大跨度拱桥
- 格式:pptx
- 大小:8.73 MB
- 文档页数:72
大跨度石拱桥的全桥结构仿真分析研究导言大跨度石拱桥是一种具有高度美学价值和历史遗产价值的桥梁形式,它在人类文明建筑史上占有重要地位。
目前在国内外,石拱桥的破损和损坏现象比较普遍,对于修复和维护这些文化古迹的工作,必须通过结构仿真的方式,了解桥体的力学特性,才能制定出有效的修复和加固方案,使石拱桥得以延续自己的历史价值。
仿真分析本文采用ANSYS有限元分析软件对大跨度石拱桥的全桥结构进行仿真分析,首先根据工程图纸建立有效的三维模型,然后进行参数设置,最后进行模拟计算。
建立三维模型根据石拱桥的实际情况和工程设计图纸,我们使用ANSYS的建模工具建立了大跨度石拱桥的三维模型。
这里需要说明的是,我们对于石拱桥的建模过程,考虑到石材的物理特性和结构特点,采用的是各向异性材料的建模方法,这样可以更好地模拟出石材的真实力学特性,从而得到更加准确的仿真结果。
参数设置在进行力学仿真分析时,需要将物体的内部分离成无限多的有限元,每一个有限元对应于一个单一小的结构元素,再根据这些结构元素之间的关系,使用ANSYS的有限元求解器计算得出桥梁的力学特性。
而在这个过程中,需要设置诸如边界条件、荷载等模拟参数。
对于大跨度石拱桥的仿真分析,我们考虑了以下几个重要的参数:•采用各向异性材料模型•考虑桥面自重荷载和车辆荷载•考虑桥墩和护栏的约束支撑模拟计算在完成建模和参数设置之后,就可以开始进行有限元的仿真计算。
该计算过程是通过ANSYS特有的求解器,非常复杂和耗费时间,但能够精准得模拟结构的力学特性。
仿真结果根据有限元分析的结果,详细分析了不同荷载状态下大跨度石拱桥的受力特性和变形情况,结果表明,大跨度石拱桥在受到车辆荷载的影响时,桥梁的最大拉应力和压应力发生了明显变化,而桥梁的最大位移和最大变形都发生了显著的增加。
通过本次仿真分析,我们可以初步了解大跨度石拱桥的受力情况和力学特性,为后续的修复和加固方案提供了重要的理论依据。
基于此,我们可以通过优化桥梁的结构参数,如加固墩柱、加大桥梁截面尺寸等方式,来提高桥梁的承重能力和抗震性能,使得它能够适应不同的自然环境和交通负荷。
大跨度钢筋混凝土拱桥施工工法简介在现代城市化进程中,高速公路、城市快速路等道路建设的不断发展,对于桥梁建设提出了更高的要求。
大跨度钢筋混凝土拱桥是目前最常见的桥梁类型之一,具有结构简单、受力合理、施工方便、使用寿命长等特点。
本文将介绍大跨度钢筋混凝土拱桥施工工法。
施工前准备在施工之前,必须进行严格的前期准备工作。
材料准备大跨度钢筋混凝土拱桥的建造需要准备大量的材料,如预应力钢束、混凝土、钢筋等。
为保证施工材料的质量,需要对材料进行质量检验,确保合格后再进行存放,以防止出现材料质量问题导致施工问题。
土建准备土建准备包括桥基的基础平整、模板拆除、模板平衡、拱坑标志、基坑支撑等,这些工作都需要严格按照施工图进行操作,并在施工过程中保持工程监理对施工质量的监督和检查。
施工人员准备施工人员的准备可以说是工程顺利进行的核心,应该按照岗位分工和作业内容,制定专业的施工人员操作流程,并对施工人员进行培训,确保人员能熟练掌握所需的技术操作。
工法介绍大跨度钢筋混凝土拱桥施工工法的主要流程包括拱顶结构施工、拱腿施工、拱角钢筋施工、拱坑喷涂、支承结构加固等。
拱顶结构施工拱顶结构施工是大跨度钢筋混凝土拱桥施工的第一步,也是施工的最关键环节之一。
在施工时,首先需要在拱型临时支撑范围内设置合理的支承和反力设施,并根据拱的轴线方向将预制钢筋网或预制钢筋骨架配置好,拱顶下部基础施工时,应根据拱体轴线标高要求,将钢筋、垫层及预制钢筋网嵌入砼块中以保证其固定,接着再进行现浇砼浇筑、振捣、平整等操作,直至拱顶上部完整、合格。
拱腿施工拱腿施工是大跨度钢筋混凝土拱桥施工的第二步。
在拱腿施工中,需要先进行拱腿临时支撑架的设置,并根据图纸要求,进行拱腿的钢筋加工、焊接、成型及定位,再按照工程设计要求进行砼的浇筑,浇筑后,用振动棒对砼进行振整、养护,待砼强度达到要求后,拆除临时拱腿支撑架。
拱角钢筋施工拱角钢筋施工是大跨度钢筋混凝土拱桥施工的第三步。
大跨度拱桥施工关键措施随着城市化进程的加快和交通需求的不断增加,大跨度拱桥作为一种具有良好经济效益和美学价值的桥梁结构,被广泛应用于现代城市的交通建设中。
然而,由于其特殊的结构形式和复杂的施工工艺,大跨度拱桥的施工过程面临着许多挑战。
本文将从设计、材料选择、施工方法等方面探讨大跨度拱桥施工的关键措施。
首先,设计是大跨度拱桥施工的首要关键。
在设计阶段,需要充分考虑桥梁的荷载特点、地质条件、气候环境等因素,并进行合理的结构优化。
同时,要进行全面的力学分析和模拟计算,确保桥梁在使用过程中的稳定性和安全性。
此外,还需要进行风洞试验和地震模拟,以评估桥梁的抗风抗震性能,并采取相应的措施进行加固和改进。
其次,材料选择是大跨度拱桥施工的重要环节。
由于大跨度拱桥的跨度较大,对材料的强度和耐久性要求较高。
一般情况下,常用的材料包括钢材、混凝土和预应力混凝土等。
钢材具有较高的强度和韧性,适合用于大跨度拱桥的主要结构部件;混凝土具有良好的耐久性和抗压性能,适合用于桥墩和桥面板等部位;而预应力混凝土则可以有效提高桥梁的承载能力和抗震性能。
在材料选择过程中,还需要考虑材料的可获得性和成本效益等因素。
再次,施工方法是大跨度拱桥施工的关键环节。
一般情况下,大跨度拱桥的施工可以采用预制和现场拼装的方式进行。
预制是指将桥梁的构件在工厂或临时场地进行制作,然后再运输到施工现场进行拼装。
这种方法可以提高施工效率和质量,并减少对施工现场的影响。
而现场拼装则是指在施工现场进行桥梁构件的组装和安装。
这种方法适用于一些特殊的地形和环境条件,但施工周期较长,需要更多的人力和物力投入。
此外,施工过程中还需要注意施工工艺的合理性和安全性。
大跨度拱桥的施工过程中常常涉及到高空作业、大型机械设备的操作等危险因素,因此需要严格执行相关的安全规范和操作规程。
同时,还需要进行全面的施工方案和施工工艺的论证和评估,确保施工过程中的质量控制和进度管理。
综上所述,大跨度拱桥的施工关键措施包括设计、材料选择、施工方法和施工工艺等方面。
大跨度上承式钢管混凝土拱桥设计钢管混凝土拱桥是一种结构优雅、坚固耐用的大跨度桥梁形式。
它由钢管和混凝土组成,结构简单,承载能力强,适用于大跨度桥梁的建设。
在设计大跨度上承式钢管混凝土拱桥时,以下是需要考虑的一些主要因素:1.拱桥的跨度:大跨度拱桥是指主跨大于150米的桥梁。
桥梁的跨度取决于两岸的地形和水域宽度。
大跨度桥梁需要考虑跨度对结构的影响,并选择合适的桥梁形式。
2.拱桥的荷载:大跨度拱桥需要能够承受重大的静态和动态荷载,包括自重、行车荷载、地震荷载等。
荷载的大小和分布会影响桥梁结构的设计和材料的选择。
3.钢管的尺寸和材质:钢管是拱桥结构的主要组成部分,它需要具备足够的强度和刚度。
钢管的尺寸和材质选择需要考虑荷载和桥梁形式,通常使用直径较大的无缝钢管。
4.混凝土的强度和配方:混凝土是用来固化钢管和增加桥梁整体强度的材料。
混凝土的强度需要符合设计要求,配方需要考虑到混凝土的工作性能和抗裂性能。
5.拱桥的支座和地基:拱桥的支座和地基是保证桥梁稳定和安全的重要组成部分。
支座的设计需要考虑到桥梁的变形和荷载传递,地基的承载能力需要满足土壤的承载要求。
6.环境因素:大跨度拱桥建设需要考虑环境因素对桥梁的影响,包括气候条件、河流水位和冲击力等。
这些因素会对桥梁的稳定性和安全性产生影响,需要在设计中予以考虑。
在设计大跨度上承式钢管混凝土拱桥时,需要进行综合分析和计算,确保桥梁能够满足设计要求并具有良好的结构性能。
最后,需要进行模拟和实验验证,确保设计方案的可行性和安全性。
总之,大跨度上承式钢管混凝土拱桥的设计需要全面考虑桥梁的跨度、荷载、钢管和混凝土的性能、支座和地基的设计以及环境因素的影响。
只有综合考虑这些因素,才能设计出安全可靠、优雅耐用的大跨度拱桥。
结构设计知识:大跨度拱桥结构的设计与分析大跨度拱桥是一种用于跨越较宽河流、峡谷或深谷的特殊桥梁结构。
它的设计和分析涉及到桥梁工程学、结构力学、土木工程和材料工程等多个学科。
本文将围绕大跨度拱桥的设计与分析展开,首先介绍大跨度拱桥的定义、特点和应用领域,然后从结构设计、荷载分析、材料选择和施工工艺等方面进行详细讨论。
一、大跨度拱桥的定义和特点大跨度拱桥是指主跨距离大于等于100米的拱形桥梁。
它通常用于跨越深谷、大型水体或复杂地形,能够提供较大的通行空间和承载能力。
相比于梁桥和悬索桥,大跨度拱桥具有以下特点:1.结构简洁:大跨度拱桥的结构主要由拱体和桥面组成,整体结构比较简单,便于制造和施工。
2.承载能力强:拱桥通过弧形结构将荷载分散到桥墩上,能够有效减少桥墩数量和减轻桥墩承载压力,从而提高桥梁的承载能力。
3.抗震性能好:拱形结构在受到外部力作用时能够将力传递到桥墩上,使桥梁整体受力均匀,具有较好的抗震性能。
4.美观实用:大跨度拱桥通常具有优美的造型和独特的桥梁风格,成为城市的地标建筑。
二、大跨度拱桥的设计1.结构形式选择:大跨度拱桥的结构形式可以分为单孔拱桥、多孔拱桥和连续拱桥。
在设计时需要根据实际情况选择合适的结构形式,考虑着力条件、地质条件和施工工艺等因素。
2.荷载分析:在设计大跨度拱桥时,需要进行各种荷载的分析,如自重、活载、风荷载、温度荷载和地震荷载等。
根据不同的荷载组合确定桥梁的设计荷载,进而确定桥梁的结构尺寸和材料。
3.桥墩设计:大跨度拱桥的桥墩是承受拱体和桥面荷载的重要结构部分,需要根据实际荷载条件和地质条件设计合理的桥墩形式和尺寸,以保证桥梁的稳定性和安全性。
4.梁体设计:拱桥的梁体是连接拱体和桥面的重要部分,需要根据荷载条件和结构形式设计合理的梁体形式和尺寸,确保梁体具有足够的刚度和强度。
5.材料选择:在大跨度拱桥的设计中,材料的选择是非常重要的。
通常拱体和桥面使用钢筋混凝土或钢结构,需要根据实际情况选择合适的材料,保证桥梁的耐久性和安全性。
大跨度拱桥的结构形式及施工控制要点【摘要】文章简单分析了拱桥的受力特点及类型,结合自身实践,提出了大跨度钢管混凝土拱桥施工和大跨度钢桁架拱桥的施工方法及控制要点,最后阐述了桥梁施工控制的重要性。
【关键词】:大跨度;施工控制;施工控制Abstract: the article analyzed the simple arch bridge mechanical characteristics and types, combined with their own practice, this paper puts forward long-span concrete-filled steel tube arch bridge construction and big span steel truss arch bridge construction method and control points, finally expounds the importance of bridge construction control.Keywords: big span; Construction control; Construction control引言近年来,随着我国交通事业的快速发展,需要修建更多的大跨度桥梁跨过江河海峡等。
桥梁跨度越大,其施工难度也越大。
对大跨桥梁实施施工过程控制,是确保施工质量和安全的重要环节,是确保成桥状态符含设计要求的重要措施。
1拱桥的受力特点及类型拱桥在竖向荷载作用下,两端支撑处产生的水平推力使拱内产生轴向压力,并大大减小了跨中弯矩,其主截面材料强度得以充分发挥,跨越能力越大。
拱桥的型式多种多样,构造各有差异,可以按照不同的方式来进行分类。
按照主拱圈所使用的材料可分为钢筋混凝土拱桥和钢拱桥等;按照拱上建筑的形式,可以分为实腹式拱桥及空腹式拱桥;按照拱轴线的形式,可分为圆弧拱桥、抛物线拱桥以及悬链线拱桥等;按照桥面的位置可分为上承式拱桥、下承式拱桥和中承式拱桥;按照有无水平推力,可分为有推力拱桥和无推力拱桥等。
大跨度拱桥的施工工艺大跨度拱桥的施工工艺是指在建造大跨度拱桥时所采用的具体操作方式和工艺流程。
这些工艺措施旨在确保拱桥施工过程中的安全性、稳定性和效率性。
下面将介绍大跨度拱桥的施工工艺。
一、前期准备工作在施工拱桥之前,必须进行详细的前期准备工作。
这些准备工作包括勘测、设计、材料采购、施工方案和计划的编制等。
勘测工作用于确定拱桥的具体位置、地质条件和土壤承载力等,设计工作则是为了确定拱桥的结构和尺寸。
在准备工作的过程中,还必须采购所需的材料,如钢筋、混凝土和支撑材料等。
二、基础施工大跨度拱桥的基础是确保拱桥稳定性和承载力的关键。
基础施工工艺通常涉及以下步骤:1. 地基处理:根据地质勘测结果,对地基进行处理,确保地基的稳定性和承载力。
2. 基础桩施工:建立桥墩的基础桩,可以采用钻孔灌注桩或预制桩等方式。
3. 桥墩建设:在基础桩上建设桥墩,一般采用模板施工的方式,确保桥墩的准确形状和尺寸。
三、拱桥主体施工拱桥主体施工是整个施工过程的核心,通常需要使用大型起重设备和模板系统。
具体的施工工艺如下:1. 拱脚施工:首先要建设拱脚,也称为支撑拱,拱脚的建设需要使用大型起重设备,将预制的拱脚形状骨架安装到桥墩上。
2. 拱体安装:在拱脚完成后,需要将预制的拱体安装到拱脚之间。
这一步骤需要使用大型起重设备,将拱体吊装到预定位置,并确保拱体与拱脚的连接紧固。
3. 拱顶安装:安装完拱体后,需要在拱顶安装临时支撑材料,以支撑和固定拱体,保证整体结构的稳定性。
4. 跨度封顶:拱体安装完成后,需要对整个拱桥进行检查和测试。
当经过严格的质量控制和安全审查后,可以进行跨度封顶,即安装桥面板或铺设道路。
四、后期工作在完成拱桥主体施工后,还需要进行一些后期工作以确保拱桥的长期稳定性和使用性能。
1. 桥面修整:对桥面进行修整,确保桥面平整、防水和耐久性等。
2. 桥梁防腐:为了保护拱桥的结构和材料免受外部环境的侵蚀和腐蚀,需要进行桥梁防腐处理。
结构设计知识:大跨度拱桥结构的设计与分析大跨度拱桥是一种常见的桥梁结构,通常用于跨越河流、峡谷或山谷等场所。
它的设计和分析需要考虑到诸多因素,包括桥梁的荷载、抗力、建筑材料、施工工艺等。
本文将从大跨度拱桥结构的设计与分析入手,详细介绍该领域的知识和技术。
一、大跨度拱桥结构的特点大跨度拱桥结构具有以下几个特点:1.较大的跨度:大跨度拱桥一般指跨度在200米以上的桥梁,有些甚至可以达到上千米。
这种大跨度要求桥梁结构具有良好的刚度和稳定性,以支撑起整个桥梁的自重和外部荷载。
2.拱形结构:拱桥是由一系列由张力和压力成员相互连接的曲线构成的,它的曲线形状可以是圆形、椭圆形、抛物线形或者双曲线形。
拱桥的主要受力形式是受压和受拉,通过压力和张力的相互作用来使整个结构保持稳定。
3.高度较大:大跨度拱桥由于要跨越较长的跨度,所以通常拱桥的拱顶高度较大,这既可以提高桥梁的承载能力,又能够增加桥梁的视觉美感。
4.自重较大:由于大跨度拱桥的结构体积和建筑材料消耗较大,所以整体的自重也会较大,这要求桥梁结构具有足够的承载能力。
5.施工难度大:大跨度拱桥的施工难度较大,对施工工艺和技术要求较高,需要采用特殊的施工设备和工艺方法。
二、大跨度拱桥设计的主要内容大跨度拱桥设计的主要内容包括结构分析、荷载计算、材料选用、梁体计算、节点处理、支座设计、地震效应分析等。
以下将对这些内容依次进行介绍。
1.结构分析结构分析是大跨度拱桥设计的第一步,其目的是确定桥梁的内力、位移和应力分布情况。
结构分析一般采用有限元分析方法,通过建立桥梁结构的有限元模型,计算桥梁在各种荷载作用下的受力情况。
在分析的过程中,要注意考虑到桥梁的非线性效应,包括几何非线性、材料非线性和接触非线性等。
2.荷载计算荷载计算是指根据实际使用条件和规范要求,计算桥梁在使用过程中受到的各种荷载,包括静荷载、动荷载、温度荷载、风载、地震荷载等。
荷载计算是确定桥梁结构受力情况的基础,也是桥梁设计的重要内容。
大跨度钢拱桥拱架施工技术【摘要】本文以某大跨度钢拱桥工程实例为研究对象,在对该工程基本概况进行简要分析的基础之上,就拱架施工技术的实施要点展开了详细分析与阐述,望引起各方关注与重视。
【关键词】大跨度;钢拱桥;施工技术钢拱桥最突出的特征在于:跨越能力大、承载能力高。
为了更加良好的与钢拱桥交通运输承载量的发展水平相适应,提高钢拱桥的跨度是关键性措施之一。
在各类不同类型的大跨度桥梁当中,由于钢拱桥的应用范围普遍,值得重视。
1.工程概况该桥上下游两端各修建衔接段堤防55m,衔接段堤防宽度为30m。
现针对该工程的基本水文地质情况进行简要归纳与总结:1.1地质条件该桥梁工程项目建设区所涉及到的地层结构由新到老依次为:第四系全新统冲洪积堆积中粗砂(Q42al+P1)及第四系全新统冲积(Q41al)砂壤土、卵石及第四系上更新统冲积(Q3al)土壤夹中粗砂。
1.2水文条件霸王河总流域面积为254km²,河流长度为33.7m,平均比降47.8‰。
河口宽度220m,枯水河槽60m,河口比降1%。
年内水沙量主要集中在汛期(6~10月),其中水量占年水量的70%以上,沙量占年沙量的90%左右。
整个桥梁工程项目的桥型结构示意图如下图所示(见图1)。
图1:桥型结构示意图2.大跨度钢拱桥拱架拱轴及荷载分析2.1拱架拱轴的选择对于桥梁项目而言,在有关拱架拱轴形式的选择方面,需要尽量确保其与拱圈形式的一致性,通过此种方式,可避免对拱架顶面进行的垫高处理,从而体现钢拱桥拱腹区域的曲线性状。
基于对后期计算的合理简化,将该钢拱桥拱架拱轴设计成为圆弧形形状,其半径取值为112.0m,拱架折点同时设定为圆弧连接位置的内接点点位,其取值为23.0cm。
与此同时,拱架折点间隔区域预留一定的间隙,其目的在于方便后期对立模、弧形木等相关部件的安装工作。
2.2荷载形式的确定对于该大跨度钢拱桥拱架而言,所涉及到的荷载形式主要包括以下两种类型:其一为均匀性荷载,其二为集中性荷载。
世界十大跨径拱桥排行榜NO.1朝天门大桥朝天门大桥进入上部结构施工阶段,与两江隧道一起连接解放碑、江北城、弹子石三大中央商务区朝天门大桥夜景效果图中港二航局朝天门大桥工程项目部提供船近重庆城,穿过由“解放碑”桥墩和大桥桥面构成的“城市之门”,繁华的渝中半岛近在眼前。
朝天门大桥2008年6月28日竣工通车之后,这样的场景会给每一位坐船上水来重庆的客人留下深刻的印象。
记者昨日从中港二航局朝天门大桥工程项目部获悉,这座被称为重庆又一个标志性建筑的大桥,已正式进入上部结构施工阶段。
号称世界第一拱桥虽然名叫“朝天门大桥”,但大桥的实际位置是在离朝天门还有1.7公里的溉澜溪青草坪。
朝天门大桥从设计之初就定位为重庆的江上门户。
“方案最终选定了简洁大气的钢桁架拱桥形式”,项目部负责人说,大桥只有两座主墩,主跨达552米,比世界著名拱桥———澳大利亚悉尼大桥的主跨还要长,成为“世界第一拱桥”。
灯饰要花千万元解放碑和朝天门,这两张重庆的城市名片,也在大桥上实现了巧妙的融合。
“大桥的两个主墩,被设计成解放碑的样子,一剖两半,分成四个柱子,托起大桥。
”项目部负责人说。
该方案定名为“城市之门”,已获得市政府批准。
“解放碑”桥墩上都有观景台,将成为观赏朝天门两江汇流和山城夜景的绝佳位置。
白天,大桥除桥墩外通体红色;入夜,大桥华灯齐放,倒映于江面上。
据悉,仅灯饰工程,预算就在千万元左右。
据介绍,建成后的大桥,分为上下两层。
上层为双向六车道,行人可经两侧人行道上桥;下层则是双向轻轨轨道,并在两侧预留了2个车行道,可保证今后大桥车流量增大时的需求。
大桥西接江北区五里店立交,东接南岸区渝黔高速公路黄桷湾立交,全长4.158公里,是主城一条东西向快速干道。
朝天门大桥与规划中的两江过江隧道一起,将把解放碑、江北城、弹子石三个中央商务区构成一张立体的交通网NO.2卢浦大桥2000年10月开工建设的卢浦大桥北起浦西鲁班路,穿越黄浦江,南至浦东济阳路,全长8.7公里,是当今世界第一钢结构拱桥,是世界上跨度最大的拱形桥。
世界上单孔跨度最长的石拱桥现存-长虹桥建于1961 年,为敞肩单孔大跨径空腹式石拱桥,全长171.25米,高30米。
纵坡4%,净宽8.5米。
主孔跨径112.542米,净矢高21.288米;两边各设副拱5孔,每孔净跨5米;两岸各续引桥一孔,西岸孔距8米,东岸孔距15米。
现为国家一级保护桥梁。
开远长虹桥是世界上现存单孔跨度最长的石拱桥,为我国著名桥梁专家茅以升先生设计,桥上题有毛主席亲笔手书的“高山低头,河水让路”十六个大字。
长虹桥位于云南省昆明-那发公路线上,跨南盘江。
跨径为112.5m,全长171.0m。
上部结构为空腹式石拱桥,拱上建筑为横向排架支承腹拱。
拱圈采用变截面悬链线,粗料石拱圈。
桥址地质条件为咯斯特地区,基岩严重溶蚀风化,桥台基础采用挖孔桩、暗拱等措施以确保桥的基础稳固可靠,桥台台身为石砌。
该桥施工采用满堂式木拱架,加设两道抗风索。
砌筑时采用分环、分段、预留空缝等措施,使拱圈和拱架在施工各阶段都具有较佳的受力状态。
桥梁建设60年代初,开远逐渐成为云南工业重镇,交通运输压力剧增,当时南盘江桥上的铁索桥已经无法适应交通需要,长虹桥就这样应运而生。
1960年5月开始修建长虹桥,按当时的技术条件,修建完全是人工操作,13人为之付出生命,28人严重受伤。
为纪念建桥献出生命的工人们,他们的遗体就埋葬于长虹桥畔的山坡上,成了大桥永远的守望者。
1961年9月,经过一年半的修建长虹桥竣工通车。
从此,让开远人望而兴叹的南盘江终于驯服地躺在了长虹桥下,桥上一副“河水让路,高山低头”的对联充分展示了当时建桥工人的豪迈气派,同时也显示了工人们高超的架桥艺术。
整个桥体全部用石块砌成,是当时世界单孔跨径最大的石拱桥,桥上没有桥墩,中间是桥孔,两端分别是6个泄洪孔,桥身全长127米,单孔跨径112.5米,高30米,桥面宽9米,两侧石护栏高1.5米,南端设桥头堡。
工程获1978年全国科学大会奖,列为国家一级保护桥梁,1983年公布为开远市文物保护单位。
结构设计知识:大跨度拱桥结构的设计与分析大跨度拱桥结构的设计与分析随着现代交通工具的日益发展,桥梁的建设也迎来了空前的发展,尤其是大跨度拱桥结构,成为了当今桥梁建设领域的代表性结构之一。
本文将就这一领域的设计与分析方面进行探讨,以期为读者提供一些有价值的知识。
一、大跨度拱桥的特点大跨度拱桥是指跨度在100米以上的拱桥,具有以下几个特点:1.跨度大大跨度拱桥结构的跨度通常在100米以上,与传统的桥梁相比具有更高的工程难度和搭建难度,需要使用大型的起重机具进行施工。
2.荷载大大跨度拱桥因其结构设计的原因通常承载大量的荷载,包括车辆荷载、风荷载、地震荷载以及自身重量等,因此需充分考虑荷载的影响进行设计。
3.造价高大跨度拱桥的建设难度较高,需要大量的钢材和混凝土等造桥材料,成本相对传统的桥梁造价更高。
二、大跨度拱桥结构的设计流程1.确定桥梁类型设计大跨度拱桥之前首先需根据区域环境、交通流量等综合因素选择相应的桥梁类型,通常大跨度拱桥采用钢筋混凝土拱、钢拱、双曲线拱等中等或大跨度拱桥,根据设计效果选择相应的类型。
2.明确设计荷载大跨度拱桥设计要考虑各种荷载,如车辆荷载、风荷载、地震荷载等,并根据荷载进行结构设计。
考虑合理的经济性和安全性之间的平衡,以确保桥梁的安全性能。
3.进行制图根据大跨度拱桥的情况制定详细的设计图纸,以确保建造过程的顺利进行。
4.结构计算根据设计荷载和桥梁类型以及荷载类型,进行结构计算,计算桥梁的强度、稳定性、会旋角度、桥梁变形等,在确定结果后进行验证和调整。
5.施工运用大型的起重机等施工设备实现桥梁的建设和搭建。
三、大跨度拱桥结构的分析在大跨度拱桥的设计中,需要重视以下几个方面:1.交通流量交通流量是决定设计大跨度拱桥的一个关键因素,需考虑的因素包括交通稳定性、桥梁通行效率的稳定性、桥梁使用寿命等。
2.设计荷载在设计大跨度拱桥时,需考虑各种荷载,包括自身重量、车辆荷载、风荷载、地震荷载等,根据荷载类型设计桥梁的强度、稳定性等,在设计时必须充分考虑每种荷载的影响因素。
大跨度桥梁结构形式与特点分析大跨度桥梁是现代城市化进程中不可或缺的重要交通基础设施。
随着城市化进程的快速推进,大跨度桥梁的需求也日益增加。
因此,对大跨度桥梁结构形式与特点的分析成为了建筑工程行业中一项重要的课题。
本文将对大跨度桥梁的结构形式与特点进行全面深入的探讨,旨在为相关从业人员提供参考与借鉴。
首先,大跨度桥梁的结构形式多种多样。
具体而言,可以分为悬索桥、斜拉桥、钢箱梁桥和拱桥等几种常见形式。
每种形式都有其独特的结构特点和适用范围。
悬索桥是一种采用大直径钢缆来支撑桥面荷载的桥梁结构。
其主要特点是悬挂在主塔上的大跨距钢缆,以及由钢缆支撑的桥面梁。
悬索桥具有结构简单、稳定可靠的优点,适用于大跨度的桥梁建设。
著名的悬索桥如赛珍珠大桥和金门大桥等。
斜拉桥是一种采用斜拉索来支撑桥面的桥梁结构。
其主要特点是通过斜拉索将桥面梁的重力荷载传导到主塔上。
斜拉桥具有结构轻巧、自重小的优点,适用于大跨度、大高度的桥梁建设。
杭州湾大桥和临江大桥等都是典型的斜拉桥。
钢箱梁桥是一种采用钢结构制成的箱型梁来作为桥面的桥梁结构。
其主要特点是梁体采用钢材,具有良好的抗弯和抗剪能力。
钢箱梁桥广泛应用于中小跨度的桥梁建设。
例如,上海南浦大桥就是典型的钢箱梁桥。
拱桥是一种采用拱形结构来支撑桥面的桥梁结构。
其主要特点是通过拱形结构使桥面承受的荷载传递到桥墩上。
拱桥具有结构稳定、造型美观的优点。
西雅图伊万斯湖大桥和罗马石桥是著名的拱桥。
其次,大跨度桥梁的特点需要重点关注。
首先,大跨度桥梁相对于小跨度桥梁来说,荷载更大、施工难度更高,对设计和施工的要求也更高。
其次,大跨度桥梁的自重较大,需要采取合适的结构形式和材料选择来保证其稳定性。
此外,大跨度桥梁还要考虑风荷载、地震作用等外部力的影响。
针对以上特点,建筑工程行业从业人员在大跨度桥梁的设计和建设中需要注意几个方面。
首先,要合理选择桥梁形式,根据具体情况选择最适合的结构形式。
其次,要充分考虑荷载和外部力的影响,进行细致的设计计算。
论大跨拱桥拱轴系数m的确定大跨度拱桥作为交通建设中常见的建筑形式,其安全可靠性直接影响到公众生命财产安全和经济发展。
拱斗和拱轴是拱桥结构中关键的承力构件,其设计和选材对于拱桥的安全运行有着决定性的影响。
拱轴系数是拱轴结构设计的一个重要参数,主要用于计算拱轴的受力特性。
本文将从拱轴系数的概念、计算公式及影响因素等方面对大跨度拱桥拱轴系数的确定进行探讨。
一、拱轴系数的概念拱轴系数是指拱轴中压应力与横向拉应力之比,通常用m表示。
拱轴系数的大小决定了拱轴受力时的应力状态,即对于相同的弯矩和扭矩,在较大的m值下,拱轴中的压应力将相对减小,而横向拉应力将增大;在较小的m值下,拱轴中的压应力将增大,而横向拉应力将相对减小。
拱轴系数与拱轴结构的受力特性密切相关。
当拱轴系数比较小时,拱轴会承受更大的横向拉力,容易引起拱轴的弯曲甚至断裂;当拱轴系数比较大时,拱轴中的压应力会增大,致使拱轴的压缩变形增大,容易引起拱轴挤压变形失稳而导致拱桥结构破坏。
二、拱轴系数的计算公式拱轴系数的计算公式主要分为两种:一种是考虑拱跨宽度和高度的影响;另一种是不考虑拱跨宽度和高度的影响。
下面分别介绍这两种计算公式。
(一)考虑拱跨宽度和高度的影响当考虑拱跨宽度和高度的影响时,拱轴系数的计算公式可以表示为:m = (h / L)^2其中,m为拱轴系数,h为拱的高度,L为拱的跨度长度。
这种计算公式主要考虑了拱的形状对拱轴系数的影响,当拱跨宽度较小,拱的高度较高时,拱轴系数会相对较小,这样可以增加拱轴的横向拉力,减小拱轴中的压应力,从而有效地提高拱桥的抗力能力。
m = 5.5 × E / fcu其中,m为拱轴系数,E为拱轴的弹性模量,fcu为混凝土的轴心抗压强度。
这种计算公式主要是从材料的角度考虑了拱轴系数的影响,可以直接计算拱轴所承受的弯矩和扭矩,从而确定拱轴的设计尺寸和所需的材料性能。
三、拱轴系数的影响因素拱轴系数的大小受到许多因素的影响,包括拱的形状、材料的性质、荷载特性等多种因素。
大跨度中承式钢管混凝土拱桥施工方案渠江特大桥上部结构采用3*30+40+418.8+40+2*30m预应力砼T梁+中承式钢管混凝土拱桥,全桥长6557.8米。
下部结构桥墩采用钢筋混凝土柱式墩,钻孔桩基础。
桥台采用柱式台、扩大基础基础。
根据工程特点,结合工程的工作进度安排,大桥推荐方案全部工程(含引道和附属工程)工期为36个月。
1.1 总体施工方案(1)拱座基础施工主桥拱座基础施工涉及①基坑的开挖及围护;②混凝土浇筑施工等内容。
(2)钢结构加工根据桥位区的运输条件,拱肋及钢梁无法整节段运输至桥位的实际情况,因此采用厂内加工单根杆件运输到桥位临时组装场地,在临时场地将拱肋单元件组焊成吊装节段、试拼装,然后进行吊装。
(3)主拱安装主拱采用缆索吊斜拉扣挂施工。
吊装顺序为每节段内上、下游拱肋及相应横撑同步进行,即每节段上游拱肋(或下游拱肋)→每节段下游拱肋(或上游拱肋)→每节段内横撑,以上循环为一环,安装就位后再进行下节段的吊装,拱肋接头设计为先栓接再焊接,横撑接头设计为定位之后直接焊接的方式进行。
每一扣段的吊装节段就位后,应调整扣索力,使拱肋轴线位于设计标高,当安装误差满足规定要求后,即可焊接主拱钢管接头。
(4)钢管砼灌注拱肋合龙形成完整的拱圈,监控单位完成各项测试,并经分析满足计算及规范要求以后,即可灌注主拱圈上、下弦钢管内混凝土和设计指定的横联等构件内混凝土。
采用C60自密实补偿收缩高性能混凝土,以泵压法自拱脚向拱顶灌注主拱钢管内混凝土,灌注混凝土时应分不同阶段张拉监控单位指定的扣索及索力,在拱肋1/4处设置备用灌注孔。
横联管等构件钢管内混凝土采用泵压法,但应事先完成灌注工艺设计报告,请监理、业主审查批准。
施工单位需作灌注孔堵塞的应急预案。
(5)桥面系施工桥面系各构件用缆索吊装,施工单位在设计缆索吊装系统时,应充分考虑桥面梁的最大吊装重量。
为方便钢纵梁的运输和安装,钢纵梁在工厂分段制作运抵工地后,按设计要求以拼接缝分段连接、吊装。
大跨度钢拱桥施工技术研究课题名称:大跨度钢拱桥施工技术研究课题承担单位(盖章):中国建筑第七工程局有限公司课题起止时间: 2013年01月至2014年06 月课题验收时间: 2014年07月目录1 绪论 (1)1.1选题背景 (1)1.2国内外研究现状 (2)1.3大跨度拱桥工法概述 (3)1.4主要研究内容 (4)2 大跨度钢析架拱桥基本结构行为分析方法 (5)2.1大跨度钢桁架拱桥的基本结构 (5)2.2大跨度钢桁架拱桥计算理论 (7)3 大跨度钢桁架拱桥施工方法 (11)3.1工程概况 (11)3.2架梁吊机施工方法 (13)3.3中跨合龙施工 (24)3.4航道影响的解决办法 (26)4 大跨度钢桁架拱桥施工控制 (28)4.1施工控制分析模型 (28)4.2施工控制情况 (31)5结论与展望 (33)5.1主要研究结论 (33)5.2展望与建议 (35)1 绪论1.1选题背景拱桥在我国使用历史悠久,古代有闻名海内外的赵州桥,近代有巫峡长江大桥、卢浦大桥等。
钢桁架拱桥因为跨越能力强、承压能力高和外形刚健稳固,截至1990年,它是较大跨度桥梁中桥型的重要选择方案。
1990年以后,我国钢桁架拱桥的修建方案趋于冷淡,究其原因主要是大跨度的钢桁架拱桥刚才耗费量较斜拉桥多,使得修建桥梁时出于经济角度考虑而放弃了该桥型的修建。
近年来,随着我国综合实力的大幅提升,迫于经济发展和城市立体景观发展的需要,修建跨江桥梁选用钢桁架拱桥又被桥梁建设者和社会各界重视起来,犹豫钢桁架拱桥独特的美观造型、不可比拟的大刚度、超强的跨越能力,特别是大于500m跨度时,比钢斜拉桥具有更好的稳定性、刚度、抗震性,大跨度钢桁架拱桥的修建又越来越多,尤其实在地质条件良好,风速和地震烈度大地区及城市,大跨度钢桁架拱桥是修建桥梁的理想的方案。
众所周知,桥梁施工技术非常重要,如果在桥梁施工中出现施工事故,会给人们的生命和财产造成巨大损失。
浅析大跨度钢管混凝土拱桥施工技术工程技术朱子厚(武警交通直属工程部,北京市102206)萨晶南1翥管混凝尘应用于拱桥,‘代袁着拱桥建设的对材料的高强度曩-求、拱圜无羔架施工&名≤≥花等凌囊≥畿“翼嘉羹;屯结J;勾芜薹j匕,聋?‘拟的优势,因而被越来越广泛的采用。
ij饫键词】钢管混泥土拱桥;大跨废;箍工技术。
,..,.,毪t.j,-一’1钢管混凝土拱桥施工具体方法1.1平转法平转施工法是将拱圈分为两个半拱,分别在两岸偏离桥位的位置,利用山体、岸坡或引桥的桥墩设置膺架,拼装拱肋和拱上立柱,形成半拱,然后水平转体就位,再拼装合龙成,如图1所示。
平转施工法的优点是可以充分利用两岸的山体和岸坡的地形条件,拱肋痦架不高,吊装,拼焊容易,焊接质量有保证;缺点是磨心球铰加工要求高。
平转施工法对修建处于交通运输繁忙的城市立交桥和铁路跨线桥,其优势比较明显。
平转法的转动体系主要有转动支承系统、转动牵引系统和平衡系统组成。
转动支承系统是平转法施工的关键设备,由上转盘和下转盘构成上转盘支承转动结构,下转盘与基础相联。
通过E转盘相对于下转盘的转动,达到转体的目的。
田1平转法施工示意图1.2鳖转法竖转施工法与平转施工法相似,是先在拱顶附近将主拱圈一分为二,并以拱趾为旋转中心,将设计拱轴线垂直向下旋转一定角度,将拱顶合龙端置于地面或浮船上,这样即可在较低的膺架上拼装两个半拱。
待两个半拱拼装完成后,由两幅墩顶扒杆分别将其拉起,在空中对接合龙。
竖转施工法的优点有拱肋的拼装膺架较低,节省材料,吊装容易:只有一个接头,合龙容易,精度高;缺点是要求桥下有一定的拼装场地。
所以适用与i司吭要求不高、水深较浅等条件下的拱圈施工。
竖转体系—般由牵引系统、索塔、拉索组成。
竖转的拉索索力在脱架时最大,因为此时拉索的水平角最小,产生的竖向分力也最小,而且拱肋要实现从多跨支承到铰支承和扣点处索支承的过渡,脱架时要完成结构自身的变形与受力的转化。