导数的几何意义-解答题(含解析)
- 格式:doc
- 大小:159.78 KB
- 文档页数:15
高二数学导数的概念和几何意义试题答案及解析1.若曲线在点处的切线方程是,则.【答案】2【解析】,又在点处的切线方程是,.【考点】三角函数化简求值.2.函数在处的切线方程是()A.B.C.D.【答案】A【解析】,因此切线方程为,即.【考点】(1)导数的运算法则;(2)导数的几何意义.3.若曲线f(x,y)=0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0的“自公切线”,下列方程:①x2﹣y2=1②x2﹣|x﹣1|﹣y=0③xcosx﹣y=0④|x|﹣+1=0其中所对应的曲线中存在“自公切线”的有()A.①②B.②③C.①④D.③④【答案】B【解析】①x2﹣y2=1是一个等轴双曲线,没有自公切线;②x2﹣|x﹣1|﹣y="0" ,由两圆相交,可知公切线,满足题意,故有自公切线;③xcosx﹣y=0的图象过(2π,2π ),(4π,4π),图象在这两点的切线都是y=x,故此函数有自公切线;④|x|﹣+1=0,其表示的图形为图中实线部分,不满足要求,故不存在.故选:B【考点】利用导数研究曲线上某点切线方程.4.抛物线在点处的切线的倾斜角是( )A.30B.45C.60D.90【答案】B【解析】设抛物线在点处的切线的倾斜角为,因为,由导数几何意义得:,故选B.【考点】导数几何意义.5.已知函数,若曲线存在与直线平行的切线,则实数的取值范围是()A.B.C.D.【答案】A【解析】对函数求导可得,存在与直线平行的切线,即有实数解,则,,则,得.故选A.【考点】导数的几何意义.6.函数是定义在R上的可导函数,则下列说法不正确的是()A.若函数在时取得极值,则B.若,则函数在处取得极值C.若在定义域内恒有,则是常数函数D.函数在处的导数是一个常数【答案】B.【解析】对于B,可以构造函数,则,而并不是的极值点,而A,C,D均正确,∴选B.【考点】导数的性质.7.函数的图像在点)处的切线与轴的交点的横坐标为()若,则= 。
高二数学导数的概念和几何意义试题答案及解析1.设曲线在点处的切线与直线垂直,则()A.2B.C.D.【答案】B【解析】,故切线的斜率,在由切线与直线垂直得,即.【考点】导数的应用之一:曲线在一点处的切线以及两直线之间的位置关系.2.已知函数().⑴若函数的图象在点处的切线的倾斜角为,求在上的最小值;⑵若存在,使,求的取值范围.【答案】⑴在上的最小值为;⑵的取值范围为.【解析】⑴对函数求导并令导函数为0,看函数的单调性,即可求在上的最小值;⑵先对函数求导得,分、两种情况讨论即可求的取值范围.(1) 1分根据题意, 3分此时,,则.令-+∴当时,最小值为. 8分(2)∵,①若,当时,,∴在上单调递减.又,则当时,.∴当时,不存在,使 11分②若,则当时,;当时,.从而在上单调递增,在上单调递减.∴当时, 14分根据题意,,即,∴. 15分综上,的取值范围是. 16分【考点】导数的应用、分类讨论思想.3.设,则曲线在处的切线的斜率为()A.B.C.D.【答案】B【解析】因为,根据导数的几何意义可知,曲线在处的切线的斜率为,故选B.【考点】导数的几何意义.4.设曲线在点(3,2)处的切线与直线垂直,则的值是A.2B.C.D.【答案】B【解析】函数=1+的导数为,∴曲线在点(3,2)处的切线斜率为,由×(-a)="-1" 得,a=-2,故答案为:B.【考点】函数在某点的导数值与曲线在此点的切线的斜率的关系;两直线垂直的性质.5.设,则在处的导数()A.B.C.0D.【答案】A【解析】,故选A.【考点】某点处的导数.6.与直线2x-6y+1=0垂直,且与曲线f(x)=x3+3x2-1相切的直线方程是________.【答案】【解析】与已知直线垂直的直线的斜率,,解得,代入曲线方程所以切线方程为,整理得:【考点】1.导数的几何意义;2.直线的垂直.7.已知A为函数图像上一点,在A处的切线平行于直线,则A点坐标为 ;【答案】(1,2)【解析】因为,设,则A点坐标为(1,2).【考点】导数的几何意义8.过点且与曲线相切的直线方程为()A.或B.C.或D.【答案】A【解析】设切点为,因为,所以切线的斜率为,所以切线方程为,又因为切线过点,所以即,注意到是在曲线上的,故方程必有一根,代入符合要求,进一步整理可得即,也就是即,所以或,当时,,切线方程为即;当时,,切线方程为即,故选A.【考点】导数的几何意义.9.在曲线处的切线方程为。
5.1.1导数的几何意义导学案【学习目标】1.理解曲线的切线的含义2.理解导数的几何意义3.会求曲线在某点处的切线方程4.理解导函数的定义,会用定义法求简单函数的导函数.【自主学习】知识点1曲线的切线如图所示,当点P n 沿着曲线y =f (x )无限趋近于点P 时,割线PP n 趋近于确定的位置,这个确定位置的直线PT 称为点P 处的切线.(1)曲线y =f (x )在某点处的切线与该点的位置有关;(2)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以有无穷多个. 知识点2导数的几何意义函数y =f (x )在点x =x 0处的导数f ′(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处切线的斜率. 知识点3 导数的概念对于函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数,这样,当x 变化时,f ′(x )便是关于x 的一个函数,称它为函数y =f (x )的导函数,简称导数,也可记作y ′,即f ′(x )=y ′=lim Δx →0 Δy Δx =lim Δx →0 f (x +Δx )-f (x )Δx. 函数y =f (x )在x =x 0处的导数y ′|0x x =就是函数y =f (x )在开区间(a ,b )(x ∈(a ,b ))上的导数f ′(x )在x =x 0处的函数值,即y ′|0x x ==f ′(x 0),所以函数y =f (x )在x =x 0处的导数也记作f ′(x 0).【合作探究】探究一 求曲线的切线方程考向1 求曲线在某点的切线方程例1求曲线y =f (x )=x 3-x +3在点(1,3)处的切线方程.解 因为点(1,3)在曲线上,过点(1,3)的切线的斜率为f ′(1)=lim Δx →0 (1+Δx )3-(1+Δx )+3-(1-1+3)Δx=lim Δx →0 (Δx )3+3(Δx )2+2Δx Δx=lim Δx →0[(Δx )2+3Δx +2] =2,故所求切线方程为y -3=2(x -1),即2x -y +1=0.归纳总结:若求曲线y =f (x )在点P (x 0,y 0)处的切线方程,其切线只有一条,点P (x 0,y 0)在曲线y =f (x )上,且是切点,其切线方程为y -y 0=f ′(x 0)(x -x 0).练习1(1)曲线f (x )=13x 3-x 2+5在x =1处切线的倾斜角为 . (2)曲线y =f (x )=x 3在点P 处切线斜率为3,则点P 的坐标为 .答案 (1)34π (2)(-1,-1)或(1,1) 解析 (1)设切线的倾斜角为α,则tan α=lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 f (1+Δx )-f (1)Δx =lim Δx →0 13(1+Δx )3-(1+Δx )2+5-(13-1+5)Δx=lim Δx →0 13(Δx )3-Δx Δx=lim Δx →0[13(Δx )2-1]=-1. ∵α∈[0,π),∴α=34π. ∴切线的倾斜角为34π. (2)设点P 的坐标为(x 0,x 30),则有lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 3x 20Δx +3x 0(Δx )2+(Δx )3Δx=lim Δx →0[3x 20+3x 0Δx +(Δx )2]=3x 20. ∴3x 20=3,解得x 0=±1.∴点P 的坐标是(1,1)或(-1,-1).探究二 求导函数例2求函数f (x )=x 2+1的导函数.解 ∵Δy =f (x +Δx )-f (x )=(x +Δx )2+1-x 2+1=2x Δx +(Δx )2(x +Δx )2+1+x 2+1,∴Δy Δx =2x +Δx (x +Δx )2+1+x 2+1,∴f ′(x )=lim Δx →0 Δy Δx =lim Δx →0 2x +Δx(x +Δx )2+1+x 2+1=x x 2+1. 归纳总结:求解f ′(x )时,结合导数的定义,首先计算Δy =f (x +Δx )-f (x ).然后,再求解Δy Δx,最后得到f ′(x )=lim Δx →0 Δy Δx. 练习2 已知函数f (x )=x 2-1,求f ′(x )及f ′(-1).解 因Δy =f (x +Δx )-f (x )=(x +Δx )2-1-(x 2-1)=2Δx ·x +(Δx )2,故lim Δx →0 Δy Δx =lim Δx →0 2Δx ·x +(Δx )2Δx=2x , 得f ′(x )=2x ,f ′(-1)=-2.探究三 求曲线过点的切线方程例3求过点(-1,-2)且与曲线y =2x -x 3相切的直线方程.解 y ′=lim Δx →0 Δy Δx=lim Δx →0 2(x +Δx )-(x +Δx )3-2x +x 3Δx=lim Δx →0[2-3x 2-3x Δx -(Δx )2]=2-3x 2. 设切点的坐标为(x 0,2x 0-x 30),∴切线方程为y -2x 0+x 30=(2-3x 20)(x -x 0).又∵切线过点(-1,-2),∴-2-2x 0+x 30=(2-3x 20)(-1-x 0), 即2x 30+3x 20=0,∴x 0=0或x 0=-32. ∴切点的坐标为(0,0)或(-32,38). 当切点为(0,0)时,切线斜率为2,切线方程为y =2x ;当切点为(-32,38)时,切线斜率为-194,切线方程为y +2=-194(x +1),即19x +4y +27=0. 综上可知,过点(-1,-2)且与曲线相切的直线方程为y =2x 或19x +4y +27=0.归纳总结:若题中所给点(x 0,y 0)不在曲线上,首先应设出切点坐标,然后根据导数的几何意义列出等式,求出切点坐标,进而求出切线方程.练习3求过点P (3,5)且与曲线y =x 2相切的直线方程.解 由题意知y ′=lim Δx →0 Δy Δx =lim Δx →0 (x +Δx )2-x 2Δx =2x .设所求切线的切点为A (x 0,y 0).∵点A 在曲线y =x 2上,∴y 0=x 20.又∵A 是切点,∴过点A 的切线的斜率y ′|0x x ==2x 0.∵所求切线过P (3,5)和A (x 0,y 0)两点,∴其斜率为y 0-5x 0-3=x 20-5x 0-3.∴2x 0=x 20-5x 0-3,解得x 0=1或x 0=5.从而切点A 的坐标为(1,1)或(5,25).当切点为(1,1)时,切线的斜率为k 1=2x 0=2;当切点为(5,25)时,切线的斜率为k 2=2x 0=10.∴所求的切线有两条,方程分别为y -1=2(x -1)和y -25=10(x -5),即2x -y -1=0和10x -y -25=0.探究四 导数几何意义的综合应用例4设函数f (x )=x 3+ax 2-9x -1(a <0),若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求a 的值.解 ∵Δy =f (x +Δx )-f (x )=(x +Δx )3+a (x +Δx )2-9(x +Δx )-1-(x 3+ax 2-9x -1)=(3x 2+2ax -9)Δx +(3x +a )(Δx )2+(Δx )3,∴Δy Δx=3x 2+2ax -9+(3x +a )Δx +(Δx )2, ∴f ′(x )=lim Δx →0 Δy Δx =3x 2+2ax -9=3(x +a 3)2-9-a 23≥-9-a 23. 由题意知f ′(x )最小值是-12,∴-9-a 23=-12,a 2=9, ∵a <0,∴a =-3.归纳总结:与导数的几何意义相关的题目往往涉及解析几何的相关知识,如直线的方程、直线间的位置关系等,因此要综合应用所学知识解题.练习4(1)已知函数f (x )在区间[0,3]上的图象如图所示,记k 1=f ′(1),k 2=f ′(2),k 3=f (2)-f (1),则k 1,k 2,k 3之间的大小关系为 .(请用“>”连接)(2)曲线y =1x和y =x 2在它们交点处的两条切线与x 轴所围成的三角形的面积是 . 答案 (1)k 1>k 3>k 2 (2)34解析 (1)结合导数的几何意义知,k 1就是曲线在点A 处切线的斜率,k 2则为在点B 处切线的斜率,而k 3则为割线AB 的斜率,由图易知它们的大小关系.(2)联立⎩⎪⎨⎪⎧y =1x ,y =x 2,解得⎩⎪⎨⎪⎧x =1,y =1,故交点坐标为(1,1).曲线y =1x 在点(1,1)处切线方程为l 1:x +y -2=0,曲线y =x 2在点(1,1)处切线方程为l 2:2x -y -1=0.从而得S =12×|21-2|×1=34.课后作业A 组 基础题一、选择题1.下列说法正确的是( )A.若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处就没有切线B.若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C.若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D.若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在答案 C解析 k =f ′(x 0),所以f ′(x 0)不存在只说明曲线在该点的切线斜率不存在,而当斜率不存在时,切线方程也可能存在,其切线方程为x =x 0.2.已知y =f (x )的图象如图所示,则f ′(x A )与f ′(x B )的大小关系是( )A.f ′(x A )>f ′(x B )B.f ′(x A )<f ′(x B )C.f ′(x A )=f ′(x B )D.不能确定答案 B解析 由导数的几何意义,f ′(x A ),f ′(x B )分别是切线在点A 、B 处切线的斜率,由图象可知f ′(x A )<f ′(x B ).3.在曲线y =x 2上切线倾斜角为π4的点是( ) A.(0,0)B.(2,4)C.(14,116) D.(12,14) 答案 D 解析 ∵y ′=lim Δx →0 (x +Δx )2-x 2Δx=lim Δx →0 (2x +Δx )=2x , ∴令2x =tan π4=1,得x =12.∴y =⎝⎛⎭⎫122=14,所求点的坐标为⎝⎛⎭⎫12,14. 4.已知曲线y =13x 3上一点P (2,83),则该曲线在P 点处切线的斜率为( ) A.4 B.2 C.-4 D.8答案 A解析 因y =13x 3,得y ′=lim Δx →0 Δy Δx =lim Δx →0 13(x +Δx )3-13x 3Δx =13lim Δx →0[3x 2+3x ·Δx +(Δx )2]=x 2, 故y ′=x 2,y ′|x =2=22=4,结合导数的几何意义知,曲线在P 点处切线的斜率为4.5.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( )A.1B.12C.-12D.-1答案 A解析 ∵y ′|x =1=lim Δx →0 a (1+Δx )2-a ×12Δx=lim Δx →0(2a +a Δx )=2a .∴可令2a =2,∴a =1. 6.如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)等于( )A.2B.3C.4D.5答案 A 解析 易得切点P (5,3),∴f (5)=3,k =-1,即f ′(5)=-1.∴f (5)+f ′(5)=3-1=2.二、填空题7.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)= . 答案 3解析 由在点M 处的切线方程是y =12x +2, 得f (1)=12×1+2=52,f ′(1)=12. ∴f (1)+f ′(1)=52+12=3. 8.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程是 . 答案 2x -y +4=0解析 曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1=lim Δx →0 3(1+Δx )2-4(1+Δx )+2-3+4-2Δx=lim Δx →0(3Δx +2)=2. ∴过点P (-1,2)的直线的斜率为2,由点斜式得y -2=2(x +1),即2x -y +4=0.∴所求直线方程为2x -y +4=0.9.若曲线y =2x 2-4x +P 与直线y =1相切,则P = .答案 3解析 设切点坐标为(x 0,1),则f ′(x 0)=4x 0-4=0, ∴x 0=1,即切点坐标为(1,1).∴2-4+P =1,即P =3.10.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的范围为]4,0[π,则点P 横坐标的取值范围为 . 答案 ⎣⎡⎦⎤-1,-12 解析 ∵f ′(x )=lim Δx →0 (x +Δx )2+2(x +Δx )+3-(x 2+2x +3)Δx =lim Δx →0 (2x +2)·Δx +(Δx )2Δx=lim Δx →0 (Δx +2x +2)=2x +2. ∴可设P 点横坐标为x 0,则曲线C 在P 点处的切线斜率为2x 0+2.由已知得0≤2x 0+2≤1,∴-1≤x 0≤-12,∴点P 横坐标的取值范围为⎣⎡⎦⎤-1,-12. 三、解答题11.求曲线y =x 2在点(1,1)处的切线与坐标轴围成的三角形面积. 解 由导数定义可得y ′|x =1=2,∴曲线y =x 2在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1,设它与两坐标轴的交点分别为A (0,-1),B (12,0),∴S △AOB =12|OA ||OB |=14.12.已知抛物线y =x 2和直线x -y -2=0,求抛物线上一点到该直线的最短距离.解 方法一 设P (x ,x 2)为抛物线上任意一点,则点P 到直线x -y -2=0的距离为d =|x -x 2-2|2=22⎪⎪⎪⎪-⎝⎛⎭⎫x -122-74=22⎝⎛⎭⎫x -122+728,所以当x =12时,d 最小,最小值为728. 方法二 由题意设直线x -y +b =0与抛物线y =x 2相切,则x 2-x -b =0,由Δ=0得b =-14,所以直线x -y -14=0与x -y -2=0的距离为d =⎪⎪⎪⎪-14+22=742=728,所以抛物线y=x 2上的点到直线x -y -2=0的最短距离为728.方法三 根据题意可知,与直线x -y -2=0平行的抛物线y =x 2的切线对应的切点到直线x -y -2=0的距离最短,设切点坐标为(x 0,x 20),则y ′|x =x 0=lim Δx →0 (x 0+Δx )2-x 20Δx=2x 0=1,所以x 0=12,所以切点坐标为⎝⎛⎭⎫12,14,切点到直线x -y -2=0的距离d =⎪⎪⎪⎪12-14-22=728,所以抛物线上的点到直线x -y -2=0的最短距离为728.13.已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2. (1)求直线l 2的方程;(2)求由直线l 1,l 2和x 轴所围成的三角形的面积. 解 (1)∵y ′=lim Δx →0ΔyΔx=lim Δx →0 (x +Δx )2+(x +Δx )-2-(x 2+x -2)Δx=2x +1, ∴y ′|x =1=3,∴直线l 1的方程为y =3(x -1),即y =3x -3,设直线l 2过曲线y =x 2+x -2上的点P (x 0,x 20+x 0-2),则直线l 2的方程为y -(x 20+x 0-2)=(2x 0+1)(x -x 0).∵l 1⊥l 2,∴3(2x 0+1)=-1,x 0=-23,∴直线l 2的方程为y =-13x -229.(2)解方程组⎩⎪⎨⎪⎧y =3x -3,y =-13x -229,得⎩⎨⎧x =16,y =-52.又直线l 1,l 2与x 轴交点坐标分别为(1,0),(-223,0),∴所求三角形面积S =12×⎪⎪⎪⎪-52×⎝⎛⎭⎫1+223=12512.B组能力提升一、选择题二、填空题三、解答题C组挑战压轴题一、选择题二、填空题三、解答题。
高二数学导数的概念和几何意义试题答案及解析1.已知函数的导函数为,.求实数的取值范围。
【答案】或。
【解析】对函数求导,得=,代入,得,=<0,求解即可,注意高次不等式的解法.试题解析:由得=,所以得,=<0,解得或.【考点】导数,高次不等式.2.曲线在横坐标为l的点处的切线为,则点P(3,2)到直线的距离为()A.B.C.D.【答案】A【解析】欲求点到直线的距离,需知点的坐标和直线的方程,由公式,计算可得.由于直线为已知曲线方程的切线,且已知切点,这样一般通过求导数得到切线的斜率,由点斜式得到直线方程.,,.【考点】(1)导数与切线的关系;(2)点到直线的距离.3.设函数,曲线在点处的切线方程为,则曲线在点处切线的斜率为()A.B.C.D.【答案】B【解析】由曲线在点处的切线方程为得:,从而可得:,所以曲线在点处切线的斜率为4;故选B.【考点】函数导数的几何意义.4.已知函数().⑴若函数的图象在点处的切线的倾斜角为,求在上的最小值;⑵若存在,使,求的取值范围.【答案】⑴在上的最小值为;⑵的取值范围为.【解析】⑴对函数求导并令导函数为0,看函数的单调性,即可求在上的最小值;⑵先对函数求导得,分、两种情况讨论即可求的取值范围.(1) 1分根据题意, 3分此时,,则.令-+∴当时,最小值为. 8分(2)∵,①若,当时,,∴在上单调递减.又,则当时,.∴当时,不存在,使 11分②若,则当时,;当时,.从而在上单调递增,在上单调递减.∴当时, 14分根据题意,,即,∴. 15分综上,的取值范围是. 16分【考点】导数的应用、分类讨论思想.5.曲线在点处的切线斜率为()A.B.C.D.【答案】A【解析】由,得到,把x=0代入得:,则曲线在点A(0,1)处的切线斜率为1.故选A.【考点】1.直线的斜率;2.导数的几何意义.6.已知函数f(x)=x2-4,设曲线y=f(x)在点(xn ,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N +),其中x n为正实数.(1)用xn 表示xn+1;(2)若x1=4,记an=lg,证明数列{an}成等比数列,并求数列{xn}的通项公式;(3)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.【答案】(1);(2);(3)详见解析.【解析】(1)由题设条件知曲线y=f(x)在点处的切线方程是.由此可知.所以.(2)由,知,同理.故.由此入手能够导出.(3)由题设知,所以,由此可知.解:(1)由题可得.所以曲线在点处的切线方程是:.即.令,得.即.显然,∴.(2)由,知,’同理.----6’故.-----7’从而,即.所以,数列成等比数列.---8’故.即.----9’从而,所以.----10’(3)由(Ⅱ)知,∴∴ ---11’当时,显然.-------12’当时,-----13’∴.综上,.【考点】1.数列递推式;2.等比关系的确定;3.数列的求和;4.不等式的证明.7.设,则在处的导数()A.B.C.0D.【答案】A【解析】,故选A.【考点】某点处的导数.8.已知曲线:(1)试求曲线在点处的切线方程;(2)试求与直线平行的曲线C的切线方程.【答案】(1);(2)或.【解析】(1)先求出的值,再求函数的导函数,求得的值即为点斜率,代入点斜式方程,再化为一般式方程即可;(2)设切点为,利用导数的几何意义和相互平行的直线的斜率相等,即可得所求切线的斜率,再求出切点的坐标,代入点斜式方程,再化为一般式方程即可.(1)∵,∴,求导数得:,∴切线的斜率为,∴所求切线方程为,即:.(2)设与直线平行的切线的切点为,则切线的斜率为.又∵所求切线与直线平行,∴,解得:,代入曲线方程得:切点为或,∴所求切线方程为:或,即:或.【考点】1、导数的计算;2、导数的几何意义.9.已知A为函数图像上一点,在A处的切线平行于直线,则A点坐标为 ;【答案】(1,2)【解析】因为,设,则A点坐标为(1,2).【考点】导数的几何意义10.过点恰可以作曲线的两条切线,则的值为;【答案】0或1或9【解析】设切点,则有所以或.因为过点恰可以作曲线的两条切线,,所以方程有不等于零的两个等根或包含零的两个不等根.由得或,此时方程的根非零.当方程有零根时,,此时方程还有另一根【考点】导数求切线11.若曲线在点处的切线方程为,则曲线在点处切线的方程为.【答案】【解析】曲线在点处切线的方程为:.【考点】导数的几何性质.12.过点且与曲线相切的直线方程为()A.或B.C.或D.【答案】A【解析】设切点为,因为,所以切线的斜率为,所以切线方程为,又因为切线过点,所以即,注意到是在曲线上的,故方程必有一根,代入符合要求,进一步整理可得即,也就是即,所以或,当时,,切线方程为即;当时,,切线方程为即,故选A.【考点】导数的几何意义.13.在曲线处的切线方程为。
高三数学导数的概念和几何意义试题答案及解析1.曲线f(x)=·e x-f(0)x+x2在点(1,f(1))处的切线方程为____________.【答案】y=ex-【解析】因为f′(x)=·e x-f(0)+x,故有即原函数表达式可化为f(x)=e x-x+x2,从而f(1)=e-,所以所求切线方程为y-=e(x-1),即y=ex-.2. [2014·辽宁模拟]曲线y=在点(1,-1)处的切线方程为()A.y=x-2B.y=-3x+2C.y=2x-3D.y=-2x+1【答案】D【解析】由题意得y=1+,所以y′=,所以所求曲线在点(1,-1)处的切线的斜率为-2,故由直线的点斜式方程得所求切线方程为y+1=-2(x-1),即y=-2x+1.3.已知函数的图象在点与点处的切线互相垂直,并交于点,则点的坐标可能是( )A.B.C.D.【答案】D【解析】由题,,,则过两点的切线斜率,,又切线互相垂直,所以,即.两条切线方程分别为,联立得,∵,∴,代入,解得,故选.【考点】导数求切线方程.4.已知点在曲线上,为曲线在点处的切线的倾斜角,则的取值范围是( )A.B.C.D.【答案】B【解析】,即切线的斜率为,所以,因为,所以,即,所以的取值范围是,选B5.设函数的定义域是,其中常数.(1)若,求的过原点的切线方程.(2)当时,求最大实数,使不等式对恒成立.(3)证明当时,对任何,有.【答案】(1)切线方程为和.(2)的最大值是.(3)详见解析.【解析】(1)一般地,曲线在点处的切线方程为:.注意,此题是求过原点的切线,而不是求在原点处切线方程,而该曲线又过原点,故有原点为切点和原点不为切点两种情况.当原点不为切点时需把切点的坐标设出来.(2)令,则问题转化为对恒成立.注意到,所以如果在单调增,则必有对恒成立.下面就通过导数研究的单调性.(3)不等式可变形为:.为了证这个不等式,首先证;而证这个不等式可利用导数证明.故令,然后利用导数求在区间上范围即可.试题解析:(1).若切点为原点,由知切线方程为;若切点不是原点,设切点为,由于,故由切线过原点知,在内有唯一的根.又,故切线方程为.综上所述,所求切线有两条,方程分别为和.(2)令,则,,显然有,且的导函数为:.若,则,由知对恒成立,从而对恒有,即在单调增,从而对恒成立,从而在单调增,对恒成立.若,则,由知存在,使得对恒成立,即对恒成立,再由知存在,使得对恒成立,再由便知不能对恒成立.综上所述,所求的最大值是.(3)当时,令,则,故当时,恒有,即在单调递减,故,对恒成立.又,故,即对恒有:,在此不等式中依次取,得:,,,,,…………………………,将以上不等式相加得:,即.【考点】导数及其应用.6.已知函数(1)若,求曲线在处的切线方程;(2)求的单调区间;(3)设,若对任意,均存在,使得,求的取值范围.【答案】(1)(2)详见解析(3)【解析】(1)已知函数的解析式,把切点的横坐标带入函数即可求出切点的纵坐标,对求导得到函数的导函数,把带入导函数即可求的切线的斜率,利用点斜式即可得到切线的方程.(2)对函数进行求导和求定义域,导函数喊参数,把分为两种情况进行讨论,首先时,结合的定义域即可得到导函数在定义域内恒大于0,进而得到原函数在定义域内单调递增,当时,求解导函数大于0和小于0的解集,得到原函数的单调递增和单调递减区间.(3)该问题为存在性问题与恒成立问题的结合,即要求,而的最大值可以利用二次函数的图像得到函数在区间上的最值,函数的最大值可以利用第二问的单调性求的,当时,函数单调递增,无最大值,故不符合题意,当时,函数在处前的最大值,带入不等式即可求的的取值范围.试题解析:(1)由已知, 1分,所以斜率, 2分又切点,所以切线方程为),即故曲线在处切线的切线方程为。
高二数学导数的概念和几何意义试题答案及解析1.我们把形如的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边取对数得,两边对x求导数,得于是,运用此方法可以求得函数在(1,1)处的切线方程是 .【答案】【解析】:仿照题目给定的方法,所以,所以,所以,即:函数在处的切线的斜率为1,故切线方程为:,即,故答案为:.【考点】归纳推理.2.曲线y=e2x在点(0,1)处的切线方程为().A.y=x+1B.y=﹣2x+1C.y=2x﹣1D.y=2x+1【答案】D.【解析】,,则切线斜率,切线方程为,即.【考点】导数的几何意义.3.设函数的图像在点处切线的斜率为,则函数的部分图像为()【答案】B【解析】 =xcosx,所以k=g(t)=tcost,是奇函数,图像关于原点对称,所以排除A,C,在t>0时,cost的值是先正后负的连续变换,故选B.【考点】导数,函数图像.4.已知函数的导函数为,.求实数的取值范围。
【答案】或。
【解析】对函数求导,得=,代入,得,=<0,求解即可,注意高次不等式的解法.试题解析:由得=,所以得,=<0,解得或.【考点】导数,高次不等式.5.已知函数在上可导,且,则函数的解析式为()A.B.C.D.【答案】B【解析】由得,当时,有,进而得,所以,故选择B.【考点】导数的应用.6.曲线y=-在点M处的切线的斜率为()A.-B.C.-D.【答案】B【解析】因为==,所以曲线在M处的切线的斜率为=,故选B.考点:常见函数的导数,导数的运算法则,导数的几何意义7.设曲线在点处的切线与直线垂直,则()A.2B.C.D.【答案】B【解析】,故切线的斜率,在由切线与直线垂直得,即.【考点】导数的应用之一:曲线在一点处的切线以及两直线之间的位置关系.8.抛物线在点处的切线的倾斜角是 ( )A.30B.45C.60D.90【答案】B.【解析】已知抛物线,对其进行求导,即,当时,,即切线的斜率为,从而问题解决.【考点】导数的几何意义;利用导数研究曲线上某点切线方程.9.已知抛物线,和抛物线相切且与直线平行的的直线方程为()A.B.C.D.【答案】D【解析】由题得,与直线平行,则斜率为2,可得切点为,所以直线方程为.【考点】导数的几何意义,直线方程.10.曲线在点处切线的斜率为()A.B.C.D.【答案】B【解析】,则在点(1,-)处切线的斜率为,所以倾斜角为45°.【考点】导数的几何意义.特殊角的三角函数值.11.函数在点处的切线的斜率为()A.B.C.D.【答案】B【解析】令,则,所以。
考点10 导数的概念及其几何意义【考点剖析】1.最新考试说明:1.了解导数概念的实际背景;2.理解导数的几何意义;【2020年高考全国Ⅰ卷理数6】函数()432f x x x =-的图像在点()()1,1f 处的切线方程为( )A .21y x =--B .21y x =-+C .23y x =-D .21y x =+ 【答案】B【思路导引】求得函数()y f x =的导数()f x ',计算出()1f 和()1f '的值,可得出所求切线的点斜式方程,化简即可. 【解析】()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+,故选B .【专家解读】本题考查了导数的几何意义,考查曲线切线的求法,考查数学运算、直观想象等学科素养.解题关键是正确理解导数的几何意义.【2020年高考全国Ⅰ卷文数15】曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为 . 【答案】2y x =【思路导引】设切线的切点坐标为00(,)x y ,对函数求导,利用0|2x y '=,求出0x ,代入曲线方程求出0y ,得到切线的点斜式方程,化简即可.【解析】设切线的切点坐标为001(,),ln 1,1x y y x x y x=++'=+,00001|12,1,2x x y x y x ='=+===,∴切点坐标为(1,2),所求的切线方程为22(1)y x -=-,即2y x =,故答案为:2y x =.【专家解读】本题考查了曲线切线方程的求法,考查数学运算学科素养.解题关键是正确应用导数的几何意义解题.【2019年高考全国Ⅲ卷理数】已知曲线e ln xy a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,xy a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=,将(1,1)代入2y x b =+,得21,1b b +==-.故选D .【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.3.会用课本给出的基本初等函数的导数公式和导数的四则运算法则求简单的函数的导数,能求简单的复合函数(仅限于形如()f ax b +的导数)【2020年高考全国Ⅲ卷文数15】设函数()e x f x x a =+,若()e14f '=,则a = .【答案】1【思路导引】由题意首先求得导函数的解析式,然后得到关于实数a 的方程,解方程即可确定实数a 的值. 【解析】由函数的解析式可得()()()()()221x xx e x a e e x a f x x a x a +-+-'==++,则()()()()12211111e a aef a a ⨯+-'==++,据此可得:()241aeea =+,整理可得:2210a a -+=,解得:1a =,故答案为:1. 【专家解读】本题考查了导数的导数的运算法则及基本运算,考查函数与方程思想,考查数学运算学科素养.解题关键是正确应用导数的运算法则计算导数.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点 (-e ,-1)(e 为自然对数的底数),则点A 的坐标是 . 【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标.设点()00,A x y ,则00ln y x =.又1y x '=,当0x x =时,01y x '=,则曲线ln y x =在点A 处的切线为0001()y y x x x -=-, 即00ln 1x y x x -=-,将点()e,1--代入,得00e1ln 1x x ---=-,即00ln e x x =,考察函数()ln H x x x =, 当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()ln 1H x x '=+,当1x >时,()()0,H x H x '>单调递增,注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =,此时01y =,故点A 的坐标为()e,1.【名师点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.2.命题方向预测:导数的概念、导数的运算、导数的几何意义等是重点知识,基础是导数运算.导数的几何意义为高考热点内容,考查题型多为选择、填空题,也常出现在解答题中前一问,难度较低.归纳起来常见的命题探究角度往往有:(1)求切线方程问题. (2)确定切点坐标问题. (3)已知切线问题求参数. (4)切线的综合应用.3.课本结论总结:1. 基本初等函数的导数公式2.导数的运算法则(1) [f (x )±g (x )]′=f ′(x )±g ′(x );(2) [f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)2()'()()'()()'()()f x f x g x g x f x g x g x ⎡⎤⋅-⋅=⎢⎥⎣⎦(g (x )≠0). (4) 复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.3. 函数y =f (x )在x =x 0处的导数几何意义:函数()y f x =在点0x 处的导数0'()f x 就是曲线()y f x =在点00(,())x f x 处的切线和斜率,即0'()k f x =.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).4.名师二级结论:当一个函数是多个函数复合而成时,就按照从外层到内层的原则进行求导,求导时要注意分清层次,防止求导不彻底,同时,也要注意分析问题的具体特征,灵活恰当选择中间变量,同时注意可先化简,再求导,实际上,复合函数的求导法则,通常称为链条法则,这是由于求导过程像链条一样,必须一环一环套下去,而不能漏掉其中的任何一环.5.课本经典习题:(1)新课标A 版选修2-2第6页,例1 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热.如果在第x h 时,原油的温度(单位:℃)为2()715(08)y f x x x x ==-+≤≤.计算第2h 与第6h 时,原油温度的瞬时变化率,并说明它们的意义.【解析】在第2h 和第6h 时,原油温度的变化的瞬时变化率就是'(2)f 和'(6)f ,根据导数的定义,2(2)(2)4()73y f x f x x x x x x x∆+∆-∆+∆-∆===∆-∆∆∆,∴0'(2)lim 3x yf x ∆→∆==-∆,同理可得'(6)5f =,在第2h 与第6h 时,原油温度的瞬时变化率分别为3-与5,它说明在第2h 附近,原油温度大约以3℃/h 的速度下降;在第6h 附近,原油温度大约以5℃/h 的速率上升,一般地,0'()f x 反映了原油温度在时刻0x 附近的变化情况.【经典理由】结合具体的实例,给出了结论:0'()f x 反映了原油温度在时刻0x 附近的变化情况,阐述了导数的意义:导数可以描述瞬时变化率.(2)新课标A 版选修2-2第17页,例4 求下列函数的导数(1)2(23)y x =+;(2)0.051x y e-+=;(3)sin()y x πϕ=+(其中π,ϕ均为常数);【解析】(1)函数2(23)y x =+可以看作函数2y u =和23u x =+的复合函数,根据复合函数求导法则有2'''()'(23)'4812x u x y y u u x u x =⋅=⋅+==+;(2)函数0.051x y e -+=可以看作函数u y e =和0.051u x =-+的复合函数,根据复合函数求导法则有0.051'''()'(0.051)'0.050.05u u x x u x y y u e x e e -+=⋅=⋅-+=-=-;(3)函数sin()y x πϕ=+可以看作函数sin y u =和u x πϕ=+的复合函数,根据复合函数求导法则有'''(sin )'()'cos cos()x u x y y u u x u x πϕπππϕ=⋅=⋅+==+.【经典理由】结合具体的例题,说明了复合函数求导的一般方法.6.考点交汇展示: (1)导数与点线距离相结合例1.(2020·黑龙江省哈尔滨三中高三)若点P 是曲线2ln y x x =-上任一点,则点P 到直线40x y --=的最小距离是( ) AB .3C.D.【答案】C【解析】要使点P 到直线40x y --=的最小距离,只需点P 为曲线与直线40x y --=平行的切线切点,即点P 为斜率为1的切线的切点,设000(,),0P x y x >,02001ln ,|21x x y x x y x x ==-'=-=,解得01x =或012x =-(舍去),点(1,1)P 到直线40x y --==2ln y x x =-上任一点到直线40x y --=距离最小值为例2.(2020·重庆南开中学高三)点P 在函数ln y x =的图象上,若满足到直线y x a =+的点P 有且仅有3个,则实数a 的值为( ) A .1 B .3- C .2D.-【答案】B【解析】对于函数ln y x =,定义域为()0,∞+,'1y x =在()0,∞+上为减函数,令'11y x==,解得1x =,故函数ln y x =导数为1处的切点坐标为1,0A ,点1,0A 到直线0x y a -+==解得1a =或3a =-.结合图象可知,要使满足到直线y x a =+的点P 有且仅有3个,则1a =不符合,所以3a =-.(2)导数与函数图象相结合例3.函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是【答案】D【解析】原函数先减再增,再减再增,且由增变减时,极值点大于0,因此选D . 例4.已知函数()f x 在R 上可导,其部分图象如图所示,设()()4242f f a -=-,则下列不等式正确的是( )A. ()()24a f f <'<'B. ()()24f a f '<'<C. ()()42f f a ''<<D. ()()24f f a ''<< 【答案】B【解析】由图象可知,函数的增长越来越快,故函数在该点的斜率越来越大,所以()()()()2,2,4,4f f 两点连续的斜率()()4242f f --大小,在点()()2,2f 处的切线斜率()'2f 与点()()4,4f 的切线斜率()'4f 之间, ()()'2'4f a f ∴<<,故选B.(3)导数与不等式相结合例5.(2020·山东省山东师范大学附中高三)己知a ,b 为正实数,直线y =x -a 与曲线y =ln(x +b )相切于点(x 0,y 0),则11a b+的最小值是_______________. 【答案】4【解析】对()ln y x b =+求导得1y x b'=+,因为直线y =x -a 与曲线y =ln(x +b )相切于点(x 0,y 0),所以011x b=+即01x b =-,所以()()00ln ln 10y x b b b =+=-+=,所以切点为()1,0b -,由切点()1,0b -在切线y =x -a 上可得10b a --=即1b a +=,所以()1111224b a a b a b a b a b ⎛⎫+=++=++≥+⎝= ⎪⎭, 当且仅当12b a ==时,等号成立.所以11a b+的最小值是4. 例6.(2020·梅河口市第五中学高三)已知函数()ln f x x x =. (1)求曲线()y f x =在点()()1,1P f 处切线方程; (2)当1a >时,求证:存在10,c a ⎛⎫∈ ⎪⎝⎭,使得对任意的(),1x c ∈,恒有()()1f x ax x >-. 【答案】(1)10x y --=;(2)证明见解析.【解析】(1)由()ln f x x x =,得()ln 1f x x '=+,∴()()10,11f f '==, 故所求切线方程为()011y x -=⨯-,即10x y --=;(2)证明:由()()1f x ax x >-,得ln (1)x x ax x >-,考虑到0x >,可得()ln 1x a x >-,设()()ln 1g x x a x =--,则111()a x ax a g x a x x x⎛⎫- ⎪-⎝⎭'=-==-,当10,x a ⎛⎫∈ ⎪⎝⎭时()0g x '>,当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<,∴()g x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.由()g x 在区间1,1a ⎛⎫⎪⎝⎭内是减函数及()10g =,得当1,1x a ⎛⎫∈ ⎪⎝⎭时,()0g x >,① 又()()ln 10aa a a g ee a e ae ----=--=-<,则存在01,,a x e a -⎛⎫∈ ⎪⎝⎭即010,x a ⎛⎫∈ ⎪⎝⎭,使得()00g x =.又()g x 在区间01,x a ⎛⎫ ⎪⎝⎭内是增函数,∴当01,x x a ⎛⎫∈ ⎪⎝⎭时,()0g x >.②由①②可知,存在01,c x a ⎛⎫∈ ⎪⎝⎭,使()0g x >恒成立,即存在10,c a ⎛⎫∈ ⎪⎝⎭使得对任意的(,1)x c ∈,恒有()(1)f x ax x >-.【考点分类】 热点1 导数的运算1.(2020·陕西省高三)已知函数2()(1)e 2x f x f x '=-+,则'(0)=f ( )A .2eB .2e 1- C .2ee 1- D .42ee 1-- 【答案】B【解析】由已知得()(1)e 2xf x f x ''=-,令1x =,则(1)(1)e 2f f ''=-,解得2(1)e 1f '=-, 所以2()e 2e 1xf x x '=--,所以2(0)1'=-f e , 2.已知'()f x 是()sin cos f x x a x =+的导函数,且2'()44f π=,则实数a 的值为( ) A .23 B .12 C .34D .1 【答案】B【解析】由题意可得'()cos sin f x x a x =-,由2'()44f π=可得222224a -=,解之得12a =,选B.3.曲线在点处切线为,则等于( )A.B. C. 4 D. 2【答案】C 【解析】由题意可得,而==,选C.【方法规律】导数运算时,要注意以下几点:1.尽可能的把原函数化为幂函数和的形式;2.遇到三角函数求导时,往往要对原函数进行化简,从而可以减少运算量;3.求复合函数的导数时,要合理地选择中间变量.热点2 导数的几何意义1.(2020·全国高三其他(理))曲线cos sin x y x =在点π,14⎛⎫⎪⎝⎭处的切线方程为( ). A .π2102x y --+=B .π2102x y ---=C .π2102x y +-+=D .π2102x y +--= 【答案】D【解析】2222sin cos 1sin sin x x y x x--'==-,切线斜率为2k =-,∴切线方程为π124y x ⎛⎫-=-- ⎪⎝⎭,即π2102x y +--=. 2.(2020·湖南省高三其他(理))已知直线2y kx x =-与曲线ln y x x =在x e =处的切线平行,则实数k 的值为_______. 【答案】4【解析】对ln y x x =求导数,得'ln 1y x =+.当x e =时,'2y =.故曲线在x e =处的切线的斜率为2.而已知直线的斜率为2k -,∴22k -=,故4k =.3.(2020·辉县市第二高级中学高三)过原点()0,0作函数()322f x x x =+图象的切线,则切线方程为______.【答案】0y =或0x y +=【解析】()322f x x x =+,则2()34f x x x '=+,设切点为32000(,2)x x x +,则切线的斜率2000()34k f x x x '==+,故切线方程为:3200(2)y x x -+=2000(34)()x x x x +-,因为切线过点(0,0),所以3200(2)x x -+=2000(34)()x x x +-,即320002200x x x +=⇒=或01x =-,故当00x =时,切线方程为0y =,当01x =-时,切线方程为0x y +=,4.(2020·定西市第一中学高三其他(理))已知曲线()1:e 0=>xC y x x 和222:ex x C y --=,若直线l 与12,C C 都相切,且与2C 相切于点P ,则P 的横坐标为( )A.3 B1C .352D.12【答案】C【解析】设()00,P x y ,另设l 与1C 相切于点()11,M x y ,则10001122,x x x y y x e e--==.由xy xe =得(1)x y x e '=+,由22x x y e --=得23x xy e '--=.因为l 是1C 和2C 的切线,所以()1001231x x x x e e--=+,即()()01201211x x x e x e --+=+.又(1)x y x e =+在(0,)+∞单调递增,所以012x x -=.又因为()1101101x y y x e x x -=+-,即()10101211021x x x x x e e x e x x ---=+-,所以()()1111111112x x x x e x e x e x x +=+--, 即11111x x x =+-,解得112x +=或12(不合,舍去).所以01322x x -=-=,【方法规律】曲线的切线的求法:若已知曲线过点00(,)P x y ,求曲线过点P 的切线则需分点00(,)P x y 是切点和不是切点两种情况求解. (1)点00(,)P x y 是切点的切线方程为000'()()y y f x x x -=-. (2)当点00(,)P x y 不是切点时可分以下几步完成: 第一步:设出切点坐标11'(,())P x f x ;第二步:写出过11'(,())P x f x 的切线方程为111()'()()y f x f x x x -=-; 第三步:将点P 的坐标00(,)x y 代入切线方程求出1x ;第四步:将1x 的值代入方程111()'()()y f x f x x x -=-可得过点00(,)P x y 的切线方程.热点3 导数的几何意义的应用1.(2020·江苏省丰县中学高三)若点P 是曲线2ln y x x =-上的任意一点,则点P 到直线2y x =-的最小距离为( ) AB.2C .12D .1【答案】A【解析】设(,)P x y ,则12(0)y x x x '=->,令121x x-=,则(1)(21)0x x -+=,0x,1x ∴=,1y =∴, 即平行于直线2y x =-且与曲线2y x lnx =-相切的切点坐标为(1,1).点P 到直线2y x =-的最小距离就是平行于直线2y x =-且与曲线2y x lnx =-相切的切点到直线的距离,由点到直线的距离公式可得|112|22d -+==.2.已知点P 在曲线41xy e =+(其中e 为自然对数的底数)上,α为曲线在点P 处的切线的倾斜角,则αtan 的取值范围是 . 【答案】)0,1[-【解析】由导数的几何意义y '=αtan 1242++-=x x x e e e 214++-=x x e e 2124+⋅-≥x x e e 1-≥,又因为0>x e ,所以0tan <α,故)0,1[tan -∈α.3.若函数与函数有公切线,则实数的取值范围是__________.【答案】【解析】,设切点分别是,所以切线方程分别为:,化简为,所以消,得令,,所以f(x)在单调递减,,,填.3.(2020·辉县市第二高级中学高三已知函数32()f x ax bx =-在点(1, (1))f 处的切线方程为31=0x y +-.(1)求实数a ,b 的值;(2)若过点()1,4()m m -≠-可做曲线()y f x =的三条切线,求实数m 的取值范围.【答案】(1)13a b =⎧⎨=⎩;(2)()4,4-. 【解析】(1)由切线方程知:()13112f =-⨯+=-,()13f '=-,又()232f x ax bx '=-,2323a b a b -=-⎧∴⎨-=-⎩,解得:13a b =⎧⎨=⎩.(2)由(1)知:()323f x x x =-,则()236f x x x '=-,4m ≠-,()1,m ∴-不在()f x 上,又()1369f '-=+=,可知切点横坐标不为1-,设切点坐标为()32000,3x x x -,01x ≠-,则切线斜率322000003361x x m k x x x --==-+,整理得:3026m x x =-+,过()1,m -可作()f x 三条不同的切线,30026m x x ∴=-+有三个不为1-的解;令()()3261h x x x x =-+≠-,则()()()266611h x x x x '=-+=-+-,∴当(),1x ∈-∞-和()1,+∞时,()0h x '<;当()1,1x ∈-时,()0h x '>,()h x ∴在(),1-∞-和()1,+∞上单调递减,在()1,1-上单调递增,由此可得()h x 图象如下图所示:30026m x x =-+有三个不为1-的解等价于y m =与()h x 有三个不同的交点,由图象可知:44m -<<,∴实数m 的取值范围为()4,4-.【解题技巧】导数的应用除研究切线方程外,还有许多应用,如:(1)因为有些物理量,如瞬时速度,瞬时加速度,瞬时功率,瞬时电流和瞬时感应电动势等与导数有着直接或间接的关系,在解题时应紧扣这些联系来解决问题;(2)利用导数的性质求解参数的取值范围问题,解决这类问题的一般方法是待定系数法,即根据题设条件,利用导数工具所列出所需的方程或方程组,然后加以求解即可.【易错点睛】利用导数解决恒成立或存在性问题的基本思想是转化成函数的最值问题,利用导数来判断函数的单调性求七最值,在过程中,通常会用到分离变量法或者含参讨论以及构造函数.此外,在分析题目描述的问题是需分析清楚到底是恒成立问题还是存在性问题.【热点预测】1.函数()3sin 4cos f x x x =+的图象在点T (0, f (0))处的切线l 与坐标轴围成的三角形面积等于( ) A .43B .53C .73D .83【答案】D【解析】()3sin 4cos f x x x =+,()3cos 4sin f x x x '=-,(0)4f =,(0)3f '=,则切线l 的方程为43(0)y x -=-,令0x =,解得切线l 在y 轴上的截距4b =,令0y =,解得切线l 在x 轴上的截距43a =-,则直线l 与坐标轴围成的三角形面积18||||23S a b ==.2.若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) (A )sin y x = (B )ln y x =(C )e x y =(D )3y x =【答案】A【解析】由函数的图象在两点处的切线互相垂直可知,存在两点处的切线斜率的积,即导函数值的乘积为负一.当sin y x =时,cos y x '=,有cos0cos 1π⋅=-,所以在函数sin y x =图象存在两点0,x x π==使条件成立,故A 正确;函数3ln ,,xy x y e y x ===的导数值均非负,不符合题意,故选A.3.(2020·安徽省六安中学高三)已知函数()()210xf x e ex x =-++≥,则函数()f x 在1x =处的切线方程为( )A .10ex y e -+-=B .0x y +=C .0x y -=D .10ex y e ++-= 【答案】A 【解析】()()210x f x e ex x =-++≥,()2x f x ex e '∴=-,则()11f =,()1f e '=,因此,函数()y f x =在1x =处的切线方程为()11y e x -=-,即10ex y e -+-=.4.设1n y x+=(n ∈N *)在(1,1)处的切线与x 轴的交点的横坐标为n x ,则201712017220172016log log ......log x x x +++的值为 ( ). A. 2017log 2016-B. -1C. 2017log 20161-D. 1【答案】B【解析】令()1n f x x+=,则()()1nf x n x +'= ,切线的斜率为()11k f n ='=+ ,∴切线方程为y -1=(n +1)(x -1),令y =0,得1111nx n n =-=++,所以201712017220172016log log ......log x x x +++ ()2017122016log ......x x x = 2017201712320161log ......log 123420172017⎛⎫=⋅⋅==- ⎪⎝⎭ 5. 设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( )A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞【答案】A【解析】记函数()()f x g x x=,则''2()()()xf x f x g x x -=,因为当0x >时,'()()0xf x f x -<,故当0x >时,'()0g x <,所以()g x 在(0,)+∞单调递减;又因为函数()()f x x R ∈是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞单调递减,且(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >,综上所述,使得()0f x >成立的x 的取值范围是(,1)(0,1)-∞-,故选A .6.(2020·黑龙江省哈尔滨三中高三)已知点P 在直线1y x =-上,点Q 在曲线22x y =上,则PQ 的最小值为( ) A .14B .18C.2D.4【答案】D【解析】设与直线1y x =-平行的直线l 的方程为y x m =+, ∴当直线l 与曲线22x y =相切,且点Q 为切点时,,P Q 两点间的距离最小, 设切点()00,Q x y ,22122x y y x =⇔=,所以y x '=,01x ∴=,012y ∴=, ∴点11,2Q ⎛⎫⎪⎝⎭,∴直线l 的方程为12y x =-, ,P Q ∴两点间距离的最小值为平行线12y x =-和1y x =-间的距离, ,P Q ∴两点间距离的最小值为4=. 7.已知曲线2x ay ey x +==与恰好存在两条公切线,则实数a 的取值范围是A. [)2ln22,-+∞B. ()2ln2,+∞C. (],2ln22-∞- D. (),2ln22-∞- 【答案】D【解析】设直线(0)y kx b k =+>为它们的公切线,联立2{y kx b y x=+=可得240k b +=①,x a y e +=求导可得x ay e+=,令x a e k +=可得ln x k a =-,所以切点坐标为()ln ,ln k a k k ak b --+,代入x ay e+=可得ln k k k ak b =-+②.联立①②可得2444ln 0k k ak k k ++-=,化简得444ln a k k +=-。
2.2导数的概念及其几何意义(讲义+典型例题+小练)一.导数的定义:0000000()()()'()'|lim()()()'()'limx x x x f x x f x y f x x x f x y xf x x f x y f x f x y x=∆→∆→+∆-====∆+∆-===∆1.(1).函数在处的导数: (2).函数的导数:2.利用定义求导数的步骤:①求函数的增量:00()()y f x x f x ∆=+∆-;②求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; ③取极限得导数:00'()lim x yf x x∆→∆=∆例1:1.设()()22lim2x f x f x x∆→+∆--∆=-∆,则曲线()y f x =在点()()22f ,处的切线的倾斜角是( ) A .4π B .3π C .34π D .23π 【答案】C 【分析】根据导数的概念可得()21f '=-,再利用导数的几何意义即可求解. 【详解】 因为()()()022lim222x f x f x f x∆→+∆--∆'==-∆,所以()21f '=-,则曲线()y f x =在点()()22f ,处的切线斜率为1-,故所求切线的倾斜角为34π. 故选:C2.已知函数()y f x =在0x x =处的导数为1,则()()000lim 2x f x x f x x∆→+∆-=∆( )A .0B .12C .1D .2【分析】由已知结合导数的定义即可直接求解. 【详解】解:因为函数()y f x =在0x x =处的导数为1, 则()()()()()0000000111limlim 2222x x f x x f x f x x f x f x x x ∆→∆→+∆-+∆-'===∆∆.故选:B . 【点睛】本题考查导数的概念,涉及极限的性质,属于基础题.举一反三:1.设()f x 是可导函数,且()()000lim 2x f x x f x x∆→+∆-=-∆,则0()f x '=( )A .2B .1-C .1D .2-【答案】D 【分析】由导数的定义可得()()0000lim ()x f x f x f x x x∆→+-'=∆∆,即可得答案.【详解】 根据题意,()()0000lim()2x f x f x f x x x∆→∆+-'==-∆,故0()2f x '=-. 故选:D . 【点睛】本题考查导数的定义,属于基础题. 2.若()02f x '=,则()()000lim2h f x h f x h→+-=______.【答案】1 【解析】 【分析】根据导数的几何定义即可计算.()()()()()000000011limlim 1222h h f x h f x f x h f x f x h h →→+-+-'===.故答案为:1.二.导数的几何意义:函数()f x 在0x 处导数的几何意义,曲线()y f x =在点()()00,P x f x 处切线的斜率是()0k f x '=。
导导导导导导导导导导导导导一、单选题1. 函数f(x)=1x2在点A(12,4)处的切线与两坐标轴围成的图形面积是( )A. 12B. 9C. 34D. 922. 曲线y=x2上哪点处的切线的倾斜角为π4( )A. (0,0)B. (2,4)C. (12,14) D. (14,116)3. 已知曲线y=x3−2x在点P处的切线与直线y=x+8平行,则点P的坐标为( )A. (1,−1)B. (2,4)C. (1,−1)或(−1,−1)D. 以上都不对4. 曲线y=2x2+1在点P(−1,3)处的切线方程为A. y=−4x−1B. y=−4x−7C. y=4x−1D. y=4x+75. 若直线3x+y−a=0是曲线y=12x2−4lnx的一条切线,则实数a=( )A. 12B. 32C. 52D. 72二、填空题6. 曲线y=x−cosx在点(π2,π2)处的切线方程为________.7. 函数f(x)=e x+e在点(1,f(1))处的切线方程为______.8. 曲线y=x3−4x在点(1,−3)处的切线倾斜角为__________.三、解答题9. 已知函数f(x)=e x−lnx+1.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积.10. 已知函数f(x)=x3+ax+b的图象是曲线C,直线y=kx+1与曲线C相切于点(1,3).(1)求函数f(x)的解析式;(2)求函数f(x)的递增区间.答案和解析1.解: ∵ f(x)=x −2,∴ f′(x)=−2x −3,∴f ′(12)=−16, ∴函数 y =f(x)在点A (12,4)处的切线的斜率为−16, ∴函数 y =f(x)在点A (12,4)处的切线方程为 16x +y −12=0,当x =0时,得y =12,当y =0时,得x =34, ∴与两坐标轴围成的图形面积是 12×12×34=92.故选D . 2.解:因为函数的导数为:f′(x)=2x ,又因为切线的倾斜角为π4,所以切线的斜率k =tan π4=1,即f′(x)=1,所以2x =1,解得x =12.当x =12时,y =(12)2=14.即切点为(12,14).故选C . 3.解:由题意可知:函数y =x 3−2x 的导函数为y′=3x 2−2,∵过P 点的切线与直线y =x +8平行,∴3x 2−2=1,解得x =±1,当x =1时,y =−1,此时切线方程为y =x −2;当x =−1时,y =1,此时切线方程为y =x +2,所以点P 的坐标是(1,−1)或(−1,−1).4.解:令y =f (x ),则f (x )=2x 2+1,所以f′(x )=4x ,所以f′(−1)=−4.由导数的几何意义可得k =f′(−1)=−4,又切点(−1,3),所以切线方程为y −3=−4(x +1). 即y =−4x −1.故选A .5.解:因为y =12x 2−4lnx ,所以y ′=x −4x ,直线3x +y −a =0,即直线y =−3x +a 为是曲线y =12x 2−4lnx 的一条切线,则令x −4x =−3,即x 2+3x −4=0,得x =1或x =−4(舍去),将x =1带入y =12x 2−4lnx 得y =12,所以切点是(1,12),代入3x +y −a =0,得3+12−a =0,a =72.故选D . 6.解:,则,所以 f ′ )=1+1=2, 所以曲线y =x −cosx 在点(π2,π2)处的切线方程为, 即y =2x −π2,故答案为y =2x −π2. 7.解:∵f (x )=e x +e ,f (1)=2e ,f′(x )=e x ,k =f′(1)=e ,∴切线的方程为:y −2e =e (x −1),即y =ex +e ,故答案为:y =ex +e .8.解:由题意可得y′=3x 2−4,可得y′|x=1=−1,故切线的斜率为−1,切线的倾斜角为34π. 9.解(1)由题意知函数f(x)=e x −ln x +1,则f′(x)=e x −1x ,所以曲线y =f(x)在点(1,f(1))处的切线斜率f′(1)=e −1,又f(1)=e +1所以曲线y =f(x)在点(1,f(1))处的切线方程为y −(e +1)=(e −1)(x −1), 即y =(e −1)x +2.(2)由(1)知曲线y =f(x)在点(1,f(1))处的切线方程为y =(e −1)x +2, 所以切线在x 轴、y 轴上的截距分别为21−e、2, 故曲线y =f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积为12×2e−1×2=2e−1. 10.解:(1)因为切点坐标为(1,3),所以k +1=3,所以k =2,因为f′(x)=3x 2+a ,所以f′(1)=3+a =2,所以a =−1,所以f(x)=x 3−x + b ,由f(1)=3,得b =3,所以f(x)=x 3−x +3.(2)因为f(x)=x 3−x +3,所以f′(x)=3x 2−1,令3x 2−1>0,解得x <−√33或x >√33, 所以函数f(x)的递增区间为(−∞,−√33),(√33,+∞).。
导数的几何意义---解答题一、解答题1、函数f(x)=--x+1的图象上有两点A(0,1)和B(1,0)(1)在区间(0,1)内,求实数a使得函数f(x)的图象在x=a处的切线平行于直线 AB;(2)设m>0,记M(m,f(m)),求证在区间(0,m)内至少有一实数b,使得函数图象在x=b处的切线平行于直线AM.2、已知函数f(x)=lnx+x2.(Ⅰ)若函数g(x)=f(x)-ax在其定义域内为增函数,求实数a的取值范围;(Ⅱ)在(Ⅰ)的条件下,若a>1,h(x)=e3x-3ae x x∈[0,ln2],求h(x)的极小值;(Ⅲ)设F(x)=2f(x)-3x2-kx(k∈R),若函数F(x)存在两个零点m,n (0<m<n),且2x0=m+n.问:函数F(x)在点(x0,F(x0))处的切线能否平行于x轴?若能,求出该切线方程;若不能,请说明理由.3、设函数,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.(1)求y=f(x)的解析式;(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.4、已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>1时,f (x+1)=f(x)+f(1),且若直线y=kx与函数y=f(x)的图象恰有5个不同的公共点,则实数k的值为__________.5、若存在过点(1,0)的直线与曲线y=x3和y=ax2+x-9都相切,求实数a的6、已知函数f(x)=,的图象过点(-1,2),且在点(-1,f (-1))处的切线与直线x-5y+1=0垂直.(1)求实数b,c的值;(2)若P,Q是曲线y=f(x)上的两点,且△POQ是以O为直角顶点的直角三角形,此三角形斜边的中点在y轴上,则对任意给定的正实数a,满足上述要求的三角形有几个?7、已知函数,其中a是实数,设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的点,且x1<x2.(Ⅰ)指出函数f(x)的单调区间;(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2-x1的最小值;(Ⅲ)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.8、已知函数f(x)=x3-2x2+3x(x∈R)的图象为曲线C.(1)求曲线C上任意一点处的切线的斜率的取值范围;(2)若曲线C上存在两点处的切线互相垂直,求其中一条切线与曲线C的切点的横坐标取值范围;(3)试问:是否存在一条直线与曲线C同时切于两个不同点?如果存在,求出符合条件的所有直线方程;若不存在,说明理由.9、已知函数f(x)=blnx,g(x)=ax2-x(a∈R).(1)若曲线f(x)与g(x)在公共点A(1,0)处有相同的切线,求实数a、b 的值;(2)当b=1时,若曲线f(x)与g(x)在公共点P处有相同的切线,求证:点P唯一;(3)若a>0,b=1,且曲线f(x)与g(x)总存在公切线,求正实数a的最小10、已知函数f(x)=mx3+(ax-1)(x-2)(x∈R)的图象在x=1处的切线与直线x+y=0平行.(Ⅰ)求m的值;(Ⅱ)当a≥0时,解关于x的不等式f(x)<0.11、求曲线y=在点(1,1)处的切线方程是 __________.12、求曲线在点处的切线方程.13、已知函数f(x)=-x3+ax2+b(a,b∈R).(1)若函数y=f(x)的图象上任意不同的两点的连线的斜率小于1,求证:.(2)若x∈[0,1],则函数y=f(x)的图象上的任意一点的切线的斜率为k,求证:成立的充要条件.导数的几何意义---解答题的答案和解析一、解答题1、答案:(1)a=(2)证明过程见解析试题分析:(1)求出导数,求出切线的斜率f′(a),求得直线AB的斜率,令f′(a)=-1(0<a<1)解方程即可得到a;(2)求出直线AM斜率,求出直线在x=b处的切线斜率为f′(b),由切线平行于AM,可令f′(b)=-m-1,考察3-2b-+m=0在区间(0,m)内的根的情况,令g(b)=3-2b-+m,求得g(0),g(m),g(,对m讨论:当0<m<时,当≤m<1时,当m≥1时,由零点存在定理,即可得证。
解:(1)解:直线AB斜率kAB=-2x-1,f(x)的图象在x=a处的切线平行于直线AB,令f′(a)=-1(0<a<1)即3-2a-1=-1,解得a=;(2)证明:f(m)=--m+1,则直线AM斜率kAM==-m-1,直线在x=b处的切线斜率为f′(b)=3-2b-1,由切线平行于AM,可令f′(b)=-m-1即3-2b-+m=0在区间(0,m)内的根的情况,令g(b)=3-2b-+m,则此二次函数图象的对称轴为b=,而g()=-+m-=--<0,g(0)=-+m=m(1-m),g(m)=2-m=m(2m-1),则(1)当0<m<时,g(0)>0,g(m)<0,方程g(b)=0在区间(0,m)内有一实根;(2)当≤m<1时,g(0)>0,g()<0,方程g(b)=0在区间(0,)内有一实根;(3)当m≥1时,g()<0,g(m)>0,方程g(b)=0在区间(,m)内有一实根,综上,方程g(b)=0在区间(0,m)内至少有一实根,故在区间(0,m)内至少有一实数b,使得函数图象在x=b处的切线平行于直线AM.2、答案:(Ⅰ)g(x)=f(x)-ax=lnx+x2-ax,由题意知,g′(x)≥0,对任意的x∈(0,+∞)恒成立,即又∵x>0,,当且仅当时等号成立∴,可得(Ⅱ)由(Ⅰ)知,,令t=e x,则t∈[1,2],则h(t)=t3-3at,由h′(t)=0,得或(舍去),∵,∴若,则h′(t)<0,h(t)单调递减;若,则h′(t)>0,h(t)单调递增∴当时,h(t)取得极小值,极小值为(Ⅲ)设F(x)在(x0,F(x0))的切线平行于x轴,其中F(x)=2lnx-x2-kx结合题意,有①-②得所以,由④得所以设,⑤式变为设,所以函数在(0,1)上单调递增,因此,y<y|u=1=0,即,也就是此式与⑤矛盾所以F(x)在(x0,F(x0))的切线不能平行于x轴3、答案:试题分析:(1)已知曲线上的点,并且知道过此点的切线方程,容易求出斜率,又知点(2,f(2))在曲线上,利用方程联立解出a,b(2)可以设P(x0,y0)为曲线上任一点,得到切线方程,再利用切线方程分别与直线x=0和直线y=x联立,得到交点坐标,接着利用三角形面积公式即可.试题解析:解析:(1)方程7x-4y-12=0可化为,当x=2时,,又,于是,解得,故.(2)设P(x0,y0)为曲线上任一点,由知曲线在点P(x0,y0)处的切线方程为,即令x=0,得,从而得切线与直线x=0的交点坐标为;令y=x,得y=x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0);所以点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形面积为.故曲线y=f(x)上任一点处的切线与直线x=0,y=x所围成的三角形面积为定值,此定值为6.4、答案:试题分析:求出函数在x∈[1,2]的函数的解析式,通过函数的奇偶性,求出函数在x ∈[1,2]相切,求出切线的斜率即可求出实数k的值.试题解析:当0≤x≤1时,f(x)=x2,当x>1时,f(x+1)=f(x)+f(1),当1≤x≤2时,f(x)=f(x-1)+f(1)=(x-1)2+1,∵f(x)是定义在R上的奇函数,直线y=kx与函数y=f(x)的图象恰有5个不同的公共点,∴x>0时,两个函数的图象,只有2个交点,如图:设切点为(a,f(a)).f′(x)=2x-2.则:,解得a=.∴k=2.此时有两个交点,x<0时,也有两个交点,x=0也是交点,∴k=2时有5个交点.故答案为:2-25、答案:试题分析:设出所求切线方程的切点坐标和斜率,把切点坐标代入曲线方程得到一个等式,根据切点坐标和斜率写出切线的方程,把切点坐标代入又得到一个等式,联立方程组即可求出切点的横坐标,进而得到切线的斜率,根据已知点的坐标和求出的斜率写出切线方程,再根据与y=ax2+x-9都相切,联立方程组,△=0可求出所求.试题解析:设直线与曲线y=x3的切点坐标为(x0,y0),则,则切线的斜率k=3x02=0或k=,若k=0,此时切线的方程为y=0,由,消去y,可得ax2+x-9=0,其中△=0,即()2+36a=0,解可得a=-;若k=,其切线方程为y=(x-1),由,消去y可得ax2-3x-=0,又由△=0,即9+9a=0,解可得a=-1.故a=-或-1.6、答案:(1)由题意可得,当x<1时,f′(x)=-3x2+2x+b,f′(-1)=-3-2+b=b-5.由( b-5 )()=-1,可得b=0,故 f(x)=-x3+x2+c.把点(-1,2)代入求得 c=0.综上可得b=0,c=0.(2)设点P的横坐标为m(不妨设m>0),则由题意可得点Q的横坐标为-m,且-m<0.当0<m<1时,点P(m,-m3+m2),点 Q(-m,m3+m2),由K0P•K OQ=-1,可得(-m2+m)(-m2-m)=-1,m无解.当m≥1时,点P(m,alnm),点 Q(-m,m3+m2),由K0P•K OQ=-1,可得•(-m2-m)=-1,即alnm=.由于a为正实数,故存在大于1的实数m,满足方程alnm=.故曲线y=f(x)上存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上.7、答案:试题分析:(I)利用二次函数的单调性和对数函数的单调性即可得出;(II)利用导数的几何意义即可得到切线的斜率,因为切线互相垂直,可得,即(2x1+2)(2x2+2)=-1.可得,再利用基本不等式的性质即可得出;(III)当x1<x2<0或0<x1<x2时,∵,故不成立,∴x1<0<x2.分别写出切线的方程,根据两条直线重合的充要条件即可得出,再利用导数即可得出..试题解析:(I)当x<0时,f(x)=(x+1)2+a,∴f(x)在(-∞,-1)上单调递减,在[-1,0)上单调递增;当x>0时,f(x)=lnx,在(0,+∞)单调递增.(II)∵x1<x2<0,∴f(x)=x2+2x+a,∴f′(x)=2x+2,∴函数f(x)在点A,B处的切线的斜率分别为f′(x1),f′(x2),∵函数f(x)的图象在点A,B处的切线互相垂直,∴,∴(2x1+2)(2x2+2)=-1.∴2x1+2<0,2x2+2>0,∴=1,当且仅当-(2x1+2)=2x2+2=1,即,时等号成立.∴函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2-x1的最小值为1.(III)当x1<x2<0或0<x1<x2时,∵,故不成立,∴x1<0<x2.当x1<0时,函数f(x)在点A(x1,f(x1)),处的切线方程为,即.当x2>0时,函数f(x)在点B(x2,f(x2))处的切线方程为,即.函数f(x)的图象在点A,B处的切线重合的充要条件是,由①及x1<0<x2可得-1<x1<0,由①②得=.∵函数,y=-ln(2x1+2)在区间(-1,0)上单调递减,∴a(x1)=在(-1,0)上单调递减,且x1→-1时,ln(2x1+2)→-∞,即-ln(2x1+2)→+∞,也即a(x1)→+∞.x1→0,a(x1)→-1-ln2.∴a的取值范围是(-1-ln2,+∞).8、答案:试题分析:(1)先求导函数,然后根据导函数求出其取值范围,从而可求出曲线C上任意一点处的切线的斜率的取值范围;(2)根据(1)可知k与-的取值范围,从而可求出k的取值范围,然后解不等式可求出曲线C的切点的横坐标取值范围;(3)设存在过点A(x1,y1)的切线曲线C同时切于两点,另一切点为B(x2,y2),x1≠x2,分别求出切线,由于两切线是同一直线,建立等式关系,根据方程的解的情况可得是符合条件的所有直线方程.试题解析:(1)f'(x)=x2-4x+3,则f′(x)=(x-2)2-1≥-1,即曲线C上任意一点处的切线的斜率的取值范围是[-1,+∞);------------(4分)(2)由(1)可知,---------------------------------------------------------(6分)解得-1≤k<0或k≥1,由-1≤x2-4x+3<0或x2-4x+3≥1得:x∈(-∞,2-]∪(1,3)∪[2+,+∞);-------------------------------(9分)(3)设存在过点A(x1,y1)的切线曲线C同时切于两点,另一切点为B(x2,y2),x1≠x2,则切线方程是:y-(-2+3x1)=(-4x1+3)(x-x1),化简得:y=(-4x1+3)x+(-+2),--------------------------(11分)而过B(x2,y2)的切线方程是y=(-4x1+3)x+(-+2),--------------------------(,由于两切线是同一直线,则有:-4x1+3=-4x1+3,得x1+x2=4,----------------------(13分)又由-+2=-+2,即-(x1-x2)(+x1x2+)+2(x1-x2)(x1+x2)=0-(+x1x2+)+4=0,即x1(x1+x2)+-12=0即(4-x2)×4+-12=0,-4x2+4=0得x2=2,但当x2=2时,由x1+x2=4得x1=2,这与x1≠x2矛盾.所以不存在一条直线与曲线C同时切于两点.----------------------------------(16分)9、答案:试题分析:(1)因为曲线f(x)与g(x)在公共点A(1,0)处有相同的切线,所以,解出即可;(2)设P(x0,y0),由题设得f(x0)=g(x0),f′(x0)=g(x0),转化为关于x0的方程只有一解,进而构造函数转化为函数只有一个零点,利用导数即可证明;(3)设曲线f(x)在点(t,lnt)处的切线方程为,则只需使该切线与g(x)相切即可,也即方程组只有一解即可,所以消y后△=0,问题转化关于t的方程总有解,分情况借助导数进行讨论即可求得a值;试题解析:(1),g'(x)=2ax-1.∵曲线f(x)与g(x)在公共点A(1,0)处有相同的切线,∴,解得,.(2)设P(x0,y0),则由题设有…①,又在点P有共同的切线,∴,代入①得,设,则,则h′(x)>0,∴h(x)在(0,+∞)上单调递增,所以 h(x)=0最多只有1个实根,从而,结合(1)可知,满足题设的点P只能是P(1,0).(3)当a>0,b=1时,f(x)=lnx,,曲线f(x)在点(t,lnt)处的切线方程为,即.由,得.∵曲线f(x)与g(x)总存在公切线,∴关于t(t>0)的方程,即(*)总有解.若t>e,则1-lnt<0,而,显然(*)不成立,所以 0<t<e,从而,方程(*)可化为.令(0<t<e),则.∴当0<t<1时,h'(t)<0;当1<t<e时,h'(t)>0,即 h(t)在(0,1)上单调递减,在(1,e)上单调递增.∴h(t)在(0,e)上的最小值为h(1)=4,所以,要使方程(*)有解,只须4a≥4,即a≥1.所以正实数a的最小值为1.10、答案:试题分析:(I)先对函数f(x)进行求导,又根据f'(1)=3m-1,可得到关于m的值;(II)由(I)知f (x)=(ax-1)(x-2).下面对字母a的取值情况进行分类讨论:当a=0时,f (x)=-(x-2)>0,当a>0时,再分:若<2;若=2;若>2,分别求出原不等式的解集即可.试题解析:(I)∵f (x)=mx3+ax2-(2a+1)x+2,∴f′(x)=3mx2+2ax-(2a+1).∴f'(1)=3m-1,即函数f (x)的图象在x=1处的切线斜率为3m-1.∴由题知3m-1=-1,解得m=0.…(5分)(II)由(I)知f (x)=(ax-1)(x-2).当a=0时,f (x)=-(x-2)>0,解得x<2.…(7分)当a>0时,方程f (x)=0的两根为x2=,x2=2.若<2即a>时,原不等式的解为<x<2;…(9分)若=2即a=时,原不等式的解为∅;…(10分)若>2即a<时,原不等式的解为2<x<.…(11分)∴综上所述,当a=0时,原不等式的解集为{x|x<2};当0<a<时,原不等式的解集为{x|<x<2};当a=时,原不等式的解集为∅;当a>时,原不等式的解集为{x|2<x<}.…(12分)11、答案:,,即曲线在点(1,1)处的切线斜率k=0.因此曲线在(1,1)处的切线方程为y=1.故答案为:y=1.12、答案:∵∴y′|x=1=-在点处的切线方程为即切线方程为5x+32y-7=013、答案:试题分析:(1)设函数y=f(x)的图象上任意不同的两点P1(x1,y1)、P2(x2,y2),不妨设x1>x2,利用图象上任意不同的两点的连线的斜率小于1,推出:x12+(x 2-a)x1+x22-ax2+1>0,通过两次△<0推出-(2)通过函数的导数就是函数y=f(x)的图象上的任意一点的切线的斜率为k,利用|k|≤1,与相互充要故选证明即可.试题解析:(1)设函数y=f(x)的图象上任意不同的两点P1(x1,y1)、P2(x2,y2),不妨设x1>x2,则,即<1,∴<1整理得:x12+(x2-a)x1+x22-ax2+1>0∵x1∈R∴△=(x2-a)2-4(x22-ax2+1)<0即3x22-2ax2-a2+4>0∵x2∈R∴△=4a2-12(-a2+4)<0即a2-3<0∴-(2)k=f'(x)=-3x2+2ax,则当x∈[0,1]时,|k|≤1⇔-1≤-3x2+2ax≤1⇔或或解得:1≤a≤,故|k|≤1成立的充要条件是.。