微积分发展中牛顿与莱布尼茨的贡献
- 格式:doc
- 大小:36.50 KB
- 文档页数:3
微积分发展中牛顿与莱布尼茨的贡献微积分发展中牛顿与莱布尼茨的贡献微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。
它是数学的一个基础学科。
内容主要包括极限、微分学、积分学及其应用。
微分学包括求导数的运算,是一套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
1.微积分产生到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。
归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。
第二类问题是求曲线的切线的问题。
第三类问题是求函数的最大值和最小值问题。
第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。
微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。
一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。
微积分也是这样。
在十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。
为微积分的创立做出了贡献。
到十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。
他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。
牛顿和莱布尼茨正是在这样的时刻出场的.时代的需要与个人的才识,使他们完成了微积分创立中最后也是最关键的一步.2.牛顿的“流数术”牛顿于1661年入剑桥大学三一学院,受教于巴罗,同时钻研伽利赂,开普勒,笛卡儿和沃利斯等人的著作.而笛卡儿的《几何学》和沃利斯的《无穷算术》对他影响最深,正是这两部著作引导牛顿走上了创立微积分之路.1665年8月,剑桥大学因瘟疫流行而关闭,牛顿离校返乡,随后在家乡躲避瘟疫的两年,竞成为牛顿科学生涯中的黄金岁月.制定微积分,发现万有引力和颜色理论,……,可以说牛顿一生大多数科学创造的蓝图,都是在这两年描绘的.2.1流数术的初建牛顿对微积分问题的研究始于1664年秋,当时他反复阅读笛卡儿《几何学》,对笛卡儿求切线的\圆法\发生兴趣并试图寻找更好的方法.就在此时,牛顿首创了小o记号表示x的无限小且最终趋于零的增量.1665年夏至1667年春,牛顿在家乡躲避瘟疫期间,继续探讨微积分并取得了突破性进展.1665年11月发明\正流数术\微分法),次年5月又建立了\反流数术\积分法). 1666年10月,牛顿将前两年的研究成果整理成一篇总结性论文,此文现以《流数简论》著称,《流数简论》是历史上第一篇系统的微积分文献.《流数简论》反映了牛顿微积分的运动学背景。
莱布尼茨(一)德国的莱布尼茨(G.W.Ieibnl z,公元1646~1716年),是一位当之无愧的“万能大师”。
数学和哲学,是莱布尼茨显示其杰出天才的诸多领域之一。
他在法律、管理、历史、文学、逻辑等方面都作出过卓越贡献,因其在这些领域显赫的成就,人们永远纪念他。
用“全才”这个词形容莱布尼茨,可以说并不夸张。
1646年7月1日,莱布尼茨出生于德国莱比锡。
他的祖父以上三代人均曾在萨克森政府供职;他的父亲是莱比锡大学的伦理学教授。
莱布尼茨的少年时代是在官宦家庭以及浓厚的学术气氛中度过的。
莱布尼茨在6岁时失去父亲,但他父亲对历史的钟爱已经感染了他。
虽然考进莱比锡学校,但他主要是靠在父亲的藏书室里阅读自学的。
8岁时他开始学习拉丁文,12岁时学希腊文,从而广博地阅读了许多古典的历史、文学和哲学方面的书籍。
13岁时,莱布尼茨对中学的逻辑学课程特别感兴趣,不顾老师的劝阻,他试图改进亚里士多德的哲学范畴。
1661年,15岁的莱布尼茨进入莱比锡大学学习法律专业。
他跟上了标准的二年级人文学科的课程,其中包括哲学、修辞学、文学、历史、数学、拉丁文、希腊文和希伯莱文。
1663年,17岁的莱布尼茨因其一篇出色的哲学论文《论个体原则方面的形而上学争论——关于“作为整体的有机体”的学说》,获得学士学位。
莱布尼茨需在更高一级的学院,如神学院、法律学院或医学院学习才能拿到博士学位。
他选择了法学。
但是,法律并没有占据他全部的时间,他还广泛地阅读哲学,学习数学。
例如他曾利用暑期到耶拿听韦尔的数学讲座,接触了新毕达哥拉斯主义——认为数是宇宙的基本实在,以及一些别的“异端”思想。
1666年,20岁的莱布尼茨已经为取得法学博士学位做了充分的准备,但是莱比锡的教员们拒绝授予他学位。
牛顿-莱布尼茨方法一、简介牛顿-莱布尼茨方法是微积分中一种重要的计算导数的方法。
该方法由著名数学家牛顿和莱布尼茨独立发现,并几乎同时得到广泛应用。
它通过利用导数的定义来计算函数在给定点的斜率,从而帮助我们研究函数的性质和进行计算。
二、导数的定义导数是描述函数变化率的概念。
在数学上,如果函数f(x)在点x处有导数,我们将其记为f'(x)或者dy/dx。
导数表征了函数f(x)在点x处的斜率,表示了函数曲线在该点的“陡峭”程度。
三、牛顿-莱布尼茨方法的原理牛顿-莱布尼茨方法的原理基于导数的定义。
给定一个函数f(x),我们可以找到一个与该函数相切的直线。
这条直线的斜率等于函数在给定点x处的导数。
为了计算这个导数,我们可以选择一个非常接近x的点进行计算,然后再逐渐逼近x来获得准确的导数值。
四、计算导数的步骤牛顿-莱布尼茨方法的计算步骤如下:1、选择一个离给定点x很近的点a。
2、计算函数f(x)在点a处的函数值f(a)。
3、计算函数f(x)在点a处的导数值f'(a)。
4、利用导数的定义,确定函数f(x)在点a附近的一条切线。
5、将切线的斜率作为函数f(x)在给定点x处的导数值f'(x)。
五、应用范围牛顿-莱布尼茨方法在微积分的许多领域都有广泛应用。
它可以用来计算函数在某一点的导数值,从而得到函数的变化率;它可以帮助我们研究函数的极值点、拐点等重要特性;它还可以用于解决各种实际问题,如物理学中的运动学问题、经济学中的边际分析等。
六、总结牛顿-莱布尼茨方法是一种基于导数的计算方法,在微积分中具有重要的应用价值。
通过利用导数的定义,它帮助我们计算函数在给定点的斜率,研究函数的性质,并解决实际问题。
掌握牛顿-莱布尼茨方法对于深入理解微积分以及应用领域的发展都具有重要意义。
千尺学堂,贾天下讲的颈锥外调方法二千尺学堂,贾天下讲的颈锥外调方法二颈锥外调方法是一种常见的体育训练方式,它可以有效地改善颈部功能、增强颈部力量,并提高颈部的灵活性。
牛顿莱布尼兹公式的故事:1665年夏天,因为英国爆发鼠疫,剑桥大学暂时关闭。
刚刚获得学士学位、准备留校任教的牛顿被迫离校到他母亲的农场住了一年多。
这一年多被称为“奇迹年”,牛顿对三大运动定律、万有引力定律和光学的研究都开始F这个时期。
在研究这些问题过程中,他发现了他称为“流数术”的微积分。
牛顿莱布尼茨公式的发现,使人们找到了解决曲线的长度,曲线围成的面积和曲面围成的体积这些问题的一般方法。
它简化了定积分的计算,只要知道被积函数的原函数,总可以求出定积分的精确值或一定精度的近似值。
牛顿莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。
它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。
牛顿莱布尼茨公式与爱因斯坦
牛顿和莱布尼茨是微积分的共同发明者,而爱因斯坦则是一个物理学家。
这三个人物在数学和科学领域都有着卓越的贡献。
牛顿与莱布尼茨的贡献主要在数学领域。
牛顿是最早使用微积分学的人之一,他发现了微积分的基本定理,该定理是微积分学的核心,为微积分学的发展奠定了基础。
同时,牛顿还引入了无穷小量的概念,使得微积分学的研究变得更为深入和广泛。
莱布尼茨则是微积分的另一位重要发明者,他独立于牛顿发现了微积分的基本定理,并且提出了微积分的一些基本概念和符号表示,这些概念和符号至今仍被广泛使用。
爱因斯坦则是一个著名的物理学家,他的相对论理论在物理学领域产生了深远的影响。
相对论的诞生对于整个世界而言都具有划时代的意义,它打破了经典力学的范畴,是物理学的一次重大革命。
爱因斯坦的相对论解释了光速的相对性,提出了时间和空间的相对性,以及质量和能量的关系,这些理论在物理学领域有着重要的地位。
牛顿、莱布尼茨和爱因斯坦分别是数学和物理学领域的杰出代表人物,他们的工作对科学的发展产生了深远的影响。
贵州师范大学研究生作业(论文)专用封面作业(论文)题目:牛顿—莱布尼兹与微积分课程名称:《自然辩证法概论专题讲座》任课教师姓名:龙健研究生姓名:熊胜兰学号:4200910600254年级:2009级研专业:课程与教学论学院(部、所):数计学院任课教师评分:年月日牛顿—莱布尼茨与微积分(数计学院课程与教学论熊胜兰4200910600254)【摘要】微积分的创立,被誉为是“人类精神的最高胜利”,是由常量数学向变量数学转变的一件具有划时代意义的大事。
16世纪后半叶,牛顿和莱布尼茨在许多数学家所做的大量准备工作的基础上,各自独立地创立了微积分。
【关键词】牛顿莱布尼茨微积分0.引言微积分的出现是由常量数学向变量数学转变的一件具有划时代意义的大事,时至今日,它不仅成了学习高等数学各分支必不可少的基础,而且也是学习和掌握近代的任何一门自然科学和工程技术的工具。
提起微积分,人们自然会想到英国的牛顿(1642~1727)和德国的莱布尼茨(1646~1716),这主要是因为他们提出了微积分的基本概念和运算方法,发现了微积分的内在联系,建立了著名的牛顿—莱布尼茨公式。
在历史上微积分的萌芽出现得比较早,中国战国时代的《庄子·天下篇》中的“一尺之棰,日取其半,万事不竭”,就蕴含了无穷小的思想。
古希腊物理学、数学两栖科学大师阿基米德在公元前三世纪依据前人的穷竭法,用“切片”方法并借助杠杆原理建立了球体的体积公式,这其中就包含了定积分的思想。
但在当时,微积分并没有受到人们的广泛关注。
直到公元17世纪,在欧洲资本主义开始萌芽、科学和生产技术开始发展的情况下,航海、天文、力学、军事、生产等科学技术给数学提出了一系列迫切需要解决的问题。
从数学角度归纳起来主要集中在以下4个方面:①由距离和时间的函数关系,求物体在任意时刻的速度和加速度;反之,由物体的加速度和时间的函数关系,求速度和距离。
②确定运动物体在其轨道上任一点处的运动方向,以及研究光线通过透镜的通道而提出求曲线的切线问题。
常微分方程发展简史在17世纪初,牛顿和莱布尼茨的微积分发现为常微分方程的研究提供了基础。
他们建立了微分和积分的概念,并发展了微积分的基本原理。
这些成果为后来的常微分方程的研究奠定了基石。
在17世纪晚期,丹麦数学家欧拉(Euler)对常微分方程做出了很大贡献。
他提出了一阶常微分方程的解可以用指数函数来表示,并且解决了许多具体的微分方程问题。
欧拉还提出了欧拉方程,为后来的常微分方程研究奠定了基础。
在18世纪,数学家拉普拉斯(Laplace)和拉格朗日(Lagrange)继续推进了微分方程的研究。
他们提出了许多常微分方程的解法,如分离变量法、变换法和齐次化方法等。
这些方法为常微分方程的求解提供了有效的途径。
19世纪初,高斯(Gauss)提出了可微分曲线的理论,为微分方程的几何解释提供了基础。
同时,柯西(Cauchy)建立了常微分方程的数学理论,给出了数学上严格的解决方法。
他提出了柯西问题,即通过给定初始条件求解微分方程的问题。
这一问题成为后来微分方程理论的核心。
19世纪中期,数学家魏尔斯特拉斯(Weierstrass)和韦伊斯特拉斯(Weierstrass)进一步发展了微分方程的理论,提出了广义解和李普希茨条件等概念。
他们的工作为微分方程的研究提供了更加严密的数学基础。
20世纪初,数学家波安卡列(Poincaré)对常微分方程的稳定性和周期性做出了重要贡献。
他提出了位相空间和奇点的概念,并研究了常微分方程在位相空间中的变化规律。
这一工作为后来的动力系统理论的发展奠定了基础。
20世纪后期,随着计算机的发展,常微分方程的数值解法得到了广泛应用。
数学家和工程师利用计算机模拟和迭代求解的方法,可以更加准确地求解含有复杂边界条件的常微分方程。
这一进展使得常微分方程的应用领域得到了大大的拓展,包括物理学、工程学和经济学等。
总结起来,常微分方程的研究经历了几个重要的阶段,从17世纪初的微积分基础,到18世纪的解法发展,再到19世纪的理论建立,最后到20世纪的计算机应用。
莱布尼茨和牛顿的故事
莱布尼茨和牛顿都是十七世纪末到十八世纪初的著名数学家和自然科学家。
他们都致力于发展微积分学,并在这个领域作出了巨大贡献。
据传说,莱布尼茨和牛顿同时独立地发明了微积分学。
然而,两人的发现时间却相隔了一些年。
莱布尼茨先于牛顿发表了自己的微积分学成果。
这引发了牛顿的不满和抗议,并最终导致了两人之间的争执。
虽然两人的思想和方法都有相似之处,但莱布尼茨和牛顿的微积分学分别以不同的符号和约定来表达。
这使得两人在微积分学上的贡献和认可程度存在一定的差异。
尽管两人的争论一度引起了争议和分裂,但后来人们还是将他们的成就看作是微积分学发展史上的两个巅峰。
莱布尼茨和牛顿的争执,也有助于推动微积分学的研究和发展。
他们的竞争和交手,虽然揭示了微积分学的本质和原理,但也凸显了数学界研究的复杂性和难度。
他们的成就和争议,是数学史上值得探究和思考的重要篇章。
微积分发展中牛顿与莱布尼茨的贡献微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。
它是数学的一个基础学科。
内容主要包括极限、微分学、积分学及其应用。
微分学包括求导数的运算,是一套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
1.微积分产生
到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。
归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。
第二类问题是求曲线的切线的问题。
第三类问题是求函数的最大值和最小值问题。
第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。
微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。
一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。
微积分也是这样。
在十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。
为微积分的创立做出了贡献。
到十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。
他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。
牛顿和莱布尼茨正是在这样的时刻出场的.时代的需要与个人的才识,使他们完成了微积分创立中最后也是最关键的一步.
2.牛顿的“流数术”
牛顿于1661年入剑桥大学三一学院,受教于巴罗,同时钻研伽利赂,开普勒,笛卡儿和沃利斯等人的著作.而笛卡儿的《几何学》和沃利斯的《无穷算术》对他影响最深,正是这两部著作引导牛顿走上了创立微积分之路.
1665年8月,剑桥大学因瘟疫流行而关闭,牛顿离校返乡,随后在家乡躲避瘟疫的两年,竞成为牛顿科学生涯中的黄金岁月.制定微积分,发现万有引力和颜色理论,……,可以说牛顿一生大多数科学创造的蓝图,都是在这两年描绘的.
2.1流数术的初建
牛顿对微积分问题的研究始于1664年秋,当时他反复阅读笛卡儿《几何学》,对笛卡儿求切线的"圆法"发生兴趣并试图寻找更好的方法.就在此时,牛顿首创了
小o 记号表示x 的无限小且最终趋于零的增量.
1665年夏至1667年春,牛顿在家乡躲避瘟疫期间,继续探讨微积分并取得了突破性进展.1665年11月发明"正流数术"(微分法),次年5月又建立了"反流数术"(积分法). 1666年10月,牛顿将前两年的研究成果整理成一篇总结性论文,此文现以《流数简论》著称,《流数简论》是历史上第一篇系统的微积分文献.
《流数简论》反映了牛顿微积分的运动学背景。
该文事实上以速度形式引进了“流数”(即微商)概念,虽然没有使用“流数”这一术语。
牛顿在《简论》中提出微积分的基本问题如下:
(a )设有两个或更多个物体A ,B ,C ,…在同一时刻内描画线段x ,y ,z ,…。
已知表示这些线段关系的方程,求它们的速度p ,q ,r ,…的关系。
(b )已知表示线段x 和运动速度p 、q 之比
q
p 的关系方程式,求另一线段y 。
2.2流数术的发展
《流数简论》标志着微积分的诞生,但它在许多方面是不成熟的.牛顿于1667年春天回到剑桥,对自己的微积分发现未作宣扬.从那时起直到1693年大约四分之一世纪的时间里,牛顿始终不渝努力改进,完善自己的微积分学说,先后写成了三篇微积分论文,它们分别是:
(1)《运用无限多项方程的分析》(De Analysi per Aequationes Numero Terminorum lnfinitas ,简称《分析学》,完成于1669年);
(2)《流数法与无穷级数》(Methodus Fluxionum et Serierum lnfinitarum ,简称《流数法》,完成于1671年);
(3)《曲线求积术》(Tractatus de Quadratura Curvarum ,简称《求积术》,完成于1691年)。
这三篇论文,反映了牛顿微积分学说的发展过程,并且可以看到,牛顿对于微积分的基础先后给出了不同的解释.
2.3《原理》与微积分
牛顿微积分学说最早的公开表述出现在1687年出版的力学名著《自然哲学的数学原理》之中.因此《原理》也成为数学史上的划时代著作.
《原理》在创导首末比方法的同时保留了无限小瞬,这种做法常常被认为自相矛盾而引起争议.实际上,在牛顿的时代,建立微积分严格基础的时机尚不成熟,在这样的条件下,牛顿在大胆创造新算法的同时,坚持对微积分基础给出不同解释,说明了他对微积分基础所存在的困难的深邃洞察和谨慎态度.
《原理》被爱因斯坦盛赞为"无比辉煌的演绎成就".全书从三条基本的力学定律出发,运用微积分工具,严格地推导证明了包括开普勒行星运动三大定律,万有引力定律等在内的一系列结论,并且还将微积分应用于流体运动,声,光,潮汐,彗星乃至宇宙体系,充分显示了这一新数学工具的威力.
3.莱布尼茨的微积分
莱布尼茨(1646——1716)出生于德国莱比锡一个教授家庭,早年在莱比锡大
学学习法律,同时开始接触伽利略,开普勒,笛卡儿,帕斯卡以及巴罗等人的科学思.1667年获阿尔持多夫大学法学博士学位,次年开始为缅因茨选帝侯服务,不久被派往巴黎任大使.莱布尼茨在巴黎居留了四年[1672—1676),这四年对他整个科学生涯的意义,可以与牛顿在家乡躲避瘟疫的两年类比,莱布尼茨许多重大的成就包括创立微积分都是在这一时期完成或奠定了基础.
3.1特征三角形
莱布尼茨在巴黎与荷兰效学家,物理学家惠更斯的结识、交往,激发了他对数学的兴趣.他通过卡瓦列里,帕斯卡,巴罗等人的著作,了解并开始研究求曲线的切线以及求面积,体积等微积分问题.
与牛顿流数论的运动学背景不同,莱布尼茨创立微积分首先是出于几何问题的思考,尤其是特征三角形的研究.特征三角形,也称"微分三角形",在巴罗的著作中已经出现.帕斯卡在特殊情形下也使用过这种三角形.莱布尼茨在1673年提出了他自己的特征三角形.
3.2分析微积分的建立与发表
早在1666年,莱布尼茨在《组合艺术》一书中讨论过数列问题并得到许多重要结论,例如他考察了平方数序列:
0,1,4,9,16,25,36,…
及其一阶差1,3,5,7,9,11,…
与二阶差2,2,2,2,2,…
当时他注意到如果原来的序列是从0开始,那么一阶差的和就是原序列的最后一项,并且这里序列的求和运算与求差运算存在着互逆的关系.
1684年莱布尼茨发表了他的第一篇微分学论文《一种求极大与极小值和求切线的新方法》(简称《新方法》),刊登在《教师学报》(Acta Eruditorum)上,这也是数学史上第一篇正式发表的微积分文献.该文是莱布尼茨对自己1673年以来
dx,.
微分学研究的概括,其中定义了微分并广泛采用了微分记号dy 《新方法》中明确陈述了莱布尼茨1677年已得到的函数和、差、积、商、乘幂与方根的微分公式.
1686年,莱布尼茨又发表了他的第一篇积分学论文《深奥的几何与不可分量及无限的分析》.这篇论文初步论述了积分或求积问题与微分或切线问题的互逆关系.莱布尼茨分析道:“研究不定求积或其不可能性的方法,对我来说不过是我称之为反切线方法的更广泛的问题的特殊情形(并且事实上是比较容易的情形),而这种反切线方法包括了整个超越几何的绝大部分。
4.牛顿与莱布尼茨
牛顿和莱布尼茨都是他们时代的巨人.就微积分的创立而言,尽管在背景、方法和形式上存在差异、各有特色,但二者的功绩是相当的.他们都使微积分成为能普遍适用的算法,同时又都将面积、体积及相当的问题归结为反切线(微分)运算.应该说,微积分能成为独立的科学并给整个自然科学带来革命性的影响,主要是靠了牛顿与莱布尼茨的工作.。