(微积分基本定理) 牛顿—莱布尼茨公式
- 格式:ppt
- 大小:626.00 KB
- 文档页数:18
牛顿莱布尼茨公式与积分运算知识点:牛顿-莱布尼茨公式与积分运算一、牛顿-莱布尼茨公式牛顿-莱布尼茨公式是微积分基本定理的表述,它建立了微分学与积分学之间的联系。
公式如下:如果函数f(x)在区间[a, b]上连续,并且在区间(a, b)内可导,那么函数f(x)在区间[a, b]上的定积分可以表示为:∫(from a to b) f(x)dx = F(b) - F(a)其中,F(x)是f(x)的一个原函数,即F’(x) = f(x)。
二、积分运算的基本性质1.线性性质:设f(x)和g(x)是两个可积函数,α和β是两个常数,则有:∫(from a to b) (αf(x) + βg(x))dx = α∫(from a to b) f(x)dx + β∫(from a to b) g(x)dx2.保号性:如果f(x)在区间[a, b]上非负(非正),则∫(from a to b)f(x)dx非负(非正)。
3.可加性:如果f(x)和g(x)在区间[a, b]上可积,且它们的区间分界点相同,那么:∫(from a to b) f(x)dx + ∫(from a to b) g(x)dx = ∫(from a to b) (f(x) + g(x))dx4.换元积分法:设 Integration variable change : x = g(t),dx = g’(t)dt,则有:∫(from a to b) f(x)dx = ∫(from g(a) to g(b)) f(g(t))g’(t)dt三、积分运算的基本公式1.幂函数的积分公式:∫(from a to b) x^n dx = (1/n+1)x^(n+1) + C,其中C为积分常数。
2.指数函数的积分公式:∫(fro m a to b) e^x dx = e^x + C。
3.对数函数的积分公式:∫(from a to b) ln|x| dx = ln|x| + C。
微积分牛顿莱布尼茨公式牛顿-莱布尼茨公式是微积分中的基本定理之一,也称为微积分基本定理或者牛莱公式。
该公式是微积分的重要工具,用于求解定积分和微分方程等问题。
下面我将为您详细介绍和解释这一公式。
牛顿-莱布尼茨公式可以用以下方式表述:设函数f(x)在区间[a,b]上连续且可导(即f'(x)存在),则该函数在[a,b]上的定积分可以被表示为:∫[a to b] f'(x) dx = f(b) - f(a)其中,∫ 符号表示积分,[a to b] 表示积分的区间,f'(x) 表示函数 f(x) 的导数。
该公式的物理含义是:函数曲线下方的面积等于函数在区间[a,b]上的两个端点所对应的函数值之差。
让我们来看一个具体的例子来理解牛顿-莱布尼茨公式的应用。
假设有一个函数 f(x) = 2x,在区间 [1, 3] 上。
我们可以求这个函数在该区间上的定积分,即∫[1 to 3] f'(x) dx。
首先,我们需要求出函数f'(x),即函数f(x)的导数。
对于f(x)=2x,它的导数f'(x)=2接下来,我们将导数 f'(x) 代入定积分公式,得到∫[1 to 3] 2 dx。
将上限 3 和下限 1 代入函数 f(x) = 2x,得到 f(3) = 2 * 3 = 6和 f(1) = 2 * 1 = 2然后,我们将 f(3) - f(1) 代入定积分公式,得到∫[1 to 3] 2dx = 6 - 2 = 4所以,函数f(x)=2x在区间[1,3]上的定积分是4这个例子展示了牛顿-莱布尼茨公式的应用。
通过求解函数的导数,并将导数代入定积分公式,可以得到函数在给定区间上的定积分值。
当对复杂函数进行定积分时,牛顿-莱布尼茨公式可以极大地简化计算。
我们可以通过求函数的导数来得到原函数,然后将原函数代入定积分公式来求解定积分。
这种方法比直接计算定积分更加方便且高效。
需要注意的是,牛顿-莱布尼茨公式只适用于连续可导的函数。
1牛顿布莱尼茨公式牛顿-莱布尼兹公式,又称为微积分基本定理,其内容是:若函数f(x)在闭区间[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且从a到b的定积分(积分号下限为a上限为b):∫f(x)dx=F(b)-F(a)其意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法.2牛顿布莱尼茨公式证明过程证明:设:F(x)在区间(a,b)上可导,将区间n等分,分点依次是x1,x2,…xi…x(n-1),记a=x0,b=xn,每个小区间的长度为Δx=(b-a)/n,则F(x)在区间[x(i-1),xi]上的变化为F(xi)-F(x(i-1))(i=1,2,3…)当Δx很小时,F(x1)-F(x0)=F’(x1)*ΔxF(x2)-F(x1)=F’(x2)*Δx……F(xn)-F(x(n-1))=F’(xn)*Δx所以,F(b)-F(a)=F’(x1)*Δx+ F’(x2)*Δx+…+ F’(xn)*Δx当n→+∞时,∫(a,b)F’(x)dx=F(b)-F(a)3牛顿布莱尼茨公式意义牛顿-莱布尼茨公式的发现,使人们找到了解决曲线的长度,曲线围成的面积和曲面围成的体积这些问题的一般方法。
它简化了定积分的计算,只要知道被积函数的原函数,总可以求出定积分的精确值或一定精度的近似值。
牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。
它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。
牛顿-莱布尼茨公式是积分学理论的主干,利用牛顿一莱布尼茨公式可以证明定积分换元公式,积分第一中值定理和积分型余项的泰勒公式。
牛顿-莱布尼茨公式还可以推广到二重积分与曲线积分,从一维推广到多维。
牛顿莱布尼兹公式使用条件
若函数f(x)在[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且∫(a→b)f(x)dx=F(b)-F(a),则可以用牛顿莱布尼兹公式。
牛顿-莱布尼茨公式(Newton-Leibniz formula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。
牛顿-莱布尼茨公式的内容是一个连续函数在区间[ a,b ] 上的定积分等于它的任意一个原函数在区间[ a,b ]上的增量。
根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。
这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。
连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
牛顿莱布尼茨公式计算定积分例题摘要:1.引言:牛顿- 莱布尼茨公式的概述2.牛顿- 莱布尼茨公式的公式表示3.定积分的计算方法4.例题解析:使用牛顿- 莱布尼茨公式计算定积分5.结论:牛顿- 莱布尼茨公式在定积分计算中的应用正文:1.引言:牛顿- 莱布尼茨公式的概述牛顿- 莱布尼茨公式,又称为微积分基本定理,是微积分领域的重要公式之一。
它指出,如果一个函数f(x) 可以在[a, b] 上积分,那么它的积分等于该函数在该区间上的原函数F(x) 在区间端点上的值之差,即:∫[a, b]f(x)dx = F(b) - F(a)。
这一公式为定积分的计算提供了一种简便方法,同时也为微积分的理论体系打下了坚实的基础。
2.牛顿- 莱布尼茨公式的公式表示牛顿- 莱布尼茨公式的数学表达式如下:∫[a, b]f(x)dx = F(b) - F(a)其中,∫[a, b]f(x)dx 表示区间[a, b] 上的定积分,F(x) 是f(x) 的原函数,F(b) 和F(a) 分别是原函数在区间端点b 和a 的值。
3.定积分的计算方法定积分的计算方法主要有两种:一种是直接积分法,另一种是牛顿- 莱布尼茨公式法。
直接积分法适用于一些简单的函数,其基本思路是对被积函数f(x) 进行积分,求出原函数F(x),然后代入区间端点求解。
而牛顿- 莱布尼茨公式法则适用于更广泛的函数类型,其优势在于可以避免直接求解原函数的复杂计算过程。
4.例题解析:使用牛顿- 莱布尼茨公式计算定积分例题:计算定积分∫(0, π) sin x dx解:首先,我们需要求出sin x 的原函数。
由于sin x 的导数是cos x,所以sin x 的原函数是-cos x。
然后,根据牛顿- 莱布尼茨公式,我们可以得到:∫(0, π) sin x dx = -cos(π) - (-cos(0)) = 1 - (-1) = 2因此,定积分∫(0, π) sin x dx 的值为2。
牛顿-莱布尼茨公式牛顿-莱布尼茨公式的意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法。
若f(x)在[a,b]上可积,且F(x)是f(x)的一个在[a,b]上的原函数,则∫a b f(x)dx=F(b)-F(a)这个公式叫做牛顿—莱布尼茨公式。
1定积分式如果我们把中的积分区间的上限作为一个变量x,这样我们就定义了一个新的函数:但是这里x出现了两种意义,一是表示积分上限,二是表示被积函数的自变量,但定积分中被积函数的自变量取一个定值是没意义的。
为了只表示积分上限的变动,我们把被积函数的自变量改成别的字母如t,这样意义就非常清楚了:2 Φ性质1、定义函数,则与格林公式和高斯公式的联系。
证明:让函数获得增量,则对应的函数增量显然,而(ξ在x与x+Δx之间,可由积分中值定理推得)当Δx趋向于0也就是ΔΦ趋向于0时,ξ趋向于x,f(ξ)趋向于f(x),故有可见这也是导数的定义,所以最后得出。
2、,F(x)是f(x)的原函数。
证明:我们已证得,故但Φ(a)=0(积分区间变为[a,a],故面积为0),所以F(a)=C于是有Φ(x)+F(a)=F(x),当x=b时,Φ(b) = F(b) - F(a),而,所以把t再写成x,就变成了开头的公式,该公式就是牛顿-莱布尼茨公式。
3相关人物牛顿牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。
他把连续变量叫做流动量,把这些流动量的导数叫做流数。
牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。
莱布尼茨德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。
牛顿-莱布尼兹公式(Newton-Leibniz formula)通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系,牛顿-莱布尼茨公式的内容是:若函数f(x)在[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,则这即为牛顿-莱布尼茨公式牛顿在1666年写的《流数简论》中利用运动学描述了这一公式,1677年,莱布尼茨在一篇手稿中正式提出了这一公式,因为二者最早发现了这一公式,于是命名为牛顿-莱布尼茨公式,牛顿-莱布尼茨公式给定积分提供了一个有效而简便的计算方法,大大简化了定积分的计算过程。
内容是一个连续函数在区间[ a,b ] 上的定积分等于它的任意一个原函数在区间[ a,b ]上的增量。
牛顿在1666年写的《流数简论》中利用运动学描述了这一公式, [2] 1677年,莱布尼茨在一篇手稿中正式提出了这一公式。
[1] 因为二者最早发现了这一公式,于是命名为牛顿-莱布尼茨公式。
若函数f(x)在[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且b(上限)∫a(下限)f(x)dx=F(b)-F(a) 这即为牛顿—莱布尼茨公式.牛顿-莱布尼茨公式的意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法.下面就是该公式的证明全过程:编辑本段对函数f(x)于区间[a,b]上的定积分表达为:b∫a*f(x)dx 现在我们把积分区间的上限作为一个变量,这样我们就定义了一个新的函数:Φ(x)= x∫a*f(x)dx 但是这里x出现了两种意义,一是表示积分上限,二是表示被积函数的自变量,但定积分中被积函数的自变量取一个定值是没意义的.为了只表示积分上限的变动,我们把被积函数的自变量改成别的字母如t,这样意义就非常清楚了:Φ(x)= x∫a*f(t)dt编辑本段研究这个函数Φ(x)的性质:1、定义函数Φ(x)= x(上限)∫a(下限)f(t)dt,则Φ与格林公式和高斯公式的联系’(x)=f(x).证明:让函数Φ(x)获得增量Δx,则对应的函数增量ΔΦ=Φ(x+Δx)-Φ(x)=x+Δx(上限)∫a(下限)f(t)dt-x(上限)∫a(下限)f(t)dt 显然,x+Δx(上限)∫a (下限)f(t)dt-x(上限)∫a(下限)f(t)dt=x+Δx(上限)∫x(下限)f(t)dt 而ΔΦ=x+Δx(上限)∫x(下限)f(t)dt=f(ξ)•Δx(ξ在x与x+Δx之间,可由定积分中的中值定理推得,也可自己画个图,几何意义是非常清楚的.) 当Δx趋向于0也就是ΔΦ趋向于0时,ξ趋向于x,f(ξ)趋向于f(x),故有lim Δx→0 ΔΦ/Δx=f(x) 可见这也是导数的定义,所以最后得出Φ’(x)=f(x).2、b(上限)∫a(下限)f(x)dx=F(b)-F (a),F(x)是f(x)的原函数.证明:我们已证得Φ’(x)=f(x),故Φ(x)+C=F(x)但Φ(a)=0(积分区间变为[a,a],故面积为0),所以F(a)=C 于是有Φ(x)+F (a)=F(x),当x=b时,Φ(b)=F(b)-F(a),而Φ(b)=b(上限)∫a(下限)f(t)dt,所以b(上限)∫a(下限)f(t)dt=F(b)-F(a) 把t再写成x,就变成了开头的公式,该公式就是牛顿-莱布尼茨公式.例子:求由∫(下限为2,上限为y)e^tdt+∫(下限为o,上限为x)costdt=0所确定的隐函数y对x的导数dy/dx求1,∫(下限为-1,上限为1)(x-1)^3dx 2,求由∫(下限为0,上限为5)|1-x|dx 3,求由∫(下限为-2,上限为2)x√x^2dxe^(y)-e^(2)+sin(x)=0,y=ln(e^(2)-sin(x)),dy/dx=-cos(x)/(e^(2)-sin(x). 1).(x-1)^4/4|(-1,1)=(1-1))^4/4-(-1-1))^4/4=-4;2).∫(下限为0,上限为5)|1-x|dx=-∫(下限为0,上限为1)x-1dx+∫(下限为1,上限为5)x-1dx=-(x-1)^2/2|(0,1)+(x-1)^2/2|(1,5)=17/2; x√x^2是奇函数,所以∫(下限为-2,上限为2)x√x^2dx=0。
牛顿莱布尼兹公式
牛顿布莱尼茨公式通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。
牛顿-莱布尼兹公式,又称为微积分基本定理,其内容是:若函数f(x)在闭区间[a, b]上连续,且存在原函数F (x),则f(x)在[a,b]_上可积,且从a到b的定积分(积分号下限为a上限为b) : ff(x)dx=F (b)-F(a)。
牛顿布莱尼茨公式意义:
牛顿-莱布尼茨公式的发现,使人们找到了解诀曲线的长度,曲线围成的面积和曲面围成的体积这些问题的一般方法。
它简化了定积分的计算,只要知道被积函数的原函数,总可以求出定积分的精确值或一-定精度的近似值。
牛顿-莱布尼茨公式是联系微分学与积分学
的桥梁,它是微积分中最基本的公式之一。
它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。
牛顿-莱布尼茨公式是积分学理论的主干,利用牛顿一莱布尼茨公式可以证明定积分换元公式,积分第一中值定理和积分型余项的泰勒公式。
牛顿莱布尼茨公式还可以推广到二重积分与曲线积分,从-维推广到多维。
微积分基本定理—牛顿莱布尼茨公式微积分基本定理可以分为两个部分,第一部分称为微积分基本定理的第一种形式,它表明如果函数f(x)在区间[a,b]上连续,那么它的积分函数F(x)在[a,b]上可导,并且导数F'(x)就是f(x)。
换句话说,积分是导数的逆运算。
即如果f(x)是一个连续函数,那么我们可以通过求f(x)的原函数来计算f(x)的积分。
这个定理的数学表达式为:∫[a, b] f(x) dx = F(b) - F(a)其中,[a,b]表示积分区间,f(x)表示被积函数,F(x)表示f(x)的一个原函数。
需要注意的是,由于原函数存在一个任意常数项C,所以积分F(b)-F(a)的结果也存在一个任意常数项。
d/dx ∫[a, x] f(t) dt = f(x)其中,d/dx表示对x求导的操作。
这个定理的意义在于,如果我们在积分运算的下限为a的时候对x求导,那么结果就是被积函数在x点的值。
微积分基本定理的证明可以通过利用积分和导数的定义,以及连续函数的性质来完成。
首先,我们可以证明微积分基本定理的第一种形式。
设F(x) = ∫[a, x] f(t) dt,我们需要证明F'(x) = f(x)。
由于F(x)是由积分定义得到的,我们可以将其看作是以x为上限的积分运算。
根据导数的定义,F'(x) = lim(h→0) [F(x+h)-F(x)]/h。
利用F(x)的定义展开,我们有F'(x) = lim(h→0) ∫[a,x+h] f(t) dt - ∫[a, x] f(t) dt / h 根据积分的线性性质,我们可以将这个式子化简为F'(x) = lim(h→0) ∫[x, x+h] f(t) dt / h注意到积分的定义可以写成极限的形式,即∫[a, b] f(t) dt =lim(n→∞) Σ f(c_i) Δx_i,其中,[a, b]表示积分区间,f(t)表示被积函数,Σ表示求和符号,c_i表示指定区间内的任意点,Δx_i表示区间长度的无穷小增量。
高中数学《微积分》常用公式-微积分的
牛顿-莱布尼茨公式
微积分是数学中的一个重要分支,它通过研究函数的变化率来分析和研究问题。
在微积分中,牛顿-莱布尼茨公式是一个常用的公式,它是微积分的基础之一。
1. 牛顿-莱布尼茨公式的定义
牛顿-莱布尼茨公式,也称为微积分基本定理,它是将微分与积分联系起来的公式。
它的数学表达式如下所示:
$$\int_a^b f(x)dx = F(b) - F(a)$$
其中,$\int_a^b f(x)dx$ 表示函数 $f(x)$ 在区间 $[a, b]$ 上的积分,$F(x)$ 是 $f(x)$ 的一个原函数。
2. 牛顿-莱布尼茨公式的意义
牛顿-莱布尼茨公式的意义在于它建立了微积分中积分和微分的联系。
通过该公式,我们可以通过求函数的原函数来计算函数在某个区间上的积分,或者通过求函数的导数来计算函数在某个点的变化率。
3. 牛顿-莱布尼茨公式的应用
牛顿-莱布尼茨公式在微积分中有广泛的应用。
以下是一些常见的应用场景:
- 计算曲线下面的面积:通过积分,我们可以计算出曲线在某个区间上的面积;
- 求函数的平均值:通过对函数在某个区间上的积分除以区间的长度,我们可以求得函数在该区间上的平均值;
- 解决微分方程:通过对微分方程两边同时积分,我们可以求得微分方程的解。
结论
牛顿-莱布尼茨公式是微积分中的重要工具,它将微分和积分联系在一起,帮助我们解决了许多数学和物理上的问题。
在学习微积分的过程中,掌握并理解牛顿-莱布尼茨公式的定义和应用是非常重要的。
微积分基本定理的理解
什么是微积分基本定理?
也叫牛顿-莱布尼兹公式,通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数之间的联系。
牛顿-莱布尼茨公式的发现,使人们找到了解决曲线的长度,曲线围成的面积和曲面围成的体积这些问题的一般方法。
它简化了定积分的计算,只要知道被积函数的原函数,总可以求出定积分的精确值或一定精度的近似值。
牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。
它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。
定义
如果函数在区间上连续,并且存在原函数,则
理解
以路程与速度函数为例,速度在t1到t2时刻的定积分,就是路程函数在每一时刻的变化率,即
(通俗理解)则将t1时刻到t2时刻s(t)在每点的变化累积起来就是s(t)从t1时刻到t2时刻的变化,即:
s(t2)-s(t1).
推广到一般函数就是:
这就是微积公基本定理。
微积分基本定理与牛顿莱布尼茨公式微积分基本定理是微积分的重要定理之一,它是连接微分与积分的桥梁,揭示了微分与积分之间的密切关系。
而牛顿-莱布尼茨公式是微积分中的一个重要公式,用来计算定积分。
本文将介绍微积分基本定理与牛顿-莱布尼茨公式的基本定义、证明及应用。
∫[a,b] f(x)dx = F(b) - F(a)这个式子的意义是,一个函数在闭区间上的积分等于它在区间两个端点的原函数值之差。
∫f(x)dx = F(x) + C其中F(x)是f(x)的一个原函数,C是一个常数。
我们可以通过对微积分基本定理的证明来理解它。
对于第一部分,我们可以通过定义积分为极限的思想来证明。
假设f是一个连续函数,我们可以将闭区间[a,b]分成n个小区间,每个小区间的长度为Δx=(b-a)/n,然后取每个小区间的一个任意点ξi,我们有:∑[i=1,n]f(ξi)Δx ≈ ∫[a,b]f(x)dx当n趋于无穷大时,如果极限存在,那么积分的计算结果就是这个极限的值。
而这个极限实际上就是函数F在右端点b处的函数值,即F(b)-F(a)。
对于第二部分的证明,我们可以利用导数与反函数的关系,即:如果 y = F(x) 是函数 f(x) 的一个原函数,那么 f(x) = F'(x),即导数等于原函数的导数。
因此我们有∫f(x)dx = ∫F'(x)dx = F(x) + C。
接下来我们介绍牛顿-莱布尼茨公式,它是微积分中的一个重要公式,用来计算定积分。
牛顿-莱布尼茨公式可以表达为:∫[a,b] f(x)dx = F(b) - F(a)其中F(x)是f(x)的一个原函数。
这个公式可以用来计算定积分,即求解一个函数在闭区间上的积分值。
牛顿-莱布尼茨公式的证明可以通过微积分基本定理的第一部分来进行。
我们可以通过定义积分为极限的思想来证明。
假设f是一个连续函数,并且F是其一个原函数。
我们可以将闭区间[a,b]分成n个小区间,每个小区间的长度为Δx=(b-a)/n,然后取每个小区间的一个任意点ξi,我们有:∑[i=1,n]f(ξi)Δx ≈ ∫[a,b]f(x)dx当n趋于无穷大时,如果极限存在,那么积分的计算结果就是这个极限的值。