第二章
识无理数
一.无理数的存在性探索
1. 探究:
① ② 什么是有理数:整数和分数统称为有理数。 不是有理数的数:π、正方形的面积为2、3、5、 6、7,13---时,它们的边长。--- 广泛存在。 X2=a(a ≥0),当我们知道a求x 时,结果可能 是有理数,也可能不是有理数。
3 3 3 3
【练习】求下列各式的值:
8 3 3 3 3 3 ( 3 ) ; ( 4 )( 9 ) . (1) 8 ; (2) 0.064 ; 125 解:(1)3 8 3 (2) 3 2;
(2) 0.064 (0.4) 0.4;
3
3 3
8 (3) 3 3 125
( 5) (- 4 )2的 算 术 平 方 根 是 _ _ 4 10 ( 6) 10的 算 术 平 方 根 是 _ _
1_ .2 36=_ _ 1.44=_
6
3 1 2 =_ _ 25=_ _ 2 4
5
【练习】 求下列各数的算术平方根:
(1)900; (4)14
49 ( 2) 1; ( 3) 64
二.无理数的概念
1. 2. 3. 定义:无限不循环小数叫做无理数。 特征:小数部分无限;小数部分不循环;不 能表示成分数的形式。 与小数的关系:
有限小数 小数 无限循环小数 无限循不环小数 无理数 有理数
4.
无理数有正的无理数和负的无理数.
【例2】说说谁“有理”,谁“无理” 以下各数: 2 -1,— 3 ,3.14,-4π,3,0,2,-0.2020020002 -(相邻两个2之间0的个数逐次加1) ,3.3 其中,是有理数的是_____________,是 无理数的是______________ . 在上面的有理数中,分数有__________, 整数有____________.