当前位置:文档之家› 均压通风

均压通风

均压通风

后退式回采、折返式通风系统工作面中,风压高低不同,直接影响采空区空气流动,从而有可能助长或抑制采空区中遗留煤炭自燃,也可能将采空区瓦斯诱到上三角、工作面及其回风顺槽中超过允许浓度。因此近些年来,许多矿井采用均压通风,保证工作面安全回采,取得较好效果。

均压通风是采取某些措施升高或降低工作面及其采空区的空气压力,从而改变采空区漏风状态(控制漏风方向和漏风量),达到抑制采空区中遗留煤炭自燃和防止瓦斯在生产巷道(包括工作面)聚集的目的。这些措施是利用并联风道、安设风窗或风机,这三项措施可以单独使用,也可以联合使用。

管道压损计算

管道压损计算: 1. 管道中压损: △p P =△f P +△t P +△e P △p P :管道总压降,KPa △f P :直管段压降,KPa △t P :局部压降,KPa △e P :标高变化压降,KPa 2. 雷诺数(气体在管道内的流动方程) νμρud ud R e == (ρ μ ν=) :e R 雷诺数; :ρ气体密度,Kg/m 3() :u 管道内气体的速度,m/s :d 管道直径,m :μ动力粘度,Pa.s :ν动力粘度,m 2/s 气体的粘度随温度的增高而增大(液体的粘度随温度的增高而减小),与压力几乎没有关系。空气的粘度μ壳用下式计算: 2 /36)273 273(*380380* 10*7580.1t t ++=-μ t :为气体温度 圆管内流动的下限雷诺数:2000Re =c 直管段压降△2 2 'pu d L P i f λ= 其中摩擦系数λ应根据流动状态按下面公司计算。 (1) 在工程计算时: 2000Re ≤时按流层计算; 沿程压损系数:Re 64= λ 金属管沿程压损系数:Re 75= λ 橡胶软管沿程压损系数:Re 80 =λ

2000Re >时按紊流进行计算:25 .0Re 3164.0= λ

20,2n L P K Pa D υρ λξ???=+∑? ??? 3. 直管段压降△02 2 K u d L P f ρλ = 其中摩擦系数λ应根据流动状态按上面公式计算。:f P 直管段压降,KPa :λ摩擦系数 L :管道长度,m :d 管道直径,m :ρ气体密度,Kg/m 3,C 020时r=1.29 :u 管道内气体的速度,m/s :0K 阻力附件系数,0K =1.15~1.20 4、管道管径与壁厚关系 (1)风管的壁厚 管壁应有合理的厚度,太薄钢性差,受负压吸力易变形;太厚则浪费钢材不经 济。风管壁厚按下表取值: (2)当含有熟料及磨损性强的矿物粉尘,且流速>15m/s 时,风管壁厚适当加大。 (3)为防止大型风管的刚度变形,在其长度方向每隔2.5m 增加一道加固圈,加固圈 可用宽50~80,厚度为5~8mm 的扁钢制作。 (4)风管的法兰规格,螺栓孔径,数量等均应按表中给定尺寸确定。 5、管道阻力计算 (1) 阻力计算公式 风管系统阻力应为管道的摩擦阻力与局部阻力之和: λ——圆管摩擦阻力系数;见表 L ——风管长度,m ; D ——风管直径,m ; 风管壁厚度 表3 (3)

简述压入式通风的优缺点

简述压入式通风的优缺点。 优点:用柔性风筒,安装方便;有效射程大冲淡和排出炮烟的作用比较强;工作面回风不通过扇风机,在有瓦斯涌出的工作面这种通风比较安全;工作面回风沿巷道流出,带走了巷道内的粉尘等有害气体。缺点:长距离巷道掘进排出炮烟需要的风量大,所排出的炮烟在巷道中随风流扩散蔓延范围大,时间长,工作环境差。 什么是炸药的氧平衡?为何在配制混合炸药时一般使炸药达到或接近零氧平衡? 用每克炸药不足或多余的氧的克数来表示炸药内含氧量与充分氧化可燃元素所需氧之间的关系。零氧平衡时,炸药中的氧和可燃元素都得到了充分利用, 放出最大的热量,而不生成有毒气体,故配制混合炸药时,应通过炸药成分的改变和其配制的调整,使炸药达到或接近零氧平衡。 巷道断面设计的内容与步聚? 答:巷道断面设计的内容与步聚 (1)选择巷道断面形状;(2)确定巷道净断面尺寸;(3)风速校核;(4)根据支架和道床参数计算出巷道的设计掘进断面尺寸;(5)按充许的超挖值计算掘进断面尺寸;(6)布置水沟和管缆;(7)绘编“一图二表”—巷道断面施工图、巷道特征表、每米巷道工程量及材料消耗量一览表。 什么是循环进尺?确定循环进尺的原则? 答:一个循环结束后形成的成品巷道的长度,称为循环进尺。 原则:①要有利于组织正规循环作业和便于管理;②要有利于巷道支护和围岩稳定,能保证安全;③要有利于增加作业时间和减少辅助时间,提高设备利用率和工作效率;④要有利于减少消耗和降低成本。 什么是半煤岩巷?半煤岩巷的采石位置有哪几种?施工组织形式有哪几种? 答:当岩层占掘进断面1/5~4/5(不包括1/5及4/5)时,即称为半煤岩巷。 半煤岩巷的采石位置有挑顶、挖底和挑顶兼挖底三种情况。 半煤岩巷的施工组织形式有两种方式:一种是全断面一次掘进,煤、岩不分掘分运; 另一种是煤、岩分掘分运。 掘进工作面的炮眼有哪几类?各有什么区别? 答:分三类:掏槽眼、辅助眼和周边眼。 掏槽眼一般布置在巷道断面中央靠近底板处,这样便于打眼时掌握方向,并有利于其他多数炮眼能借助于岩石的自重崩落;辅助眼均匀布置在掏槽眼与周边眼之间,炮眼方向一般垂直于工作面;周边眼是爆落巷道周边岩石,最后形成巷道设计断面轮廓的炮眼。 道岔选择的原则有哪些? 答:(1)与基本轨的轨距相适应;与基本轨的轨型相适应;与行驶车辆的类型相适应;与行车速度相适应。 目前常见的有哪几种煤巷施工机械化作业线? 答:(1)掘进机—链板输送机机械化作业线;(2)掘进机—胶带转载机—链板输送机机械化作业线;(3)掘进机—胶带转载机—可伸缩双向胶带输送机机械化作业线;(4)煤仓掘进机—仓式(梭式)列车机械化作业线。

通风管道阻力如何计算

通风管道阻力如何计算(圆形风管/矩形风管) 发布:2012-08-09 10:50:45 通风管道阻力如何计算?通风管道是通风系统、通风工程中很重要的一个环节,通风管道的好与坏关系到通风工程的成败与否,关系到通风系统运转的优良与低劣,所以说通风管道设计是否合理是整个通风空调工程中不可不做为重中之重的 一部分,通风管道设计的各种问题我们都要认真对待。 当空气在通风管道内流动,通风管道内阻力可分两种:Ⅰ摩擦阻力(沿程阻力):空气本身粘滞性以及与管壁间摩擦产生的沿程能量损失Ⅱ局部阻力:空 气流经通风管道中管件及设备时,因为流速大小和方向变化以及产生涡流造成 比较集中的能量损失 一、摩擦阻力(沿程阻力) 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下 面公式计算: ΔPm=λν2ρl/8Rs 圆形风管摩擦阻力计算公式可写为:ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D 以上公式中: λ————摩擦阻力系数 ν————风管内空气的平均流速,m/s ρ————空气的密度,K g/m3 l ————风管长度,m Rs————风管的水力半径,m

f————管道中充满流体部分的横断面积,m2 P————湿周,在通风、空调系统中既为风管的周长,m D————圆形风管直径,m 特别注意的是矩形风管的摩擦阻力计算: 日常使用的风阻线图是根据圆形风管得出,首先我们要把矩形风管断面尺寸折算成相当的圆形风管得出,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。当量直径有流速当量直径和流量当量直径两种 流速当量直径:D v=2ab/(a+b) 流量当量直径:D L=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算时,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。 二、局部阻力 当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。 局部阻力按下式计算: Z=ξν2ρ/2 ξ————局部阻力系数。 局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:

巷道式通风

巷道式通风 1 前言 1.1 概况 隧道施工通风方式按照风道的类型及通风机安装位置,可分为风管式通风和巷道式通风两种类型。风管式通风风流经由管道输送,分为压入式、抽出式、混合式三种。 巷道式通风适用于有平行导坑的长大隧道,通过横通道使正洞与平导组成一个完整的风流循环系统。巷道式通风利用整个坑道作为风道,断面大、阻力小、可供应较大的风量。两条有横通道联系的长大隧道也适用巷道式通风。 1.1.1传统的巷道式通风 传统的巷道式通风是在平行导坑口设置风门安装主风机,将污浊空气由平导抽出,新鲜空气由正洞流入,洞内利用风机将正洞的新鲜空气送至不同工作面,形成循环风流。该通风方式在衡广复线大瑶山隧道进口、大秦线花果山隧道施工应用过。 1.1.2 改良的巷道式通风 充分利用横通道安设风机,随着新的横通道的开挖,风机逐渐前移,横通道内的风机既是局扇又是主扇,取消了平行导坑口设置的大型主扇。在洞口到设风机的通道间实施巷道式通风,在超前区段实施风管式通风。该改良的通风方式在大秦线军都山隧道出口段双线隧道应用过。 1.1.3 新型的巷道式通风 利用射流风机,在设平行导坑的长大隧道及双洞隧道施工中,把洞口到射流风机的区段变为真正意义上的巷道式通风(进风道全为新鲜风流,除开挖面附近第一个外其余横通道设风门封堵),在射流风机与开挖掌子面之间采用压入式通风(轴流风机置于新鲜风带中)。在污风通道根据需要每隔一定距离设置射流风机,加快污风流速。在四川锦屏水电站引水洞交通洞施工中应用过。 由中铁一局五公司独家承建的云桂铁路石林特长岩溶隧道的进口、出口工区第二阶段通风、2#斜井工区第三阶段通风均采用新型的巷道式通风方式。 本工法主要介绍长大隧道新型的巷道式通风工法。 1.2 工法原理 将公路运营通风原理和理念大胆地运用到隧道施工通风中来,在巷道式通风中

风管阻力计算

通风管道阻力计算 对于空调通风专业来说,我们最终的目的是让整个系统达到或接近设计及业主的要求。对于整套空调系统而言主要应该把握几个关键的参数:风量、温度、湿度、洁净度等。可见无论空调是否对新风做处理,我们送到房间的风量是一定要达到要求。否则别的就更不用考虑了。管道内风量主要是由风管内阻力影响的。 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。下边为标准工况且没有扰动的情况下的计算,如实际不是标准工况且有扰动需要进行修正。 一:摩擦阻力(沿程阻力)计算 摩擦阻力(沿程阻力)计算一:(公式推导法) 根据流体力学原理,无论矩形还是圆形风管空气在横断面形状不变的管道内流动时的摩擦阻力(沿程阻力) 按下式计算:ΔPm=λν2ρL/2D 以上各式中: ΔPm———摩擦阻力(沿程阻力),Pa。 λ————摩擦阻力系数【λ根据流体不同情况而改变不具有规律性,不可用纯公式计算,只能靠实验得到许多不同状态的半经验公式: 其中最常用的公式为:,《K-管壁的当量绝对粗糙度,mm (见表1-1);D-风管当量直径,mm(见一下介绍) ;Re雷诺数判断流体流动状态的准则数,(见表1-1);其实λ一般由莫台图所得,见图】 莫台曲线图

表1-1 一般通风管道中K、Re、λ的经验取值 ν————风管内空气的平均流速,m/s; 【其中ν=Q/F;Q为管内风量m3/S,F为管道断面积M2 ;其中矩形风管F=a×b;圆形风管F=πD2 /4,一般设计也直接选风速见表1-2】表1-2 一般通风系统中常用空气流速(m/s) ρ————空气的密度,Kg/m3;【在压力B0=101.3kPa、温度t0=20℃、一般情况下取ρ=1.205Kg/m3; 见表1-3】 L ———风管长度,m 【横断面形状不变的管道长度】 D———风管的当量直径,m; 【矩形风管流速当量直径:;流量当量直 径:;圆形风管D为风管直径】 摩擦阻力(沿程阻力)计算二:(比摩阻法)

隧道施工通风方式的选择

隧道施工通风方式的选择 李永生 (中铁隧道集团有限公司科研所 洛阳 471009) 摘 要:本文对隧道施工通风的方式进行了归纳总结,就如何针对不同的施工条件选择相应的通风方 式进行了介绍,并提出了一些发展建议。 关键词:隧道 施工通风 通风方式 选择 1 前言 无论是在隧道施工开挖时,还是在并巷工程的巷道掘进中,为了稀释和排出岩体涌出的有害气体、爆破产生的炮烟和粉尘,保持良好的空气条件,必须对开挖工作面进行通风,即向工作面送人新鲜风流,稀释和排出污浊空气。但是,如何才能充分利用现有条件,使通风效果达到最佳、成本降到最低呢?这就需要首先对通风方式进行合理的选择。 2 通风方式的分类与选择 通风方式按照通风的动力划分,可分为自然通风和机械通风。 2.1 自然通风 在气压、温度和自然风力等各种自然因素的作用下,使空气获得能量,并沿并巷流动的现象,称为自然通风。而借助于自然因素产生的使空气流动的能量,称为自然风压。 在图1所示的地下井巷中,进风口和出风口的标高差为Z 1-2,此高差内空气密度平均值为ρ 1-2 ;3 至4段为最低标高的水平巷道;2至3段和4至5段的标高差分别为Z 2-3和Z 4-5,空气密度平均值分别为ρ2-3和p4-5。根据能量变化方程可知1至5点的阻力为: h r = d ρ + υ 12-υ52 +(Z 1-2+Z 2-3-Z 4-5)·g ρ 2 式中:h r ——通风阻力; d ρ——单位质量空气静压; ρ——空气密度; υ1——进风口风速; υ5——出风口风速; g ——重力加速度。 上式中,因v1=0;Z1-2+Z2-3-Z4-5=0则有 h r = d ρ - υ52 (1) ρ 2 因出风口处5点的单位质量速压(υ52/2)为出口的能量损失,可计为通风总阻力的一部分,而可服通风总阻力所需要的能量即为自然风压,则自然风压为: h n = d ρ (2) ρ 则单位体积空气所产生的自然风压为: h n =ρa d ρ (3) ρ 式中:ρa ——空气平均密度; 当把井巷内空气视为不可压缩流体时,其静压与深度成正比,即d ρ=ρ·dz ,则(3)式可改写为: Z 1-2 Z 2-3 Z 4-5 12 34 5 新鲜风 污风(以下相同) 图1 自然通风示意图

管道流量、压力计算

问题:假设一高位水池往低处的水池供水,供水距离为20米,供水管路为80毫米,供水坡度为20度,如何计算出水端的压力和流量 局部损失忽略,按长管计算: 80mm管比阻s=10.3n^2/d^5.33=10.3*0.012^2/0.080^5.33= 1042 作用水头H=Lsin20=20*sin20= 6.84 m 管道长度L=20m 管道流量Q =[H/(sL)]^(1/2)=[6.84/(1042*20)]^(1/2)=0.0181m^3/s=65.2 m^3/h 流速V=4Q/(3.1416d^2)=4*0.0181/(3.1416*0.08^2)= 3.60 m/s 管道出口动压Pd=ρV^2/2=1000*3.6^2/2 = 6480Pa 压力损失主要是两个方面,一个是管道输送过程的沿程水头损失,一个是经过阀门,弯头的局部水头损失。沿程水头损失是由管道的材质,流速,长度这些决定的,局部的一般按沿程10%考虑,具体计算可以看水力学的书。 管道比阻: A = 10.3n^2/D^5.33 式中:n——管内壁糙率,普通黑碳钢可取n=0.012 ;D——管内径,m。道比阻。 对于DN100的普通黑碳钢导热油管道,DN100管,内径D = 99mm =0.099 m 管道比阻: A = 10.3*0.012^2/0.099^5.33 = 334.6 (s^2/m^6) 或 A = 0.001736/0.099^5.3 = 365.3 (s^2/m^6)

管道压力损失怎么计算 其实就是计算管道阻力损失之总和。 管道分为局部阻力和沿程阻力: 1 、 局部阻力是由管道附件 ( 弯头, 三通, 阀等 ) 形成的,它和局阻系数,动压成正比。局阻系数可以根据附件种类,开度大小通 过查手册得出, 动压和流速的平方成正比。 2 、 沿程阻力是比摩阻乘以管道长度, 比摩阻由管道的管径,内壁粗糙度,流体流速确定 总之,管道阻力的大小与流体的平均速度、流体的粘度、管道的大小、管道的长度、流体的气液态、管道内壁的光滑度相关。它的计算复杂、分类繁多,误 差也大。如要弄清它,应学 “ 流体力学 ” ,如难以学懂它,你也可用刘光启著的 “ 化 工工艺算图手册

隧道施工通风压入式通风计算方法

2、通风计算【2009-6-10 】 根据隧规及其条文说明,风量计算主要从四个方面予以考虑,即 按洞内最多工作人员数所需的新鲜空气,计算出所需风量Q1;按在 规定时间内,稀释一次性爆破使用最多炸药量所产生的有害气体到允许的浓度,计算出所需风量Q2根据不同的施工方法,按坑道内规定的最小风速,计算出所需风量Q3;当隧道内采用内燃机械施工时,还须按内燃设备的总功率(kw),计算出所需风量Q4;通过上述计算,取Qmax 二Ma X QI, Q2 Q3 Q4,再考虑风管的损失率(百米漏风率B),即确定洞内所需的总供风量Q机,从而确定风机的功率和风管的直径。 (1)计算参数的确定 一次开挖断面:S=80m2(全断面) 一次爆破耗药量:G=288kg (—次开挖长度4.2m) 通风距离:L=2800m 洞内最多作业人数:m=60人 爆破后通风排烟时间:t < 30min 通风管直径:? =1800mm 管道百米漏风率:B =1.5% (2)风量计算 ①按洞内最多工作人员数所需的新鲜空气,计算: 3 Q=3 〃k 〃m=3< 1.25 x 60=225 (m /min ) 式中 3 —隧规规定每人每分钟需供应新鲜空气标准为3m3/min

k —风量备用系数,一般取1.15?1.25,按1.25取值 m —同一时间洞内工作最多人数,按60 人计 ②按全断面开挖,30 分钟内稀释一次性爆破使用最多炸药量所产生的有害气体到允许的浓度,计算: t+1 1/t 1/t 3 Q2二V—(K 〃V1 / V2)二V [1 —(k x W V 2) ] =551 m /min 式中V 1——次爆破产生的炮烟体积V仁SX Ls =80 x 72.6=5808 3 m S- 一次开挖的断面面积,按80m2 Ls —炮烟抛掷长度,按经验公式Ls=15+G/5=15+288/5=72.6m G —同时爆破的炸药消耗量,G=288kg V 2—一次爆破产生的有害气体体积V2=a〃G=4x0 10-3x288=11.52 3 m a —单位重炸药爆破产生的有害气体换算成CO的体积,40L/kg K —CO允许浓度,取100ppm换算为1X 10-4 m3 t —通风时间,取30min ③按洞内允许最低风速,计算: Q3=60〃V〃S=60x0.15x 80=720 m3/min 式中V —洞内允许最小风速,隧规规定全断面开挖时取值 0.15m/s

管道压力损失

除尘系统中的管道压力损失计算 管道的压力损失就是含尘空气在管道中流动的压力损失.它等于管道沿程(摩擦)压力损失和局部损失之和 ,在实际计算中以最长沿程一条管道进行计算,其计算结果作为风机造型的参考依据. 一:管道的沿程压力损失 1. a △P m =△P m λR S P -----湿周,既管道的周长(m ) 左管道系统计算中,一般先计算出单位长度的摩擦损失,通常也称比摩阻(Pa/m ): △P m =λ 比摩阻力可通过查阅图表14-1得出,我公司的管道主要应用于除尘系统中,考虑到含尘空气中粉尘沉降的问题,除尘管道内的风速选择为25~28m/s. 4R S 1 2 V 2e

根据计算图标得出的以下数据: 局部阻力引起的能量损失,称之为局部压力损失或局部损失。 局部损失可按下列公式计算: △P J =δ △P J ----局部压力损失(Pa ) δ------局部阻力系数 2 V 2e

局部阻力系数δ可根据不同管道组件:如进出风口、弯头、三通等的不同尺寸比例,在相关资料中可查得,然后再根据上式计算出局部损失的大小。 例如:整体压制900圆弯头:当r/D=1.5时 δ=0.15 当r/D=2.0时 δ=0.13 当r/D=2.5时 δ=0.12 0总之,△P 为数。 F---Pq---风机全压(Pa ) Q---风机风量(m 3/s ) η----风机效率(一般为0.8~0.86) K---安全系统(1.0~1.2) 上式所得结果即为风机数电机功率,实际使用功率为:

Fs= Fs/F 即为风机的实际使用负载率 Pq*Q 1000* η

15、压入式通风教程

压入式通风 QB/ZTYJGYGF-SD-0315-2011 第五工程有限公司董亮 1前言 1.1概述 随着隧道施工技术水平的不断提高,修建的隧道长度越来越长、规模越来越大,隧道施工通风从初期的利用自然条件进行通风逐步发展到借助通风管路和施工巷道进行通风,通风设备逐步大型化。通风机风量已经达到3000~5000m3/min以上,采用的风管直径超过2m。例如,朔黄铁路长梁山隧道、大秦线花果山隧道、西南铁路东秦岭隧道等均为双线铁路隧道,采用压入式通风,独头通风达到或超过了3km左右,取得了良好效果,西康铁路秦岭Ⅱ线平导独头通风更是达到了6.2km。 1.2工艺原理 1.2.1整个通风系统是在隧道外设置合适的轴流风机并布设合理口径的通风管,通过轴流风机吸取隧道外新鲜空气输入隧道内施工环境中,通过气压将隧道内的污浊空气排出洞外。 1.2.2在隧道内适当的位置设置射流风机,加快隧道内污浊空气流动的速度。 1.2.3为了确保隧道内输入空气的压力,在隧道内适当的位置设置风室,在风室外增加轴流风机,增加工作面的通风压力,加快工作面的污浊空气移动速度。 1.3风机选型及适用范围 1.3.1风机的种类及适用范围 风机按照其作用主要分为轴流风机和射流风机两种。轴流风机是送风设备,它适用于长达隧道送风;射流风机是导流、引流设备,它适用于所有隧道内导流、引流。 1.3.2选择风机的依据 轴流风机要根据送风距离、施工需风量以及其它因素综合考虑确定风机型号;射流风机主要起导流作用,根据导流距离就可以确定风机型号。 1.4风管类型和挂设要求 1.4.1风管类型 风管主要分为软管和负压管(管内有金属环骨架)两种。 1.4.2风管挂设要求

管道压力损失计算

冷热水管道系统的压力损失 无论在供暖、制冷或生活冷热水系统,管道是传送流量和热量必不可少的部分。计算管道系统的压力损失有助于: (1) 设选择正确的管径。 (2) 设选择相应的循环泵和末端设备。也就是让系统水循环起来并且达到热能传送目的 的设备。 如果不进行准确的管道选型,会导致系统出现噪音、腐蚀(比如管道阀门口径偏小)、严重的能耗及设备的浪费(比如管道阀门水泵等偏大)等。 管道系统的水在流动时遇到阻力而造成其压力下降,通常将之简称为压降或压损。 压力损失分为延程压力损失和局部压力损失: — 延程压力损失指在管道中连续的、一致的压力损失。 — 局部压力损失指管道系统内特殊的部件,由于其改变了水流的方向,或者使局部水流通道变窄(比如缩径、三通、接头、阀门、过滤器等)所造成的非连续性的压力损失。 以下我们将探讨如何计算这两种压力损失值。在本章节内我们只讨论流动介质为水的管道系统。 一、 延程压力损失的计算方式 对于每一米管道,其水流的压力损失可按以下公式计算 其中:r=延程压力损失 Pa/m Fa=摩擦阻力系数 ρ=水的密度 kg/m 3 v=水平均流速 m/s D=管道内径 m 公式(1) 延程压力损失 局部压力损失

管径、流速及密度容易确定,而摩擦阻力系数的则取决于以下两个方面: (1)水流方式,(2)管道内壁粗糙程度 表1:水密度与温度对应值 水温°C10 20 30 40 50 60 70 80 90 密度 kg/m3999.6 998 995.4 992 987.7 982.8 977.2 971.1 964.6 1.1 水流方式 水在管道内的流动方式分为3种: —分层式,指水粒子流动轨迹平行有序(流动方式平缓有规律) —湍流式,指水粒子无序运动及随时变化(流动方式紊乱、不稳定) —过渡式,指介于分层式和湍流式之间的流动方式。 流动方式通过雷诺数(Reynolds Number)予以确定: 其中: Re=雷诺数 v=流速m/s D=管道内径m。 ?=水温及水流动力粘度,m2/s 表2:水温及相关水流动力粘度 水温m2/s cSt °E 10°C 1.30×10-6 1.30 1.022 20°C 1.02×10-6 1.02 1.000 30°C 0.80×10-6 0.80 0.985 40°C 0.65×10-6 0.65 0.974 50°C 0.54×10-6 0.54 0.966 60°C 0.47×10-6 0.47 0.961 70°C 0.43×10-6 0.43 0.958 80°C 0.39×10-6 0.39 0.956 90°C 0.35×10-6 0.35 0.953 通过公式2计算出雷诺数就可判断水流方式: Re<2,000:分层式流动 Re:2,000-2,500:过渡式流动

管道阻力损失计算

管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1) 对于圆形风管,摩擦阻力计算公式可改为: (6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为: (6-1-3) 以上各式中 λ——摩擦阻力系数;

v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中K——风管内壁粗糙度,mm; D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度 v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5) 式中Rm——实际的单位长度摩擦阻力,Pa/m; Rmo——图上查出的单位长度摩擦阻力,Pa/m; ρ——实际的空气密度,kg/m3; v——实际的空气运动粘度,m2/s。

水泵管道压力损失计算公式

水泵的管道压力损失计算,水泵管道压力损失计算公式 点击次数:7953 发布时间:2011-10-28 管道压力损失,管道压力损失计算公式 为了方便广大用户在水泵选型时确定管道压力损失博禹公司技术工程师特意在此发布管道压力损 失计算公式供大家选型参考。通过水泵性能曲线可以看出每台水泵在一定转速下,都有自己的性能曲线,性能曲线反映了水泵本身潜在的工作能力,这种潜在的工作能力,在泵站的实际运行中,就表现为在某一特定条件下的实际工作能力。水泵的工况点不仅取决于水泵本身所具有的性能,还取决于进、出水位与进、出水管道的管道系统性能。因此,工况点是由水泵和管路系统性能共同决定的。 水泵的管道系统,包括管路及其附件。由水力学知,管路水头损失包括管道沿程水头 损失与局部损失。 Σh=Σhf+Σhj=Σλι/d v2/2g+Σζv2/2g (3-1) 式中Σh—管道水头损失,m; Σhf--管道沿程水头损失,m; Σhj--管道局部水头损失,m; λ--沿程阻力系数; ζ--局部水头损失系数; ι--管道长度,m; d--管道直径,m; v --管道中水流的平均流速,m/s。 对于圆管v=4Q/πd2,则式(3-1)可写成下列形式

Σh=(Σλι/12.1d5+Σζ/12.1d4)Q2=(ΣS沿+ΣS局)Q2=SQ2 (3-2) 式中S沿--管道沿程阻力系数,S2/m5,当管材、管长和管径确定后,ΣS沿值为一常数;S局--管道局部阻力系数,S2/m5,当管径和局部水头损失类型确定后,ΣS局值为一常数; S--管路沿程和局部阻力系数之和,S2/m5。 由式(3-2)可以看出,管路的水头损失与流量的平方成正比,式(3-2)可用一条顶点在原点的二次抛物线表示,该曲线反映了管路水头损失与管路通过流量之间的规律,称为管路水头损失特性曲线。如图3-1所示。 在泵站设计和运行管理中,为了确定水泵装置的工况点,可利用管路水头损失特性曲线,并将它与水泵工作的外界条件联系起来。这样,单位重力液体通过管路系统时所需要的能 量H需为 H需=H st+v2出-v2进/2g+Σh (3-3) 式中H需--水泵装置的需要扬程,m; H st--水泵运行时的净扬程,m; v2出-v2进/2g --进、出水的流速水头差,m; Σh--管路水头损失,m。 若进、出水池的流速水头差较小可忽略不计,则式(3-3)可简化为 H需=H st+Σh=H st=SQ2 (3-4) 利用式(3-4)可以画出如图3-2所示的二次抛物线,该曲线上任意一点表示水泵输送某一流量并将其提升H st高度时,管道中每位重力的液体所消耗的能量。因此,称该曲线为水泵装置的需要扬程或管路系统特性曲线。 本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!

(完整版)隧道施工通风压入式通风计算方法

2、通风计算【2009-6-10】 根据隧规及其条文说明,风量计算主要从四个方面予以考虑,即按洞内最多工作人员数所需的新鲜空气,计算出所需风量Q1;按在规定时间内,稀释一次性爆破使用最多炸药量所产生的有害气体到允许的浓度,计算出所需风量Q2;根据不同的施工方法,按坑道内规定的最小风速,计算出所需风量Q3;当隧道内采用内燃机械施工时,还须按内燃设备的总功率(kw),计算出所需风量Q4;通过上述计算,取Qmax=Max(Q1,Q2,Q3,Q4),再考虑风管的损失率(百米漏风率β),即确定洞内所需的总供风量Q机,从而确定风机的功率和风管的直径。 (1)计算参数的确定 一次开挖断面:S=80m2(全断面) 一次爆破耗药量:G=288kg(一次开挖长度4.2m) 通风距离:L=2800m 洞内最多作业人数:m=60人 爆破后通风排烟时间:t≤30min 通风管直径:φ=1800mm 管道百米漏风率:β=1.5% (2)风量计算 ①按洞内最多工作人员数所需的新鲜空气,计算: Q1=3·k·m=3×1.25×60=225 (m3/min) 式中3—隧规规定每人每分钟需供应新鲜空气标准为

3m3/min k—风量备用系数,一般取1.15~1.25,按1.25取值 m—同一时间洞内工作最多人数,按60人计 ②按全断面开挖,30分钟内稀释一次性爆破使用最多炸药量所产生的有害气体到允许的浓度,计算: Q2=V1-(K·V1t+1/ V2)1/t=V1 [1-(k×V1/ V2)1/t] =551 m3/min 式中V1-一次爆破产生的炮烟体积V1=S×Ls =80×72.6=5808 m3 S-一次开挖的断面面积,按80m2 Ls-炮烟抛掷长度,按经验公式Ls=15+G/5=15+288/5=72.6m G-同时爆破的炸药消耗量,G=288kg V2-一次爆破产生的有害气体体积V2=a·G=40×10-3×288=11.52 m3 a—单位重炸药爆破产生的有害气体换算成CO的体积,40L/kg K—CO允许浓度,取100ppm,换算为1×10-4 m3 t—通风时间,取30min ③按洞内允许最低风速,计算: Q3=60·V·S=60×0.15×80=720 m3/min 式中V—洞内允许最小风速,隧规规定全断面开挖时取值0.15m/s

风机计算_通风管道阻力计算

通风管道阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。 一、摩擦阻力 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: ΔPm=λν2ρl/8Rs 对于圆形风管,摩擦阻力计算公式可改写为: ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为: Rs=λν2ρ/2D 以上各式中 λ————摩擦阻力系数 ν————风管内空气的平均流速,m/s; ρ————空气的密度,Kg/m3; l ————风管长度,m Rs————风管的水力半径,m; Rs=f/P f————管道中充满流体部分的横断面积,m2; P————湿周,在通风、空调系统中既为风管的周长,m; D————圆形风管直径,m。 矩形风管的摩擦阻力计算 我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。当量直径有流速当量直径和流量当量直径两种; 流速当量直径:Dv=2ab/(a+b) 流量当量直径:DL=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。 二、局部阻力 当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。 局部阻力按下式计算: Z=ξν2ρ/2 ξ————局部阻力系数。 局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施: 1. 弯头

水泵管道压力损失计算公式资料

水泵管道压力损失计 算公式

精品资料 水泵的管道压力损失计算,水泵管道压力损失计算公式 点击次数:7953 发布时间:2011-10-28 管道压力损失,管道压力损失计算公式 为了方便广大用户在水泵选型时确定管道压力损失博禹公司技术工程师特意在此发布管道压力损失计算公式供大家选型参考。通过水泵性能曲线可以看出每台水泵在一定转速下,都有自己的性能曲线,性能曲线反映了水泵本身潜在的工作能力,这种潜在的工作能力,在泵站的实际运行中,就表现为在某一特定条件下的实际工作能力。水泵的工况点不仅取决于水泵本身所具有的性能,还取决于进、出水位与进、出水管道的管道系统性能。因此,工况点是由水泵和管路系统性能共同决定的。 水泵的管道系统,包括管路及其附件。由水力学知,管路水头损失包括管道沿程水头损失与局部损失。 Σh=Σhf+Σhj=Σλι/d v2/2g+Σζv2/2g (3-1) 式中Σh—管道水头损失,m; Σhf--管道沿程水头损失,m; Σhj--管道局部水头损失,m; λ--沿程阻力系数; ζ--局部水头损失系数; ι--管道长度,m; d--管道直径,m; v --管道中水流的平均流速,m/s。 对于圆管v=4Q/πd2,则式(3-1)可写成下列形式 Σh=(Σλι/12.1d5+Σζ/12.1d4)Q2=(ΣS沿+ΣS局)Q2=SQ2 (3-2) 式中 S沿--管道沿程阻力系数,S2/m5,当管材、管长和管径确定后,ΣS沿值为一常数; S局--管道局部阻力系数,S2/m5,当管径和局部水头损失类型确定后,ΣS局值为一常数;S--管路沿程和局部阻力系数之和,S2/m5。 由式(3-2)可以看出,管路的水头损失与流量的平方成正比,式(3-2)可用一条顶点在原点的二次抛物线表示,该曲线反映了管路水头损失与管路通过流量之间的规律,称为管路水头损失特性曲线。如图3-1所示。 在泵站设计和运行管理中,为了确定水泵装置的工况点,可利用管路水头损失特性曲线,并将它与水泵工作的外界条件联系起来。这样,单位重力液体通过管路系统时所需要的能量H需为 H需=H st+v2出-v2进/2g+Σh (3-3) 式中H需--水泵装置的需要扬程,m; 仅供学习与交流,如有侵权请联系网站删除谢谢2

16、巷道式通风

巷道式通风 QB/ZTYJGYGF-SD-0316-2011 第五工程有限公司申百囤 1 前言 1.1 概况 隧道施工通风方式按照风道的类型及通风机安装位置,可分为风管式通风和巷道式通风两种类型。风管式通风风流经由管道输送,分为压入式、抽出式、混合式三种。 巷道式通风适用于有平行导坑的长大隧道,通过横通道使正洞与平导组成一个完整的风流循环系统。巷道式通风利用整个坑道作为风道,断面大、阻力小、可供应较大的风量。两条有横通道联系的长大隧道也适用巷道式通风。 1.1.1传统的巷道式通风 传统的巷道式通风是在平行导坑口设置风门安装主风机,将污浊空气由平导抽出,新鲜空气由正洞流入,洞内利用风机将正洞的新鲜空气送至不同工作面,形成循环风流。该通风方式在衡广复线大瑶山隧道进口、大秦线花果山隧道施工应用过。 1.1.2 改良的巷道式通风 充分利用横通道安设风机,随着新的横通道的开挖,风机逐渐前移,横通道内的风机既是局扇又是主扇,取消了平行导坑口设置的大型主扇。在洞口到设风机的通道间实施巷道式通风,在超前区段实施风管式通风。该改良的通风方式在大秦线军都山隧道出口段双线隧道应用过。 1.1.3 新型的巷道式通风 利用射流风机,在设平行导坑的长大隧道及双洞隧道施工中,把洞口到射流风机的区段变为真正意义上的巷道式通风(进风道全为新鲜风流,除开挖面附近第一个外其余横通道设风门封堵),在射流风机与开挖掌子面之间采用压入式通风(轴流风机置于新鲜风带中)。在污风通道根据需要每隔一定距离设置射流风机,加快污风流速。在四川锦屏水电站引水洞交通洞施工中应用过。 由中铁一局五公司独家承建的云桂铁路石林特长岩溶隧道的进口、出口工区第二阶段通风、2#斜井工区第三阶段通风均采用新型的巷道式通风方式。 本工法主要介绍长大隧道新型的巷道式通风工法。

矿井通风基本知识(2020版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 矿井通风基本知识(2020版) Safety management is an important part of production management. Safety and production are in the implementation process

矿井通风基本知识(2020版) 备注说明:安全管理是生产管理的重要组成部分,安全与生产在实施过程,两 者存在着密切的联系,存在着进行共同管理的基础。 一、矿井通风概述 (一)矿内空气 1.矿内空气主要成分 矿内空气与地面空气的成分尽管不同,但其成分仍是以氧气和氮气为主,另外包含少量其它气体。 2.矿内空气中的有毒有害气体 (1)一氧化碳:一氧化碳是无色、无味、无臭的气体。一氧化碳毒性很强,吸入人体后会引起中毒、窒息,浓度为0.4%就可使人致命中毒。一氧化碳的主要来源是:火灾、爆破工作、瓦斯和煤尘爆炸。 (2)硫化氢:硫化氢是一种无色、微甜、带有臭鸡蛋味的气体,能燃烧,有强烈的毒性。对人的眼睛、黏膜及呼吸系统有强烈刺激作用。浓度为0.05%时,半小时内人失去知觉、痉挛、死亡。硫化氢

的主要来源:有机物腐烂、硫化矿物水解、老空积水中释放、煤岩中放出。 (3)二氧化硫:二氧化硫是一种无色、具有强硫磺臭味的气体,易溶于水,易积聚在巷道底部。二氧化硫对人体影响较大,能强烈刺激眼和呼吸器官,使喉咙和支气管发炎,呼吸麻痹,严重时会引起肺水肿。二氧化硫的主要来源:含硫矿物氧化、燃烧、在含硫矿体中爆破,以及从含硫矿层中涌出。 (4)二氧化氮:二氧化氮是一种红褐色气体,极易溶于水,它与水结合形成硝酸,对眼睛、鼻腔呼吸及肺部组织起破坏作用,引起肺水肿,但起初只感觉到呼吸道受刺激、咳嗽,经过6~24小时后才出现中毒征兆。俗称的炮烟熏人,其实质就是二氧化氮中毒。二氧化氮的主要来源是井下爆破。 (5)氨气:氨气是一种无色、具有强烈的刺激臭味的气体,易溶于水,毒性很强。氨气对人体上呼吸道黏膜有较大刺激作用,引起咳嗽,使人流泪、头晕,严重时可至肺水肿。氨气主要来源是井下爆破。

废气处理的风量风管计算方法

废气处理的风量风管计 算方法 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

废气处理中风量风管计算方法 风管: 风管尺寸=风量/风速风量=房间面积*房间高*换气次数 有个例子:风量4万,风速9m/s,得风管尺寸=40000/9/3600=平方=* 所以风管尺寸为1500*800 Q:1、例子中的3600是既定参数吗 2、这个风管尺寸计算公式,对排烟,排风管道尺寸计算通用吗 3、求风口和排烟口尺寸计算公式~~或者求暖通基础知识学习文档,手里的设计规范对现在的我来说太太高深,还是从基础打起吧 一小时有3600秒,除以3600是因为计算公式前后的单位要统一。这个公式对所有风管计算都适用,但是9m/s这个风速值不是固定值,需要由你来设定。排烟排风的公式都是一样的算法,这个9m/s的风速需要根据噪音要求调整的,楼主可参考下采暖通风设计规范消声部分,还有矩形风管的规格最好用标准的,施工规范里的是1600,没有1500。 管道直径设计计算步骤,专业制作与安装-铁皮风管-不锈钢风管,通风工程以假定流速法为例,其计算步骤和方法如下: 1.绘制通风或空调系统轴测图,对各管段进行编号,标注长度和风量。 管段长度一般按两管件间中心线长度计算,不扣除管件(如三通,弯头)本身的长度。

2.确定合理的空气流速 风管内的空气流速对通风、空调系统的经济性有较大的影响。流速高,风管断面小,材料耗用少,建造费用小;但是系统的阻力大,动力消耗增大,运用费用增加。对除尘系统会增加设备和管道的摩损,对空调系统会增加噪声。流速低,阻力小,动力消耗少;但是风管断面大,材料和建造费用大,风管占用的空间也增大。对除尘系统流速过低会使粉尘沉积堵塞管道。因此,必须通过全面的技术经济比较选定合理的流速。根据经验总结,风管内的空气流速可按表6-2-1、表6-2-2及表6-2-3确定。除尘器后风管内的流速可比表6-2-3中的数值适当减小。

谈通风管道局部阻力计算方法

谈通风管道局部阻力计算方法 胡宝林 在通风除尘与气力输送系统中,管道的局部阻力主要在弯头、变径管、三通、阀门等管件与重杂物分离器、供料器、卸料器、除尘器等设备上产生。由于管件形状与设备结构的不确定性以及局部阻力的复杂性,目前许多局部阻力系数还不能用公式进行计算,只能通过大量的实验测试阻力再推算阻力系数,并制成表格供设计者查询。例如在棉花加工生产线上,常规的漏斗形重杂物分离器压损为300a P 左右,离心式籽棉卸料器压损为400a P 左右,这些都就是实测数据,由于规格结构不同差异也会很大,所以仅供参考。只有一些常见的形状或结构比较确定的管件及设备可通过公式计算阻力系数,例如弯头、旋风除尘器等。局部阻力就是管道阻力的重要组成部分,一个4R D = 90°弯头的阻力相当于2、5~6、5m 的直管沿程阻力。由于涉及到局部阻力的管件种类繁多,不便一一列举,因此,本文以弯头等常用管件为例重点讨论在纯空气下与带料运行时的局部阻力系数的变化及局部阻力计算方法。 一、纯空气输送时局部阻力与系数 1、局部阻力 当固体边界的形状、大小或者两者之一沿流程急剧变化,流体的流动速度分布就会发生变化,阻力大大增加,形成输送能量的损失,这种阻力称为局部阻力。在产生局部损失的地方,由于主流与边界分离与漩涡的存在,质点间的摩擦与撞击加剧,因而产生的输送能量损失比同样长的直管道要大得多,局部阻力与物料的密度及速度的平方成正比,局部阻力计算公式: 2 2 j d H H ρυξξ=?=? 式中:j H —局部阻力,a P ; ξ—局部阻力系数,实验取得或公式计算; d H —动压,a P ; ρ—空气密度,1、2053/kg m (20°℃); υ—空气流速,/m s

相关主题
文本预览
相关文档 最新文档