酸对转化酶与酸性磷酸酶的活性表现为明显的激活效应。
4土壤有机质、氮、磷及微量元素土壤中有机质含量只有百分之零点几至百分之几,虽然数量比率不高,但其对土壤理化性质影响很大。
土壤酶可以吸附在有机物质上,一系列的土壤酶,如脲酶、二酚氧化酶、蛋白酶以及水解酶等,都曾以“酶-腐殖物质复合物”的形式从土壤中提取出来,这些提取物中的酶仍可保留有活性,在某些情况下,还有较强的抗分解能力和热稳定性[23]。
一般而言,土壤全氮、全磷含量与有机质含量是成比例的,所以土壤N,P含量与土壤酶活性有关[1]。
土壤有机质、全氮、全磷通过直接和间接效应成为影响脲酶和酸性磷酸酶、转化酶活性的主要因素[24]。
酶的活性与有机质分布剖面有关,而且随剖面加深而降低[25]。
土壤转化酶、蛋白酶、磷酸酶和脲酶活性与土壤有机质(有机碳)呈极显著相关(P <0.01)或显著相关(P <0.05),与全氮显著相关;过氧化氢酶、转化酶、蛋白酶、磷酸酶、脲酶与速效氮、速效磷较显著相关、显著相关或极显著相关;脲酶与全磷呈极显著相关[26]。
杨远平[27]对毕节地区土壤磷酸酶活性的研究也表明,土壤磷酸酶活性与全氮、有机质、速效磷、水解氮等关系密切。
樊军等[28]研究表明,土壤脲酶、碱性磷酸酶、蛋白酶活性随土壤有机碳含量的增加而增加,蔗糖酶、过氧化氢酶活性与有机碳之间的关系因施肥种类及种植方式的不同而不同。
汪远品等[29]较为系统全面地测了贵州省主要耕作土壤的脲酶活性,其回归分析表明,土壤脲酶活性主要受土壤有机质及氮、磷、钾等因素的影响,其中土壤基础铵量对耕作土壤脲酶活性影响最大。
微量元素是植物、微生物和酶的激活剂和抑制剂,土壤的微量元素含量可能是决定土壤酶活性的一个重要生态学因素[30]。
微量元素对土壤酶活性的影响,取决于土壤的性质及不同酶类对微量元素的专有特性,对某些酶起激活作用的微量元素,对另一种酶则可能起抑制作用[31,32]。
而且,同一微量元素的含量不同时,既可以起激活酶的作用,也可以起到抑制酶的作用[30]。
李跃林等[32]研究表明,锌和锰对土壤蛋白酶活性影响的正效应最大,即促进作用较大。
锌在一定程度上对脲酶和过氧化氢酶有负效应,即有一定的抑制作用,而锰对其有正效应,即促进作用。
5土壤团聚体和粘粒土壤团聚体是反映土壤理化性质和养分状况的一个指标,是由微小矿物颗粒复合而成的稳定结构,一般可分为大团聚体(>250μm)和微团聚体(50~250μm),直径为0.5~3 mm的团聚体是决定土壤肥力水平的重要因素之一[33]。
不同粒径团聚体的酶活性不一样,小团聚体的酶活性要比大团聚体中的高[3]。
团聚体的稳定性也与酶活性有关,如脲酶活性与土壤团聚体的稳定性及土壤容重呈显著负相关,转化酶活性与土壤团聚体的稳定性呈显著的正相关[34]。
周礼恺等[1]提出,黑土、棕壤脲酶活性主要集聚在微团聚体上,相当于土壤粒级的粘粒部分。
随粒径增大,脲酶活性有下降趋势。
糖酶主要吸附在粉砂粒上[3]。
粘粒和粉砂对酶吸附量的多少,与这些土粒的矿物组成有关。
粘粒由于具有颗粒细、表面积大及某些矿物结构的特定特征,而使其成为土壤中最活跃的矿物组分。
粘粒是土壤具有许多物理、化学性质的根源[35],其可与土壤腐殖质共同组成复合胶体。
土壤酶只有一小部分存在于土壤溶液中,其大部分被土壤粘粒、腐殖质等物质吸附,其可通过阳离子交换反应的方式与粘粒矿物结合[23]。
粘粒对酶的吸附量受酸度、温度等环境条件影响,土壤pH值越低(低于酶蛋白的等电点),粘粒吸附的酶越多[23]。
由于脲酶为一弱酸性酶,所以脲酶在弱酸性介质中的吸附量大于弱碱性介质;在20~60℃时,各土壤粘粒的脲酶吸附量随温度升高而降低[36]。
土壤中性磷酸酶和蛋白酶活性与脲酶的分布规律一致,主要吸附在土壤胶粒和粘粒部分;土壤硫酸酶活性与粘粒总表面积有关;磷酸酶活性绝大部分为粘粒吸附[1]。