空间计量经济学模型归纳
- 格式:doc
- 大小:315.50 KB
- 文档页数:6
空间计量经济学模型及其应用空间计量经济学模型及其应用随着经济全球化和城市化进程的不断深入,企业和居民之间的空间联系越来越密切,城市空间格局的变化越来越明显。
在这种情况下,空间计量经济学模型逐渐成为经济学研究的重要工具之一,能够准确地衡量空间的经济效应,推动城市发展和区域经济增长。
本报告将从空间计量经济学模型的基本理论、模型类型和应用领域三个方面进行论述,旨在为对此领域感兴趣的读者提供一些参考。
一、空间计量经济学模型的基本理论空间计量经济学是空间经济学与计量经济学的交叉学科,其理论构建基于三个方面:空间距离、空间依赖和空间异质性。
下面分别进行阐述。
1.空间距离空间距离是指在空间维度上两个经济体之间的距离,这里的经济体可以是城市、县、国家等经济空间单元。
在空间计量经济学中,距离不仅仅是直线距离的概念,还包括通行时间、交通成本、行政管辖区域等多方面的因素。
空间距离对经济发展具有明显的影响,可以影响固定资本的流动、劳动力的流动、资金的流动等多方面的因素。
因此,空间距离在计量经济模型中的应用非常广泛,是模型的一个重要变量之一。
2.空间依赖空间依赖是指一个经济单元的行为和性质受到其周围空间经济环境的影响。
在空间计量经济学中,空间依赖可以通过空间自回归模型、空间误差模型等方式进行测算。
空间依赖是经济空间单元之间相互作用的一种体现,它可以客观反映经济环境的变化和发展趋势,有助于经济预测和政策决策,具有非常广泛的研究领域和应用前景。
3.空间异质性空间异质性是指在不同地理空间单元之间存在的结构性差异,这种差异不会随着时间的推移而消失。
在空间计量经济学中,空间异质性主要体现在组成部分的不同、战略资源的分布和经济制度的差异等方面。
空间异质性的存在使得研究不同区域经济结构的差异和社会文化的差异变得更加复杂,需要充分考虑空间异质性对研究结果的影响。
二、空间计量经济学模型的类型空间计量经济学模型的类型主要包括空间自回归模型、空间误差模型、空间滞后模型和空间面板模型等。
空间计量经济学模型空间相关性是指 (),i j y f y i j =≠即i y 与j y 相关 模型可表示为()(),1i j j i i y f y x i j βε=++≠其中,()f为线性函数,(1)式的具体形式为()()2,0,2i ij j i i ii jy a y x N βεεδ≠=++∑如果只考虑应变量空间相关性,则(2)式变为(3)式()()21,0,,1,2...3ni ij j i ii y W y N i nρεεδ==+=∑式中1nijj i Wy =∑为空间滞后算子,ij W 为维空间权重矩阵n n W ⨯中的元素,ρ为待估的空间自相关系数。
0ρ≠,存在空间效应 (3)式的矩阵形式为()()21,0,4u n y Wy N I ρεδ⨯=(4)式称为一阶空间自回归模型,记为FAR 模型 当在模型中引入一系列解释变量X 时,形式如下()()2,0,5n y Wy X N I ρβεεδ=++(5)式称为空间自回归模型,记为SAR 模型 当个体间的空间效应体现在模型扰动项时有()()21,,0,6u n y X u u Wu N I βλεδ⨯=+=(6)式成为空间误差模型,记为SEM 模型 当应变量与扰动项均存在空间相关时有()()2121,,0,7u n y W y X u u W u N I ρβλεεδ⨯=++=+(7)式称为一般空间模型,记为SAC 模型当0X =且20W =时,SAC →FAR ;当20W =时,SAC →SAR当10W =时,SAC →SEM当空间相关性还体现在解释变量上时,则有()()2,0,8n y Wy X WXr N I ρβεεδ=+++(8)式成为空间杜宾模型,记为SDM 模型面板数据空间混合回归模型空间滞后应变量()NT T N Wy W y I W y ==⊗ 空间滞后解释变量()NT T N WX W X I W X ==⊗ 空间滞后扰动项()NT T N W W I W εεε==⊗,,*(...)NT N N N NT NT T N W diag w w w I W ==⊗含因变量空间滞后的模型为()()1119NT T N NK K K NT Y I W Y X ρβε⨯⨯⨯⨯=⊗++ρ为空间自回归参数空间面板固定效应模型2,,()0,()T t t t t t t t t t NY X W E E I βμφφδφεεεεσ=++=+==(10)(10)为加入空间残差自相关的固定效应模型2,()0,()T t t t t t t t N Y WY X E E I δβμεεεεσ=+++== (11)(11)为加入空间滞后因变量的固定效应模型. 空间面板随机效应模型为Y X v β=+,1()()T N T v I I B ιμε-=⊗+⊗ (12)其中()1,,1T T ι'= , N B I W δ=-, (12)式为空间误差随机效应模型.()T N Y I W Y X v δβ=⊗++ (13)(13)式为空间滞后应变量随机效应模型.空间计量经济学:既要考虑应变量的空间相关性Wy ρ,也要考虑各个解释变量的空间相关性rWX ,还要考虑各个扰动项的空间相关性u Wu λ= a) 地理空间权重 b) 经济空间权重c) 基于距离的(阀值法、K 最近点法) 注:划*者应用最为广泛W 为空间权重矩阵,以0-1空间权重矩阵为例550111010011100101110101010A ⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,1y 与234,,y y y 相关。
经济学中的空间计量模型一、空间计量模型概述空间计量模型是指将空间因素引入计量经济学模型中的一种方法。
空间计量模型通常用于研究空间相关性对经济现象的影响。
空间相关性是指位置相近的地区之间存在的相互依赖关系或者相互作用。
二、空间计量模型的基本形式空间计量模型的基本形式可以表示为:Y=ρWy + Xβ + ε其中,Y表示被解释变量,X表示非空间自变量,W表示空间自变量的邻接矩阵,ε代表误差项,ρ是空间相关系数,β是非空间自变量的系数。
空间自变量通常是指与地理位置有关的变量,比如距离、地理位置等。
三、空间计量模型的类别1. 空间自回归模型(Spatial Autoregression Model,SAR)SAR模型是最简单的空间计量模型之一。
SAR模型的核心思想是,与某一地区相邻的地区之间存在相互影响,这种影响可以通过在模型中引入空间自回归项来体现。
SAR模型通常用于研究空间依赖性的影响,比如一个地区的影响对相邻地区的经济发展状况的影响。
2. 空间误差模型(Spatial Error Model,SEM)SEM模型是一种常用的空间计量模型,其核心思想是每个地区的误差项受周围地区的误差项的影响。
SEM模型和SAR模型的区别在于,SEM模型中的空间相关性体现在误差项当中,而SAR模型中的空间相关性体现在自变量中。
3. 空间Durbin模型(SDM)SDM模型是SAR模型和SEM模型的综合体,其核心思想是同时考虑空间自回归和空间误差,在模型中引入两个空间因素项。
SDM模型通常用于研究空间因素对社会、经济现象的影响。
四、空间计量模型的应用场景空间计量模型有许多的应用场景,比如城市规划、环境保护、地区经济发展等领域。
1. 研究城市规划城市规划通常需要考虑到不同城市之间的相互依赖关系。
比如,周围地区的经济状况和城市的经济发展状况相关,不同城市之间的人口流动也会影响城市的规划。
这时候可以采用空间计量模型,来研究城市规划对相邻地区的影响。
空间计量经济模型的理论与应用第一部分空间计量经济模型介绍 (2)第二部分模型理论基础与原理 (5)第三部分空间相关性分析方法 (8)第四部分常用空间计量模型构建 (10)第五部分模型估计与检验方法 (14)第六部分应用案例与实证分析 (19)第七部分空间计量模型的局限性 (22)第八部分展望与未来研究方向 (25)第一部分空间计量经济模型介绍空间计量经济模型是一种将地理空间因素纳入传统经济学模型的分析方法,它通过在传统的线性模型中引入空间相关系数来考虑地区间的相互作用和影响。
这种模型起源于 20 世纪 70 年代,并逐渐成为经济学、地理学、城市规划等领域的重要工具。
本文将从理论与应用两个方面对空间计量经济模型进行详细介绍。
一、理论基础1.空间数据特性空间数据通常具有以下特点:(1)空间邻接性:相邻地区的变量之间往往存在相互影响。
(2)空间异质性:不同地区的自然环境、人文条件等差异会导致数据表现出不同的特性。
(3)空间相关性:同一地区内的多个变量之间可能存在着内在的联系,从而使得数据具有一定的空间自相关性。
2.空间计量模型的分类根据空间效应的不同,空间计量经济模型可分为两大类:(1)局部空间模型:这类模型关注的是单个区域的数据,如空间滞后模型(SLM)和空间误差模型(SEM),它们分别考虑了邻居地区的影响和空间内相关性的效果。
(2)全局空间模型:这类模型考虑的是整个研究区域的空间效应,如空间杜宾模型(SDM)和空间卡尔曼滤波模型(SKF),它们能够捕捉到区域间广泛存在的相互作用关系。
二、空间计量模型的构建1.空间权重矩阵在构建空间计量模型时,首先要确定空间权重矩阵。
空间权重矩阵用于衡量地区之间的空间关联程度,常见的有邻接矩阵、距离衰减矩阵等。
例如,在邻接矩阵中,如果两个地区相邻,则它们之间的权值为1;否则,权值为 0。
2.模型选择根据所要解决的问题和数据特点,可以选择相应的空间计量模型。
例如,当研究区域内部存在明显的空间自相关性时,可以采用空间误差模型或空间滞后模型;当研究区域之间的互动效应较强时,则应选用空间杜宾模型。
第九章_空间计量经济模型第九章空间计量经济模型学习⽬标:熟悉空间效应的来源。
掌握空间权重矩阵的设定。
掌握空间相关性的各种统计检验⽅法。
掌握线性空间模型的分类及选择。
掌握线性空间模型的极⼤似然估计法的原理。
熟悉GeoDa软件进⾏线性空间模型估计的详细步骤。
简单地说,空间计量经济学(spatial econometrics)就是空间经济的计量,是计量经济学的⼀个分⽀。
空间计量经济学研究的是如何在横截⾯数据(cross-sectional data)和⾯板数据(panel data)的回归模型中处理空间相互作⽤(空间⾃相关)和空间结构(空间不均匀性),⽬前已经成为空间经济学及其相关学科的重要学科基础。
本章将主要讨论空间权重矩阵的设定,空间相关性的检验,空间计量经济模型的设定、参数估计及检验。
第⼀节空间计量经济学概述作为现代微观计量经济学的⼀个分⽀,旨在为处理截⾯数据或⾯板数据中的空间效应、空间相关性与空间异质性⽽发展专门的建模、估计与统计检验⽅法。
由于对其理论上的关⼼以及将计量经济模型应⽤到新兴⼤型编码数据库中的要求,近年来这个领域获得了快速发展。
⼀、空间计量经济学的缘起与发展就历史观点⽽⾔,由于在区域计量经济模型中处理次级地区数据的需要,早在20世纪70年代欧洲就展开了空间计量经济学研究,并将它作为⼀个确定的领域。
Paelinck&Klaassen 定义了这个领域,包括:空间相互依赖在空间模型中的任务,空间关系不对称性,位于其他空间的解释因素的重要性,过去的和将来的相互作⽤之间的区别,明确的空间模拟。
Anselin 对空间计量经济学进⾏了系统的研究,并将空间计量经济学定义为:在区域科学模型的统计分析中,研究由空间所引起的各种特性的⼀系列⽅法。
换句话说,空间计量经济学研究的是明确考虑空间影响(空间⾃相关和空间不均匀性)的⽅法。
⽬前,空间计量经济学研究包括以下四个感兴趣的领域:计量经济模型中空间影响的确定,合并了空间影响的模型的估计,空间影响存在的说明检验和诊断,空间预测。
空间计量模型选择、估计、权重、检验(Spatialeffect)应读者的要求,推送⼀篇关于空间计量⽅⾯的⽂章。
空间计量模型,主要⽤来解决空间被解释变量⾃相关和测量误差⽅⾯的问题;⽽且两个空间事物存在交互效应和异质性,因此,存在常系数回归和变异系数的回归区分。
空间计量经济学是计量经济学的⼀个分⽀,研究的是如何在横截⾯数据和⾯板数据的回归模型中处理空间相互作⽤(空间⾃相关)和空间结构(空间不均匀性)结构分析。
它与地学统计和空间统计学相似。
从某种程度上⽽⾔,空间计量经济学与空间统计学之间的不同和计量经济学与统计学之间的不同⼀样。
由于对其理论上的关⼼以及将计量经济模型应⽤到新兴⼤型编码数据库中的要求,近年来这个领域获得了快速发展。
空间数据分析和建模技巧与GIS的结合,现已⼴泛应⽤于经济政策分析中,尤其是实产和房地产经济[Anselin (1998a), Can(1998)], 环境和资源经济[Bockstael (1996), Geoghegan, Waingerand Bockstael (1997)], 发展经济[Nelson and Gray (1997)].当⾯临空间⾃相关时,标准的计量分析技巧通常会失效,⽽这种情形经常在地理或横截⾯数据集中出现,这也是空间计量得以迅速发展的原因之⼀。
传统的统计理论是⼀种建⽴在独⽴观测值假定基础上的理论。
然⽽,在现实世界中,特别是遇到空间数据问题时,独⽴观测值在现实⽣活中并不是普遍存在的(Getis, 1997)。
对于具有地理空间属性的数据,⼀般认为离的近的变量之间⽐在空间上离的远的变量之间具有更加密切的关系(Anselin & Getis,1992)。
正如著名的Tobler地理学第⼀定律所说:“任何事物之间均相关,⽽离的较近事物总⽐离的较远的事物相关性要⾼。
”(Tobler,1979)地区之间的经济地理⾏为之间⼀般都存在⼀定程度的Spatial Interaction,Spatial Effects):Spatial Dependenceand Spatial Autocorrelation)。
究》2023-10-29contents •空间经济计量学模型研究概述•空间经济计量学模型理论基础•空间经济计量学模型的构建与分析•空间经济计量学模型与其他模型的比较研究•空间经济计量学模型的实例应用研究•总结与展望目录01空间经济计量学模型研究概述空间经济计量学是经济学的一个分支,专门研究空间分布和空间依赖性,对于理解经济现象和制定政策具有重要意义。
空间经济计量学的发展通过对空间经济计量学模型的研究,可以更好地理解和解释经济活动的空间分布和空间依赖性,为政策制定提供科学依据。
研究意义研究背景与意义本研究主要探讨了空间经济计量学模型的基本理论和方法,包括模型的建立、估计和检验等。
研究方法本研究采用了文献综述、实证分析和模拟实验等方法,对空间经济计量学模型进行了深入研究。
研究内容研究内容与方法VS研究目的通过对空间经济计量学模型的研究,旨在深入探讨空间经济现象的本质和规律,为制定科学合理的经济政策提供理论支持和实践指导。
研究目标本研究旨在建立完善的空间经济计量学模型体系,实现对经济活动的空间分布和空间依赖性的准确描述和预测,为政策制定提供科学依据。
研究目的与目标02空间经济计量学模型理论基础空间计量经济学模型的概念空间计量经济学模型用于描述空间经济现象和预测空间经济发展趋势的数学模型。
空间计量经济学模型的特点考虑了空间因素,能够更好地解释经济现象之间的相互影响和关系。
研究空间经济现象和规律的科学,为空间计量经济学模型提供了理论基础。
传统计量经济学理论传统的计量经济学理论和方法为空间计量经济学模型提供了重要的借鉴和参考。
空间经济学理论空间计量经济学模型的理论基础VS03经济发展预测用于预测未来经济发展趋势和变化,为政府和企业制定经济发展计划提供支持。
空间计量经济学模型的应用范围01城市规划用于研究城市内部经济活动分布和空间结构的关系,为城市规划提供科学依据。
02区域经济研究用于研究区域内部经济活动分布和空间结构的关系,为制定区域经济发展战略提供参考。
.y i =ρ ∑W ij y j +εi,εi : N (0,δ2) , i = 1, 2...n∑W y 空间计量经济学模型空间相关性是指 y i = f (y j ), i ≠ j 即 y i 与 y j 相关 模型可表示为 y i = f (y j )+ x j βi + εi , i ≠ j (1)其中, f (g )为线性函数,(1)式的具体形式为y i = ∑ a ij y j + x i β + εi , εi : N (0,δ2) i ≠ j (2)如果只考虑应变量空间相关性,则(2)式变为(3)式ni =1(3)式中 ni =1 ij j 为空间滞后算子,W ij 为维空间权重矩阵W n ⨯n 中的元素, ρ 为待估的空间自相关系数。
ρ ≠ 0 ,存在空间效应 (3)式的矩阵形式为 y = ρWy , ε : N (0u ⨯1,δ 2I n )(4)(4)式称为一阶空间自回归模型,记为 FAR 模型 当在模型中引入一系列解释变量 X 时,形式如下y = ρWy + X β + ε , ε : N (0,δ 2I n )(5)(5)式称为空间自回归模型,记为 SAR 模型 当个体间的空间效应体现在模型扰动项时有y = X β + u , u =λWu , ε : N (0u ⨯1,δ 2I n )(6)式成为空间误差模型,记为 SEM 模型当应变量与扰动项均存在空间相关时有(6)y = ρW 1 y + X β + u , u = λW 2u + ε , ε : N (0u ⨯1,δ 2I n )(7)(7)式称为一般空间模型,记为 SAC 模型当 X = 0 且W 2 = 0 时,SAC →FAR ;当W 2 = 0 时,SAC →SAR当W 1 = 0 时,SAC →SEM当空间相关性还体现在解释变量上时,则有y = ρWy + X β + WXr + ε , ε : N (0,δ 2I n )(8)式成为空间杜宾模型,记为 SDM 模型(8)空间计量模型时间序列模型y=ρWy+εy=ρWy+Xβ+εy=Xβ+u,u=λWu+εy=ρW1y+Xβ+u,u=λW2u+εy=ρWy+Xβ+WXγ+ε注:y,x面板数据空间混合回归模型空间滞后应变量Wy=W NT y=(I T⊗W N)y空间滞后解释变量WX=W NT X=(I T⊗W N)X空间滞后扰动项Wε=W NTε=(I T⊗W N)εW NT=diag(w N,w N,...w N)NT*NT=I T⊗W N含因变量空间滞后的模型为y=λL y+εy=μ+λL y+βx+εy=μ+βx+ε+λ1Lεy=μ+λL y+βx+ε+λ1Lεy=μ+γLy+βx+β1Lx+εY NT⨯1=ρ(I T⊗W N)Y+X NK⨯KβK⨯1+εNT⨯1ρ为空间自回归参数空间面板固定效应模型(9)Y t=Xtβ+μ+φt,φt=δWφt+εt,E(εt)=0,E(εtεtT)=σ2IN(10)为加入空间残差自相关的固定效应模型(10)Y t=δWY t+X tβ+μ+εt,E(εt)=0,E(εtεt T)=σ2I N (11)为加入空间滞后因变量的固定效应模型.空间面板随机效应模型为(11)Y=Xβ+v,v=(ιT⊗I N)μ+(I T⊗B-1)ε(12)其中ιT=(1,K,1)T,B=I N-δW,(12)式为空间误差随机效应模型. Y=δ(I T⊗W N)Y+Xβ+v(13)(13)式为空间滞后应变量随机效应模型.'1⎥⎥⎢1 0 0 1 ⎢1 1 1 0 1⎥ ⎣ ⎦空间计量经济学:既要考虑应变量的空间相关性 ρWy ,也要考虑各个解释变量的空间相关性 rWX ,还要考虑各个扰动项的空间相关性 u = λWu a)地理空间权重 b) 经济空间权重c)基于距离的(阀值法、K 最近点法)注:划*者应用最为广泛W 为空间权重矩阵,以 0-1 空间权重矩阵为例A 5⨯5⎡0 1 1 1 0⎤ ⎢ = ⎢1 0 0 1 0⎥ , y 1 与 y 2 , y 3, y 4 相关。
空间计量经济学模型
空间相关性是指 ()
,i j y f y i j =≠即i y 与j y 相关 模型可表示为()
(),1i j j i i y f y x i j βε=++≠
其中,()f g 为线性函数,(1)式的具体形式为
()
()2,0,2i ij j i i i i j
y a y x N βεεδ≠=++∑:
如果只考虑应变量空间相关性,则(2)式变为(3)式
()()21
,0,,1,2...3n
i ij j i i i y W y N i n
ρεεδ==+=∑:
式中
1
n
ij
j i W
y =∑为空间滞后算子,ij W 为维空间权重矩阵n n W ⨯中的元素,ρ为待估的空间自相
关系数。
0ρ≠,存在空间效应 (3)式的矩阵形式为()
()21,
0,4u n y Wy N I ρεδ⨯=:
(4)式称为一阶空间自回归模型,记为FAR 模型 当在模型中引入一系列解释变量X 时,形式如下
()
()2,0,5n y Wy X N I ρβεεδ=++:
(5)式称为空间自回归模型,记为SAR 模型 当个体间的空间效应体现在模型扰动项时有
()
()21,,0,6u n y X u u Wu N I βλεδ⨯=+=:
(6)式成为空间误差模型,记为SEM 模型 当应变量与扰动项均存在空间相关时有
()
()2121,,0,7u n y W y X u u W u N I ρβλεεδ⨯=++=+:
(7)式称为一般空间模型,记为SAC 模型
当0X =且20W =时,SAC →FAR ;当20W =时,SAC →SAR
当10W =时,SAC →SEM
当空间相关性还体现在解释变量上时,则有
()
()2,0,8n y Wy X WXr N I ρβεεδ=+++:
(8)式成为空间杜宾模型,记为SDM 模型
注:y, x 序列均为平稳 面板数据空间混合回归模型
空间滞后应变量()NT T N Wy W y I W y ==⊗ 空间滞后解释变量()NT T N WX W X I W X ==⊗ 空间滞后扰动项()NT T N W W I W εεε==⊗
,,*(...)NT N N N NT NT T N W diag w w w I W ==⊗
含因变量空间滞后的模型为
()()1119NT T N NK K K NT Y I W Y X ρβε⨯⨯⨯⨯=⊗++
ρ为空间自回归参数
空间面板固定效应模型
2,,()0,()T t t t t t t t t t N
Y X W E E I βμφφδφεεεεσ=++=+==
(10)
(10)为加入空间残差自相关的固定效应模型
2,()0,()T t t t t t t t N Y WY X E E I δβμεεεεσ=+++== (11)
(11)为加入空间滞后因变量的固定效应模型. 空间面板随机效应模型为
Y X v β=+,1()()T N T v I I B ιμε-=⊗+⊗ (12)
其中()1,,1T T ι'=K , N B I W δ=-, (12)式为空间误差随机效应模型.
()T N Y I W Y X v δβ=⊗++ (13)
(13)式为空间滞后应变量随机效应模型.
空间计量经济学:既要考虑应变量的空间相关性Wy ρ,也要考虑各个解释变量的空间相关性rWX ,还要考虑各个扰动项的空间相关性u Wu λ= a) 地理空间权重 b) 经济空间权重
c) 基于距离的(阀值法、K 最近点法) 注:划*者应用最为广泛
W 为空间权重矩阵,以0-1空间权重矩阵为例
55
0111010011100101110101010A ⨯⎡⎤
⎢⎥⎢⎥
⎢⎥=⎢⎥
⎢⎥⎢⎥⎣⎦
,1y 与234,,y y y 相关。
(标准化)(()W f t ≠不太合理)
空间计量经济学
Y X u β=+为矩阵向量形式的单方程框架的模型
此模型假定样本12,,...n y y y 是独立的
当i y 与j y 相关时,则模型变为 11n n n n y W y X u ρβ⨯⨯⨯=++
当1,...k x x 的每个解释变量设l x ,取样本后12,...,l l nl x x x 也相关,则模型变为
y Wy WX u ργ=++
当不考虑y 或x 空间相关,只考虑随机项同期相关性时,模型变为,y X u u Wu βλε=+=+ 这里W 为空间权重矩阵 例如 12345,,,,y y y y y
空间权重矩阵设为1255
34501110100111
00101110101010y y A y y y ⨯⎡⎤
⎢⎥⎢⎥⎢⎥=⎢⎥
⎢⎥⎢⎥⎣⎦
归一化为111
333
1113
331122
1111444
4112200000000000W ⎡⎤⎢⎥
⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦
并假定,W 不随时间和变量变化(此假定不太合理)
空间经济计量模型与面板数据相结合形成了空间面板经济计量模型,这也是一个新的热点。
非参数模型
1. 什么是非参数模型:非参数模型是指不具备明确的参数形式设定的模型。
比如研究t y 和解释变量t x 之间的关系模型可设为 a)t t t y x βε=+ (1)为参数模型 b)(),t t t y f x βε=+
(2)为非参数模型(函数形式是未知的)
(2)式为非参数模型的一般设定形式 解决()|t t E Y X 有两种办法:
其一,通过模型设定来模拟t y 的条件期望,这是参数模型的方法 其二,通过对t y 条件分布的估计来估计t y 的条件期望,这是非参数方法 设 ()()|m x E Y X x ==为条件回归函数
无(非)参数回归模型就是要在给定样本[]1n
i i i X Y =下得到条件回归函数()m x 的一个估计
()·n
m t 如果X 是确定性变量,(1)式可以表示为
(),1,...,i i i y m x i n ε=+=
其中{}1n
i i ε=是相互独立,均值为0,方差为2
δ的序列
非参数回归模型的估计有三种方法:权函数法、最小二乘估计、稳健估计 2.半参数模型=线性回归模型+非参数模型 一般形式为()()
124t t t t y x f x βε=++
3.非参数模型的优缺点
优点:参数模型设定有误无论采取什么先进和准确的估计方法,结果一定是有解的,但非参数模型可放松回归函数形式的限制,减少和避免有模型设定失误导致估计和预测的结果错误的可能。
缺点:非参数模型回归结果外延有困难。