(完整版)旋流式燃烧器工作原理
- 格式:ppt
- 大小:731.02 KB
- 文档页数:3
左旋燃烧器的原理
左旋燃烧器是一种常用于工业燃烧过程中的燃烧设备,其原理是通过高速旋转的方式将燃料和空气混合,并在旋转过程中将混合气体引入燃烧室进行燃烧。
具体原理如下:
1. 燃料供给:燃料由喷嘴或喷枪喷入燃烧器,散布在燃烧室内。
2. 气体旋转:燃烧器内设置有旋转装置,通常是一个旋转的圆盘或叶片。
气体由旋转装置推动,形成高速旋转的气流。
3. 气体混合:空气通过进气口进入燃烧器,与旋转的燃料混合,形成混合气体。
4. 排气:混合气体在旋转的过程中被引入燃烧室,然后点火点燃。
燃料燃烧产生的热量用于实现工业生产中的热能需求。
5. 调节控制:通过调节燃料进气和旋转速度等参数,可以实现火焰的稳定燃烧和火焰大小的调节。
左旋燃烧器具有燃烧效果好、燃烧稳定、温度均匀等优点。
由于旋转过程中混合气体受到离心力的影响,粒径较大或密度较大的颗粒会沉积在燃烧器壁上,减少了燃烧室内的污染物排放。
同时,旋转过程中的气流也加强了燃料与空气的混合程度,提高了燃料的利用率。
高效中心给粉旋流煤粉燃烧技术随着对环境保护要求的不断提高,煤炭燃烧技术也在不断创新和改进。
高效中心给粉旋流煤粉燃烧技术作为一种新兴的燃烧技术,在煤改气方面具有重要的意义。
本文将对高效中心给粉旋流煤粉燃烧技术进行详细介绍。
高效中心给粉旋流煤粉燃烧技术是一种高效的燃烧方式,其核心思想是通过旋流燃烧方式实现煤粉的完全燃烧,提高燃烧效率和减少燃烧产物的排放。
该技术的基本原理是将煤粉与空气进行混合,并在旋流燃烧器中形成旋流,使煤粉与空气充分混合和燃烧,从而达到高效燃烧的目的。
高效中心给粉旋流煤粉燃烧技术具有以下几个特点。
首先,该技术能够实现煤粉的完全燃烧,减少煤粉的燃烧残渣,提高燃烧效率。
其次,通过旋流燃烧器的设计和优化,可以实现煤粉和空气的充分混合,使燃烧更加均匀和稳定。
此外,该技术还可以有效地控制燃烧过程中产生的氮氧化物和二氧化硫等污染物的排放,具有较好的环保性能。
高效中心给粉旋流煤粉燃烧技术的应用范围非常广泛。
首先,在工业领域,该技术可以应用于锅炉、热风炉等燃烧设备中,提高燃烧效率和能源利用率。
其次,在电力行业,该技术可以应用于火电厂的燃烧系统中,提高发电效率和减少污染物排放。
此外,该技术还可以应用于煤改气项目中,将煤炭转化为天然气,实现能源的清洁利用。
高效中心给粉旋流煤粉燃烧技术在实际应用中取得了显著的效果。
通过对燃烧过程的优化和控制,可以实现煤粉的高效燃烧,提高能源利用率。
与传统的燃烧方式相比,该技术具有更高的燃烧效率和更低的污染物排放。
同时,该技术的应用还可以降低能源消耗,减少对煤炭等化石能源的需求,具有重要的经济和环境效益。
在未来的发展中,高效中心给粉旋流煤粉燃烧技术还有进一步的改进和创新空间。
首先,可以通过对旋流燃烧器的结构和参数进行优化,提高燃烧效率和稳定性。
其次,可以进一步研究和应用先进的燃烧控制技术,实现煤粉燃烧过程的精细化控制。
此外,还可以结合其他清洁能源技术,如燃料电池和太阳能等,实现多能源的综合利用。
旋流器工作原理旋流器是一种常用于固液分离的设备,它利用离心力和涡流效应将固体颗粒从液体中分离出来。
下面将详细介绍旋流器的工作原理。
一、工作原理概述旋流器的工作原理基于液体的旋转运动和离心力的作用。
液体通过旋流器的进料口进入旋流器内部,在旋流器内部形成一个旋转的涡流。
由于涡流的旋转运动,固体颗粒会受到离心力的作用而向旋流器的壁面移动,最终沉积在底部的固体排出口处,而清洁的液体则从旋流器的溢流口排出。
二、涡流的形成涡流是旋流器工作的关键。
液体进入旋流器后,通过进料口进入旋流室,进而形成一个旋转的涡流。
旋流室内部的设计通常采用圆锥形状,使得液体在进入旋流室后被迫绕着圆锥形壁面旋转。
在涡流的作用下,固体颗粒会受到离心力的作用而向旋流器的壁面移动。
三、固体颗粒的分离由于固体颗粒受到离心力的作用,它们会向旋流器的壁面移动,并最终沉积在底部的固体排出口处。
固体排出口通常位于旋流器的底部,通过调节旋流器的出口阀门,可以控制固体颗粒的排出速度。
清洁的液体则从旋流器的溢流口排出,通常位于旋流器的顶部。
四、旋流器的应用旋流器广泛应用于固液分离领域。
它可以用于处理含有固体颗粒的废水、污泥脱水、矿石选矿等工艺中。
旋流器具有结构简单、操作方便、处理能力大等优点,因此在许多行业中得到了广泛应用。
五、旋流器的优缺点旋流器作为一种固液分离设备,具有以下优点:1. 结构简单,容易维护和清洗;2. 处理能力大,适用于大量固体颗粒的分离;3. 占地面积小,适用于空间有限的场所;4. 操作方便,可以通过调节进出口阀门来控制分离效果。
然而,旋流器也存在一些缺点:1. 对固体颗粒的处理能力有限,较小的颗粒可能无法完全分离;2. 需要定期清理固体排出口,以防止堵塞;3. 对液体的浓度要求较高,较低浓度的液体可能无法达到满意的分离效果。
综上所述,旋流器通过涡流的形成和离心力的作用,实现了固液分离的目的。
它在固液分离领域具有广泛的应用前景,并不断得到改进和优化。
HT-NR3型旋流燃烧器介绍一、作用及特点:1、向炉内输送燃料和空气;2、组织燃料和空气及时、充分的混合;3、送入炉内的煤粉气流能迅速、稳定的着火,迅速、完全的燃尽;4、供应合理的二次风,使它与—次风能及时良好地混合,确保较高的燃烧效率;5、火焰在炉膛的充满程度较好,且不会冲墙贴壁,避免结渣;6、有较好的燃料适应性和负荷调节范围;7、流动阻力较小;8、能降低NOx的生成。
二、燃烧设备整体布置:采用前后墙布置、对冲燃烧、旋流式燃烧器系统,风、粉气流从投运的煤粉燃烧器、燃尽风喷进炉膛后,各只燃烧器在炉膛内形成一个独立的火焰。
前、后墙各布置3层HT-NR3燃烧器,每层8只;同时在前、后墙各布置一层燃尽风喷口,其中每层2只侧燃尽风(SAP)喷口,8只燃尽风(AAP)喷口。
每只煤粉燃烧器中心均配有点火油枪,油枪采用机械雾化,油枪总容量为锅炉B-MCR 所需热量的30%,单支油枪一般出力为1500kg/h。
燃烧设备的布置简图见图1 燃烧器布置示意图。
油枪布置简图见图2 油枪布置示意图。
图1 燃烧器布置示意图图2 油枪布置示意图每台磨煤机带 1 层中的 8 只燃烧器。
燃烧器层间距为 5.8198m,燃烧器列间距为 3.683m,上层燃烧器中心线距屏底距离约为 22.3m,下层燃烧器中心线距冷灰斗拐点距离约为 3.381m。
最外侧燃烧器中心线与侧墙距离为 4.0962m,燃尽风距最上层燃烧器中心线距离为7.1501m。
燃烧器配风分为一次风、内二次风和外二次风,分别通过一次风管,燃烧器内同心的内二次风、外二次风环形通道在燃烧的不同阶段分别送入炉膛。
其中内二次风为直流,外二次风为旋流。
三、燃烧器的结构1、煤粉燃烧器的结构煤粉燃烧器主要由一次风弯头、煤粉浓缩器、燃烧器喷嘴、稳焰环、内二次风装置、外二次风装置(含调风器、执行器)及燃烧器壳体等零部件组成。
(图3“燃烧器结构示意图”,图4“现场安装好后的燃烧器喉口部位”)。
HT-NR3型旋流燃烧器介绍一、作用及特点:1、向炉内输送燃料和空气;2、组织燃料和空气及时、充分的混合;3、送入炉内的煤粉气流能迅速、稳定的着火,迅速、完全的燃尽;4、供应合理的二次风,使它与—次风能及时良好地混合,确保较高的燃烧效率;5、火焰在炉膛的充满程度较好,且不会冲墙贴壁,避免结渣;6、有较好的燃料适应性和负荷调节范围;7、流动阻力较小;8、能降低NOx的生成。
二、燃烧设备整体布置:采用前后墙布置、对冲燃烧、旋流式燃烧器系统,风、粉气流从投运的煤粉燃烧器、燃尽风喷进炉膛后,各只燃烧器在炉膛内形成一个独立的火焰。
前、后墙各布置3层HT-NR3燃烧器,每层8只;同时在前、后墙各布置一层燃尽风喷口,其中每层2只侧燃尽风(SAP)喷口,8只燃尽风(AAP)喷口。
每只煤粉燃烧器中心均配有点火油枪,油枪采用机械雾化,油枪总容量为锅炉B-MCR 所需热量的30%,单支油枪一般出力为1500kg/h。
燃烧设备的布置简图见图1 燃烧器布置示意图。
油枪布置简图见图2 油枪布置示意图。
图1 燃烧器布置示意图图2 油枪布置示意图每台磨煤机带 1 层中的 8 只燃烧器。
燃烧器层间距为 5.8198m,燃烧器列间距为 3.683m,上层燃烧器中心线距屏底距离约为 22.3m,下层燃烧器中心线距冷灰斗拐点距离约为 3.381m。
最外侧燃烧器中心线与侧墙距离为 4.0962m,燃尽风距最上层燃烧器中心线距离为7.1501m。
燃烧器配风分为一次风、内二次风和外二次风,分别通过一次风管,燃烧器内同心的内二次风、外二次风环形通道在燃烧的不同阶段分别送入炉膛。
其中内二次风为直流,外二次风为旋流。
三、燃烧器的结构1、煤粉燃烧器的结构煤粉燃烧器主要由一次风弯头、煤粉浓缩器、燃烧器喷嘴、稳焰环、内二次风装置、外二次风装置(含调风器、执行器)及燃烧器壳体等零部件组成。
(图3“燃烧器结构示意图”,图4“现场安装好后的燃烧器喉口部位”)。