53定积分的换元法和分部积分法习题
- 格式:doc
- 大小:3.29 MB
- 文档页数:20
定积分的分部积分法经典例题
定积分的应用一般出现在综合题的最后一题,题型仅有两种:第一,求曲线围成的面积;第二求旋转体体积(绕x轴旋转,绕y轴旋转)。
1.求面积
(1)X-型图形,一般是两条曲线一上一下,面积等于上面的曲线(大的)减去下面的曲线(小的),并对x的积分,如下面两张图。
求面积首要问题是画出草图,图形的上下位置(或者左右位置),交点一定要做得准确。
通常曲线,例直线、抛物线、双曲线、指数、对数、三角函数的图像要画得熟练、准确。
求出结果后要检验,这样的题型是一个实际问题,所得结果要合乎逻辑。
(2)Y-型,一般是两条曲线一左一右,面积等于右边的曲线(大的)减去左边的曲线(小的),并对y的积分,如下图
2.旋转体体积
求旋转体体积时要充分发挥几何空间想象能力,要想象出旋转出的体积大概是什么形状的。
(1)X-型图形
绕x轴旋转所得图形的体积
绕y轴旋转所得图形的体积
(2)Y-型图形
绕x轴旋转所得图形的体积
绕y轴旋转所得图形的体积
常考题型如下:。
1.计算下列定积分: ⑴3sin()3x dx πππ+⎰;【解法一】应用牛顿-莱布尼兹公式3sin()3x dx πππ+⎰3sin()()33x d x ππππ=++⎰3cos()3x πππ=-+[cos()cos()]333ππππ=-+-+[cos (cos )]033ππ=----=。
【解法二】应用定积分换元法令3x u π+=,则d x d u =,当x 从3π单调变化到π时,u 从23π单调变化到43π,于是有3sin()3x dx πππ+⎰4323sin udu ππ=⎰4323cos uππ=-42[coscos ]33ππ=-- [cos(cos )]033ππ=----=。
⑵132(115)dxx -+⎰;【解法一】应用牛顿-莱布尼兹公式132(115)dx x -+⎰1321(115)(115)5x d x --=++⎰21211(115)52x --=⋅+-22111[]10(1151)(1152)=--+⨯-⨯211(1)1016=--51512=。
【解法二】应用定积分换元法令115x u +=,则15dx du =,当x 从2-单调变化到1时,u 从1单调变化到16,于是有132(115)dxx -+⎰163115u du -=⎰21611152u -=⋅-211(1)1016=--51512=。
⑶32sin cos d πϕϕϕ⎰;【解法一】应用牛顿-莱布尼兹公式320sin cos d πϕϕϕ⎰32cos cos d πϕϕ=-⎰4201cos 4πϕ=-441[cos cos 0]42π=--1[01]4=--14=。
【解法二】应用定积分换元法令cos u ϕ=,则sin d du ϕϕ-=,当ϕ从0单调变化到2π时,u 从1单调变化到0,于是有320sin cos d πϕϕϕ⎰031u du =-⎰130u du =⎰4114u =14=。
⑷30(1sin )d πθθ-⎰;【解】被积式为3(1sin )d θθ-,不属于三角函数的基本可积形式,须进行变换。
1.计算下列定积分: ⑴3sin()3x dx πππ+⎰;【解法一】应用牛顿-莱布尼兹公式3sin()3x dx πππ+⎰3sin()()33x d x ππππ=++⎰3cos()3x πππ=-+[cos()cos()]333ππππ=-+-+[cos (cos )]033ππ=----=。
【解法二】应用定积分换元法令3x u π+=,则d x d u =,当x 从3π单调变化到π时,u 从23π单调变化到43π,于是有3s i n ()3x d x πππ+⎰4323s i n udu ππ=⎰4323c o s u ππ=-42[coscos ]33ππ=-- [cos(cos )]033ππ=----=。
⑵132(115)dxx -+⎰;【解法一】应用牛顿-莱布尼兹公式132(115)dx x -+⎰1321(115)(115)5x d x --=++⎰21211(115)52x --=⋅+-22111[]10(1151)(1152)=--+⨯-⨯211(1)1016=--51512=。
【解法二】应用定积分换元法令115x u +=,则15dx du =,当x 从2-单调变化到1时,u 从1单调变化到16,于是有132(115)dx x -+⎰163115u du -=⎰21611152u -=⋅-211(1)1016=--51512=。
⑶32sin cos d πϕϕϕ⎰;【解法一】应用牛顿-莱布尼兹公式320sin cos d πϕϕϕ⎰32cos cos d πϕϕ=-⎰4201cos 4πϕ=-441[cos cos 0]42π=--1[01]4=--14=。
【解法二】应用定积分换元法令cos u ϕ=,则sin d du ϕϕ-=,当ϕ从0单调变化到2π时,u 从1单调变化到0,于是有320sin cos d πϕϕϕ⎰031u du =-⎰130u du =⎰4114u =14=。
定积分是微积分的一个重要概念,它是对函数在一个区间上的积累结果的度量。
定积分的计算方法主要有直接法、换元法和分部积分法等。
下面通过几个例题来详细介绍定积分的计算方法。
例1:计算定积分∫(0,2) x^2 dx。
解:根据定积分的定义,我们可以将这个定积分表示为一个求和的形式:∫(0,2) x^2 dx = 1/3 * (x^3) | (0,2) = 8/3所以,定积分∫(0,2) x^2 dx的值为8/3。
例2:计算定积分∫(0,π/2) sin(x) dx。
解:这是一个典型的利用换元法求解的定积分问题。
我们可以令u = sin(x),则du = cos(x) dx。
因此,原定积分可以转化为:∫(0,π/2) sin(x) dx = ∫(0,π/2) u du = u | (0,π/2) = sin(π/2) - sin(0) = 1所以,定积分∫(0,π/2) sin(x) dx的值为1。
例3:计算定积分∫(0,1) (e^x - x^2) dx。
解:这是一个典型的利用分部积分法求解的定积分问题。
我们可以令u = e^x,则du = e^x dx;v = x^2,则dv = 2x dx。
因此,原定积分可以转化为:∫(0,1) (e^x - x^2) dx = ∫(0,1) u dv -∫(0,1) v du = u*v | (0,1) - [uv] | (0,1) = e^1 - 1 - [e^x*x^2] | (0,1) = e^1 - 1 - (e^1 - 1) = e^1 - e^1 + 1 - 1 = 0所以,定积分∫(0,1) (e^x - x^2) dx的值为0。
通过以上三个例题,我们可以看到定积分的计算方法主要包括直接法、换元法和分部积分法等。
在实际应用中,我们需要根据具体的问题选择合适的计算方法。
同时,我们还需要注意在计算过程中保持变量的一致性,避免出现符号错误。
1.计算下列定积分: ⑴3sin()3x dx πππ+⎰;【解法一】应用牛顿-莱布尼兹公式3sin()3x dx πππ+⎰3sin()()33x d x ππππ=++⎰3cos()3x πππ=-+[cos()cos()]333ππππ=-+-+[cos (cos )]033ππ=----=。
【解法二】应用定积分换元法令3x u π+=,则dx du =,当x 从3π单调变化到π时,u 从23π单调变化到43π,于是有3sin()3x dx πππ+⎰4323sin udu ππ=⎰4323cos u ππ=-42[coscos ]33ππ=-- [cos(cos )]033ππ=----=。
⑵132(115)dxx -+⎰;【解法一】应用牛顿-莱布尼兹公式132(115)dx x -+⎰1321(115)(115)5x d x --=++⎰21211(115)52x --=⋅+-22111[]10(1151)(1152)=--+⨯-⨯211(1)1016=--51512=。
【解法二】应用定积分换元法令115x u +=,则15dx du =,当x 从2-单调变化到1时,u 从1单调变化到16,于是有132(115)dx x -+⎰163115u du -=⎰21611152u -=⋅-211(1)1016=--51512=。
⑶32sin cos d πϕϕϕ⎰;【解法一】应用牛顿-莱布尼兹公式320sin cos d πϕϕϕ⎰32cos cos d πϕϕ=-⎰4201cos 4πϕ=-441[cos cos 0]42π=--1[01]4=--14=。
【解法二】应用定积分换元法令cos u ϕ=,则sin d du ϕϕ-=,当ϕ从0单调变化到2π时,u 从1单调变化到0,于是有320sin cos d πϕϕϕ⎰31u du =-⎰130u du =⎰4114u =14=。
⑷30(1sin )d πθθ-⎰;【解】被积式为3(1sin )d θθ-,不属于三角函数的基本可积形式,须进行变换。
由于1是独立的,易于分离出去独立积分,于是问题成为对3sin d θθ的积分,这是正、余弦的奇数次幂的积分,其一般方法是应用第一换元法,先分出一次式以便作凑微分:sin cos d d θθθ=-,余下的22sin 1cos θθ=-,这样得到的2(1cos )cos d θθ--便为变量代换做好了准备。
具体的变换方式有如下两种: 【解法一】应用牛顿-莱布尼兹公式30(1sin )d πθθ-⎰201sin sin d d ππθθθθ=-⎰⎰20(1cos )cos d ππθθθ=+-⎰301(cos cos )3ππθθ=+-331(cos cos0)(cos cos 0)3πππ=+---1(11)(11)3π=+-----43π=-。
【解法二】应用定积分换元法令cos u ϕ=,则sin d du ϕϕ-=,当ϕ从0单调变化到π时,u 从1单调变化到1-,于是有30(1sin )d πθθ-⎰201sin sin d d ππθθθθ=-⎰⎰20(1cos )cos d ππθθθ=+-⎰121(1)u du π-=+-⎰3111()3u u π-=+-1(11)(11)3π=+-----43π=-。
⑸226cos udu ππ⎰;【解】这是正、余弦的偶次幂,其一般积分方法为,利用三角函数的半角公式:21cos cos 22u u +=,将平方部份降次成为一次的余弦三角函数:21cos 2cos 2u u +=,使之可以换元成为基本可积形式: 【解法一】应用牛顿-莱布尼兹公式226cos udu ππ⎰261cos 22u du ππ+=⎰226611(cos 22)22du ud u ππππ=+⎰⎰ 226611(sin 2)22u u ππππ=+11[()(sin sin )]22623ππππ=-+- 13()234π=-。
【解法二】应用定积分换元法令2u x =,则12du dx =,当u 从6π单调变化到2π时,x 从3π单调变化到π,于是有 226cos udu ππ⎰261cos 22u du ππ+=⎰226611(cos 22)22du ud u ππππ=+⎰⎰23611(cos )22u xdx ππππ=+⎰311[()sin ]2262x ππππ=-+ 11[(sin sin )]2323πππ=+-13()234π=-。
⑹2202x dx -⎰;【解】被积函数中含根号,且根指数及根号内多项式的次数都是2,应该应用第二类换元法中的三角变换法:为使根号内的变量在后的平方差转换成完全平方,应令2sin x u =,当x 从0单调变化到2时,u 从0单调变化到2π,且22222sin 2cos x u u -=-=,2cos dx udu =,使得222x dx -⎰202cos 2cos u udu π=⋅⎰21cos 222udu π+=⎰220cos 2du udu ππ=+⎰⎰2201cos 222uud u ππ=+⎰ 2201sin 22uu ππ=+1(sin 0)22ππ=+-2π=。
⑺211221x dx x -⎰; 【解】被积函数中含根号,且根指数及根号内多项式的次数都是2,应该应用第二类换元法中的三角变换法:为使根号内的变量在后的平方差转换成完全平方,应令sin x u =,当x 从12单调变化到1时,u 从4π单调变化到2π,且2222211sin cos sin sin x u u x u u --==,cos dx udu =,使得 211221x dx x -⎰224cos cos sin u udu u ππ=⋅⎰224cot udu ππ=⎰224(csc 1)u du ππ=-⎰ 24(cot )u u ππ=--[(cotcot )()]2424ππππ=--+-14π=-。
⑻2220ax a x dx -⎰(0a >);【解】被积函数中含根号,且根指数及根号内多项式的次数都是2,应该应用第二类换元法中的三角变换法:为使根号内的变量在后的平方差转换成完全平方,应令sin x a u =,当x 从0单调变化到a 时,u 从0单调变化到2π,且22222222sin sin sin cos x a x a u a u u a u -=-=⋅,cos dx a udu =,使得222axa x dx -⎰2220sin cos cos a u a u a udu π=⋅⋅⎰422sin 24audu π=⎰4201cos 442a u du π+=⎰421(sin 4)84a u u π=+41[(sin 20)]824a ππ=+-4116a π=。
⑼32211dx xx+⎰;【解】被积函数中含根号,且根指数及根号内多项式的次数都是2,应该应用第二类换元法中的三角变换法:为使根号内的变量在后的平方和转换成完全平方,应令tan x u =,当x 从1单调变化到3时,u 从4π单调变化到3π,且 2222222sec sec tan sec 1tan 1tan dx uduuduu u x x u u ==++2cos sin u du u=21sin sin d u u = 使得32211dx x x +⎰3241sin sin d u uππ=⎰ 这时,再令sin u t =,当u 从4π单调变化到3π时,t 从22单调变化到32, 又得3241sin sin d u u ππ⎰322221dt t =⎰32221t =-22()32=--223=-。
⑽1202x x dx -⎰;【解】被积函数中含根号,且根指数及根号内多项式的次数都是2,应该应用第二类换元法中的三角变换法。
由于根号内的二次多项式并非为三角变换中的平方和或差的标准形式,需要先将其转化为标准形:22221(12)1(1)x x x x x -=--+=--,现在,根号内的二次多项式成为了变量在后的平方差的形式了,因此可令1sin x u -=,当x 从0单调变化到1时,1x -从1-单调变化到0,从而u 对应从2π-单调变化到0, 而且22221sin cos cos x x u u u -=-==,cos dx udu =,于是122x x dx -⎰2cos cos u udu π-=⋅⎰021cos 22u du π-+=⎰0211(sin 2)22u u π-=+11{[0()][sin 0sin()]}222ππ=--+--4π=。
⑾411dxx+⎰;【解】被积函数中含根号,可见根指数与根号内多项式的次数不相等,应该应用第二类换元法中的直接变换法:【解法一】令x u =,当x 从1单调变化到4时,u 从1单调变化到2,且由此得2x u =,2dx udu =,1111ux =++,于是411dx x+⎰2121udu u =+⎰2112(1)1du u =-+⎰212(ln 1)u u =-+ 2[(21)(ln3ln 2)]=---32(1ln )2=-22(1ln )3=+。
【解法二】为便于积分,可使变换后的分母成为简单变量,即令1x u +=,当x 从1单调变化到4时,u 从2单调变化到3,且由此得2(1)x u =-,2(1)dx u du =-,111ux =+,于是411dx x+⎰322(1)u du u -=⎰3212(1)du u =-⎰322(ln )u u =- 2[(32)(ln3ln 2)]=---32(1ln )2=-。
⑿13411dxx --⎰;【解】被积函数中含根号,可见根指数与根号内多项式的次数不相等,应该应用第二类换元法中的直接变换法:【解法一】令1x u -=,当x 从34单调变化到1时,u 从12单调变化到0,且由此得21x u =-,2dx udu =-,11111u x =---,于是13411dxx --⎰01221u du u -=-⎰12012(1)1du u =+-⎰1202(ln 1)u u =+-112(ln ln1)22=+-12ln 2=-。
【解法二】为便于积分,可使变换后的分母成为简单变量,即令11x u --=,当x 从34单调变化到1时,u 从12-单调变化到1-,且由此得21(1)x u =-+,2(1)dx u du =-+,1111ux =--,于是13411dxx --⎰1122(1)u du u ---+=⎰12112(1)du u --=+⎰1212(ln )u u --=+112[()(1)ln ln 1)]22=---+---12ln 2=-。