第四章 高阶微分方程1.2
- 格式:ppt
- 大小:405.00 KB
- 文档页数:15
高阶微分方程高阶微分方程是微积分中重要的研究对象。
它的研究内容涉及到高等数学、物理学、工程学等学科领域。
在这篇文章中,我们将对高阶微分方程的定义、求解方法及其应用进行全面介绍。
一、高阶微分方程的定义高阶微分方程是指包含导数的方程中,导数的阶数高于一阶的微分方程。
一般形式可以表示为:\[F(x, y, y', y'', ..., y^{(n)}) = 0\]其中,\(x\) 是自变量,\(y = y(x)\) 是因变量,\(y', y'', ..., y^{(n)}\) 分别表示\(y\) 相对于\(x\) 的各阶导数。
二、高阶微分方程的求解方法1. 分离变量法分离变量法是指将微分方程中的自变量和因变量分别放在方程两侧,并进行积分求解的方法。
这种方法适用于一些具有特殊形式的高阶微分方程。
2. 常系数线性微分方程的特征方程法对于常系数线性微分方程,可以通过特征方程法求解。
首先,假设原微分方程的解为指数函数形式,然后将其代入方程中,得到一个关于未知常数的方程,通过求解这个特征方程即可得到原方程的通解。
3. 常数变易法常数变易法是指假设微分方程的特解形式为常数乘以一个已知的函数形式。
通过求解这个常数变易方程,可以得到特解,再将特解与齐次方程的通解相加,即可得到原方程的通解。
4. 线性非齐次微分方程的待定系数法对于线性非齐次微分方程,可以通过待定系数法求解。
假设非齐次方程的解为线性组合形式,将其代入方程中,得到关于未知系数的代数方程组。
通过求解这个方程组,可以得到方程的特解,再将特解与齐次方程的通解相加,即可得到原方程的通解。
三、高阶微分方程的应用高阶微分方程在物理学、工程学等领域中有广泛的应用。
以下是几个典型的应用示例:1. 振动方程振动方程描述了各种振动系统的运动规律。
例如,弹簧振子的运动可以由高阶微分方程进行建模。
2. 电路方程电路方程可以描述电子电路中电流和电压的关系。
第四章高阶微分方程[教学目标]1. 理解高阶线性微分方程的一般理论,n阶齐次(非齐次)线性微分方程解的性质与结构,熟练掌握n阶常系数齐次线性微分方程的待定指数函数解法。
2.掌握n阶非齐次线性微分方程的常数变易法,理解n阶常系数非齐次线性微分方程特解的待定系数法和Laplce变换法。
3.熟练欧拉方程与高阶方程的降阶法和幂级数解法。
4.掌握高阶方程的应用。
[教学重难点]重点是线性微分方程解的性质与结构,高阶方程的各种解法。
难点是待定系数法求特解。
[教学方法] 讲授,实践。
[教学时间] 16学时[教学内容]线性微分方程的一般理论,齐次(非齐次)线性微分方程解的性质与结构,非齐次线性微分方程的常数变量易法;常系数线性方程与欧拉方程的解法,非齐线性方程的比较系数法与拉氏变换法;高阶方程的降阶法和幂级数解法及高阶方程的应用。
[考核目标]1.理解高阶线性微分方程的一般理论,能够求解高阶常系数线性微分方程。
2.掌握n阶非齐次线性微分方程的常数变易法。
3.n阶常系数非齐次线性微分方程特解的待定系数法和Laplce变换法。
4.熟练高阶方程的降阶法和幂级数解法及高阶方程的应用。
§4.1线性微分方程的一般理论4.1.1引言讨论n阶线性微分方程1111()()()()n n n n n n d x d xdxa t a t a t x f t dt dtdt---++++= (4.1) 其中()(1,2,,)i a t i n =及()f t 都是区间a t b ≤≤上的连续函数如果()0f t ≡,则方程(4.1)变为:1111()()()0n n n n n n d x d x dxa t a t a t x dt dtdt---++++= (4.2) 称它为n 阶齐线性微分方程,而称一般的方程(4.1)为n 阶非齐线性微分方程,并且通常把方程(4.2)叫对应于方程(4.1)的齐线性方程。
定理1 如果()(1,2,,)i a t i n =及()f t 都是区间a t b ≤≤上的连续函数,则对于任一[]0,t a b ∈ (1)(1)000,,,n x x x - ,方程(4.1)存在唯一解()x t ϕ=,定义于区间a tb ≤≤上,且满足初始条件:1(1)(1)0000001()()(),,,n n n d t d t t x x x dtdtϕϕϕ---=== (4.3) 从这个定理可以看出,初始条件唯一地确定了方程(4.1)的解,而且这个解在所有()(1,2,,)i a t i n =及()f t 连续的整个区间a t b ≤≤上有定义。