利息理论第四章 债务偿还
- 格式:ppt
- 大小:285.50 KB
- 文档页数:32
《利息理论》复习提纲第一章 利息的基本概念 第一节 利息度量 一. 实际利率某一度量期的实际利率是指该度量期内得到的利息金额与此度量期开始时投资的本金金额之比,通常用字母i 来表示。
利息金额I n =A(n)-A(n-1)对于实际利率保持不变的情形,i=I 1/A(0); 对于实际利率变动的情形,则i n =I n /A(n-1); 例题:1.1.1二.单利和复利考虑投资一单位本金,(1) 如果其在t 时刻的积累函数为 a(t)=1+i*t ,则称这样产生的利息为单利;实际利率 )()()()(1111-+=---=n i in a n a n a i n(2) 如果其在t 时刻的积累函数为a(t)=(1+i)t ,则称这样产生的利息为复利。
实际利率 i i n =例题:1.1.3 三.. 实际贴现率一个度量期的实际贴现率为该度量期内取得的利息金额与期末的投资可回收金额之比,通常用字母d 来表示实际贴现率。
等价的利率i 、贴现率d 和贴现因子(折现因子)v 之间关系如下:,(1),1111,,,1d ii d i i d d iv d d iv v i d idi=+==-+=-==-=+例题:1.1.6 四.名义利率与名义贴现率用()m i 表示每一度量期支付m 次利息的名义利率,这里的m 可以不是整数也可以小于1。
所谓名义利率,是指每1/m 个度量期支付利息一次,而在每1/m 个度量期的实际利率为()/m i m 。
与()m i 等价的实际利率i 之间的关系:()1(1/)m m i i m +=+。
名义贴现率()m d ,()1(1/)m m d d m -=-。
名义利率与名义贴现率之间的关系:()()()()m m m m i d i d m m m m-=⋅。
例题:1.1.9 五.利息强度定义利息强度(利息力)为()()()()t A t a t A t a t δ''==, 0()ts ds a t e δ⎰=。
1.解:由0.12200010000n a ⨯=得0.125n a = 查表得:8<n<9 ∴[n]=8,则:980.122000 1.121000179.47366a X X -⨯+⨯=≈故:4530.122000 1.124917.72B a X -=⨯+⨯≈ 2.解:设分十年均衡偿还的年金额为Y ,则100.08Y a X ⨯=100.08X Y a =由题意得:1010100.081.0810468.05101.08468.05700X X Y X X X a X ⨯-=-+⨯-=≈3.解:由题意知每个季度的实际利率为2.5%,设最初贷款额为X ,则440.0251.02515001200016514.375X s X ⨯-⨯=≈4.解:由题意得100.08(10000)10000X i s -⨯=100.081000010000X i s =+……① 100.08100.08(10000)(1.520000)X i s X i s -⨯=-⨯ 0.510000X i =……②把①代入②得:500050001000014.4865610.069014.48656i ii +=≈≈5.未来法:8320001000i i s a ⨯+⨯过去法721510552(200010001000)(1)4000(1)3000i i i i i a a a i s i s ⨯+⨯+⨯⨯+-⨯⨯+-⨯ 6.解:112213t n t t n t t n t t n t B a B a B a B a -+--+--+--====⑴对于212312()()()t t t t t t B B B B B B +++++--=-1231212221212321111(1)(1)(1)()()()()n t n t n t n t n t n t n t t t t t v v v v v v v v v v B B B B i i i i i i i ---------------+++---------=--=⨯=12112221222212211(1)(1)()()()n t n t n t n t t t v v v v v v B B i i i i ----------++-----=-==所以212312()()()t t t t t t B B B B B B +++++--=-⑵对于312t t t t B B B B ++++<+ 因为3123123121321211221()1111(1)[(1)(1)](1)(1)0,(1)0,(1)0t t t t t t t t n t n t n t n t n t n t n t n t B B B B B B B B v v v v i i i i v v v v iv v v v iv v v iv v v ++++++---------------------+-+=+------=+---+-+=-+--+=--=>->-< 所以312t t t t B B B B ++++<+7.解:设月实际利率为j ,则1114812804012080120(1)(1)1.5100000110000077103.811j j j i v B a a v ---+=+=-=⨯=⨯≈-8.解:由题意知前12次的季实际利率为0.03,调整后的季实际利率为0.035,则121212120.03120.03523115 1.03 1.0351000 1.0351********.39s s ⨯⨯-⨯⨯-⨯≈9.解:由题意,设第k 年末的偿还额X 中有 利息部分2012010.09(1)k R k I a X v -+-+==⨯- 本金部分201k R R B X I X v -+=-=⨯∴201201201(20)1(1)1.090.5ln 0.520ln1.0913k R R k k k B X I X v v X X v k k -+-+-+--+-=-=⨯-⨯=⨯=-+=≈10.解:设6(1)i X -+=,第9年的付款额为Y ,则由题意得61221000(1)1366.87(1)10001.3668710i i X X --⨯++⨯+=+-=取X ≈0.5644736即6(1)0.5644736i -+= ∴69321000(1)(1)100010000.56447360.564473610001026.95i Y i Y Y --⨯++⨯+=⨯+⨯=≈11.解:设每次的偿还额为X ,由题意知季实际利率为2.5%,则18181550.025100100 1.025155.96587155.96587724.59X v X B a ⋅==⨯≈=⨯≈12.解:设n 为变化的第7次后的剩余还款时间。
第四章债务偿还1.解:5510000 1.1220004917.72s ⨯-=2.解:()10100.081.081468.0510x x x a -=+⋅-3.解:设共需还款n 次415001200n a -=最初贷款额1500n a =4.解: 100.0810000100001.5100002X i P Ps X i P =+⎧⎪=⎨⎪=⨯+⎩5.解:过去法:()()()()7251051510524000300020001400013000a a a a a i s i s ⎡⎤+-+-+-+-⎣⎦ 未来法:33530002000a a v +7.解:()11481211 1.5i i +=+=月 80120100000i i a a 月月8.解:由于不知利率上调后偿还期的变化,因此用过去法比较简便()()121212120.03120.0352311510.0310.0351000 1.0351000s s ++-- 9.解:2012011k k v v -+-+=-10.解:()()()6126100011366.87110001i i i ---+++=⇒+= ()31366.871i -∴+= 11.解:2016120171201812019120201vv v v v -+-+-+-+-+++++ 5543211v v v v v v i -=++++=; 2031100Pv P -+=⇒;51v P i- 12.解:20817720(1)k s v a i a -++=+- (k 为剩余还款数)解得:k =12原利息:2020a -; 现利息:207x k a ++-∴节省利息 131********x k v v --=--=-13.解:()()358113522114144113511080.25P P v P v v -+-+=⎧⎧-=⎪⎪⇒⎨⎨-=⎪⎪=⎩⎩ 第29次 ()35291172P v-+-= 14.解:L 每次还款额为030B a , N 每次还款本金为030B ,第t 次还款额为000030(1)3030B B B B t i a ⎡⎤--+<⎢⎥⎣⎦ 15.解:30121121121.0021 1.051250001.0510.002P ⨯⎛⎫ ⎪- ⎪⎝⎭=-- 16.解:3108112i v --+⎛⎫=+ ⎪⎝⎭17.解:()31300012000n vn -+-=⇒613000n v -+ 18.解:418%(1i +=+季)()4050040i a -季19.解:每月还款额360100000i P a =月 120120325.40)(1)100000120i k i Pa P a i k -+++=⇒=月月月(∴利息支出为:120(325.40)12010000066261.2P P ⨯++⨯-=20.解:10444104410410 1.054 1.0520010 1.0520010 1.050.050.05a a B a a --⎛⎫⎛⎫-⨯-⨯=+⨯-+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭第5次还款中的利息为4iB21.解:10101010a v Pa P i P i ⎡⎤-+=⎢⎥⎢⎥⎣⎦22.解:1055510510510510(1)(1)10(1)(1)a v a v a i a i i i i ⎧⎫⎡⎤⎡⎤--⎪⎪+-+-+-+⎢⎥⎢⎥⎨⎬⎢⎥⎢⎥⎪⎪⎣⎦⎣⎦⎩⎭23.解:(1) 331.041 1.12000400 1.11287.760.06⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥-=⎢⎥⎢⎥⎣⎦(2)第二年末贷款余额为: 221.041 1.12000400 1.115640.06⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥-=⎢⎥⎢⎥⎣⎦∴第三次还款中本金为 1564-1287.76=276.2424.此题较麻烦25.解:10102555ln1.05 2.8658t t B dt a dt δ-==⎰⎰ 27.解:10.1t B t =-(1)510.150.5B =-⨯=前5年还款本金为:510.5B -=(2)55000.1(10.1)0.375t B dt t dt δ=-=⎰⎰28.解:120.04250.0410000100005%0.04355.69s s ⨯-= 第9年偿债基金增长额为80.04250.04250.0410000100000.04328.61s s s +=29.解:40.03100.0310******** 1.03100005%s s -+⨯ 30.解:(1)1000010%1000Li =⨯=(2)1500-1000=500(3)5000100050000.08600Li j -=-⨯=(4)5000(1)5005000900j ++-=(5)5000(1)5005900j ++=32.解:100.0710000Xs = 33.解: 100.04100.05220.0510002L Ds L xa L D x ⎧=⎪⎪⎪=⎨⎪⎪++=⎪⎩34.解:10100.04100.0412000(280 1.04400)s s -+ 35.解:310.0340000040000036000i s += 36.解:2020200.03200.0320 1.0350 1.031000000.03a Xa -⎡⎤-⨯+=⎢⎥⎢⎥⎣⎦。
《利息理论》习题详解 第一章 利息的基本概念1.解:(1))()0()(t a A t A =又()25A t t =+(0)5()2()1(0)55A A t a t t A ∴===++ (2)3(3)(2)11(92 2.318I A A =-=== (3)4(4)(3)0.178(3)A A i A -===2.解:15545(4)(3)(1)100(10.04)0.05 5.2nn n I i A I A i A i i -=∴==+=+⨯=3.证明: (1)123(1)()(2)(1)(3)(2)()(1)m m m m k I A m A m I A m A m I A m A m I A m k A m k ++++=+-=+-+=+-+=+-+-123123()()()()()m m m m k m m m n I I I I A m k A m n m k A n A m I I I I m n +++++++∴++++=+-=+-=++++<令有(2)()(1)()1(1)(1)n A n A n A n i A n A n --==---()1(1)()(1)(1)n n A n i A n A n i A n ∴+=-∴=+-4.证明: (1)112123123(1)(0)(0)(2)(0)(0)(0)(3)(0)(0)(0)(0)()(0)(0)(0)(0)(0)k nk i a a a i a a a i a i a a a i a i a i a n a a i a i a i a i ∴=+=++=+++=+++++第期的单利利率是又(0)1a =123123()1()(0)()1nna n i i i i a n a a n i i i i ∴=+++++∴-=-=++++(2)由于第5题结论成立,当取0m =时有12()(0)n A n A I I I -=+++5.解:(1)以单利积累计算1205003i =⨯1200.085003i ∴==⨯800(10.085)1120∴+⨯=(2)以复利积累计算3120500500(1)i +=+0.074337i ∴=5800(10.074337)1144.97∴+=6.解:设原始金额为(0)A 有(0)(10.1)(10.08)(10.06)1000A +++=解得 (0)794.1A =7.证明:设利率是i ,则n 个时期前的1元钱的当前值为(1)ni +,n 个时期后的1元钱的当前值为1(1)ni +又22211[(1)](1)20(1)(1)n n n ni i i i +-=++-≥++,当且仅当221(1)(1)1(1)n n n i i i +=⇒+=+,0i =即或者n=0时等号成立。
目 录第一篇 利息理论第1章 利息的基本概念第2章 年 金第3章 收益率第4章 债务偿还第5章 债券及其定价理论第二篇 利率期限结构与随机利率模型第6章 利率期限结构理论第7章 随机利率模型第三篇 金融衍生工具定价理论第8章 金融衍生工具介绍第9章 金融衍生工具定价理论第四篇 投资组合理论第10章 投资组合理论第11章 CAPM和APT附 录 2011年秋季中国精算师考试《金融数学》真题及详解第一篇 利息理论第1章 利息的基本概念单项选择题(以下各小题所给出的5个选项中,只有一项最符合题目要求,请将正确选项的代码填入括号内)1.已知在未来三年中,银行第一年按计息两次的名义年利率10%计息,第二年按计息四次的名义年利率12%计息,第三年的实际年利率为6.5%。
某人为了在第三年末得到一笔10000元的款项,第一年年初需要存入银行( )元。
[2011年秋季真题]A.7356B.7367C.7567D.7576E.7657【答案】C【解析】由名义年利率和实际年贴现因子的等价关系,可得:每年的贴现因子分别为,,。
因此,第三年末10000元的款项在第一年初的现值为:。
2.已知0时刻在基金A中投资1元到2t时的积累值为(3t+1)元,在基金B中投资1元到3t时的积累值为元。
假设在T时基金B的利息强度为基金A的利息强度的两倍,则0时刻在基金中B投资1000元在5T时的积累值为( )元。
[2011年秋季真题]A.27567B.27657C.27667D.27676E.27687【答案】C【解析】由题得,0时刻在基金A中投资1元到t时的积累值为(1.5t+1)元,即积累因子,利息强度在基金B中投资1元到3t时的积累值为元,因此在基金B中投资1元到t时的积累值为元,因此。
当时,即,解得,因此0时刻在基金中B投资1000元在5T时的积累值为元。
3.已知某基金的积累函数a(t)为三次函数,每三个月计息一次,第一季度每三个月计息一次的年名义利率为10%,第二季度每三个月计息一次的年名义利率为12%,第三季度每三个月计息一次的年名义利率为15.2%,则为( )。
《利息理论》教学大纲课程编号:113652A课程类型:专业课总学时:32讲课学时:32实验(上机)学时:0学分:2适用对象:保险精算专业先修课程:金融学、微积分、线性代数、概率与数理统计一、教学目标《利息理论》是保险、精算专业的一门专业必修课程。
本课程教学的主要内容是介绍利息理论的基本知识,包括:利息的基本概念、年金、收益率、债务偿还、债券与其他证券、利息理论的应用与金融分析。
二、教学内容及其与毕业要求的对应关系(一)教学内容通过本课程的学习,使学生掌握应用数学工具对金融保险业务中与利息有关的方面进行定量分析的一些方法,并为今后对现代金融业务作进一步研究或实务打下坚实的基础。
作为保险精算专业学生培养,涉及到金融领域的许多计算问题具有共同的数学特征和模型,大量的计算和分析实践的基础是现金流分析和货币的时间价值(累积和贴现)计算。
本课程的基本理念是使学生掌握基本的投资和金融计算的术语、概念及计算原则。
理论与实际联系起来,更好的让学生掌握一些基础性的金融工具的现金流价值分析。
要求教师用多媒体的形式,结合投资学,保险学的知识基础,掌握金融产品的定量分析方法。
本课程采用闭卷方式考核。
(三)毕业要求利息理论是精算专业的专业基础课。
课程要求学生掌握基本的投资和金融计算的术语、概念及计算原则,并为学生今后学习现代金融业务作及寿险精算的学习工作打下坚实的基础。
三、各教学环节学时分配教学课时分配四、教学内容第一章利息理论的基础概念第一节利息度量第二节利息问题求解教学重点、难点:利息度量和求解课程考核要求:掌握实际利率、实际贴现率、名义利率、名义贴现率、利息效力、贴现效力的概念;理解利息度量中所涉及的基本原则与基本假设;应用会用时间图建立价值方程,从而求出原始投资的本金、投资时期的长度、利率或本金在投资期末的积累值。
掌握:是指学生能根据不同情况对某些概念、定律、原理、方法等在正确理解的基础上结合实例加以运用。
第二章年金第一节年金的标准型第二节年金的一般型教学重点、难点:年金的含义及计算方法课程考核要求:掌握标准年金、一般年金和永续年金的概念;理解推演年金在任意时刻现时值的代数表达式的方法;应用会求在任意时刻的年金值,会求解年金的未知时间、未知利率问题。
1. 某人借款1万元,年利率12%,采用分期还款方式,每年末还款2000元,剩余不足2000元的部分在最后一次2000元还款的下一年偿还。
计算第5次偿还款后的贷款余额。
解:550.125.10000 1.1220004917.7rB S =⨯-=2. 甲借款X ,为期10年,年利率8%,若他在第10年末一次性偿还贷款本利和,其中的利息部分要比分10年期均衡偿还的利息部分多468.05元,计算X 。
解:10100.0810(1.081)()468.05,700.14xx x x a ---== 3.一笔贷款每季末偿还一次,每次偿还1500元,每年计息4次的年名义利率为10%。
若第1年末的贷款余额为12000元,计算最初贷款额。
解:0000040410444104410(1)15001200,16514.374150016514.37rB L S L a=+-==+= 或L=12000v4.某人贷款1万元,为期10年,年利率为i ,按偿债基金方式偿还贷款,每年末支出款为X ,其中包括利息支出和偿债基金存款支出,偿债基金存款利率为2i ,则该借款人每年需支出额为1.5X ,计算i 。
解:100.0810000(10000)x i S =-00100.08 6.9i ⇒=10000=(1.5x-20000i)S5.某贷款期限为15年,每年末偿还一次,前5年还款每次还4000元,中间5次还款每次还3000元,后5次还款每次还2000元,分别按过去法和未来法,给出第二次3000元还款之后的贷款余额表达式。
解:72715105521000(2+)(1)1000[4(1)3]rB a a a i S i S =++-++过去法:71510572=1000(2a +a +a )(1+i)-1000(4S -S )373583300020001000(2)ra a V a a =+=+未来法:B6.一笔贷款按均衡偿还方式分期偿还,若t t+1t+2t+3B B B B ,,,为4个连续期间末的贷款余额,证明:(1)2t t+1t+2t+3t+1t+2B -B B -B =B -B ()()()(2)t t+3t+1t+2B +BB +B解:123123t t t t n t n t n t n t B pa +++-------= B =pa B =pa B =pa (1)2123123()()()()t t t t n t n t n t n t B B B B p a a a a +++---------=-- 21311n t n t p V a V a ----=或 2221=()n t Va --或p212=t t ++或(B -B )(2)1321231n t n t t t t t B B B B VV V ----+++-<-⇔<⇔< 7.某人购买住房,贷款10万元,分10年偿还,每月末还款一次,年利率满足()41+i =1.5。
1. 某人借款1万元,年利率12%,采用分期还款方式,每年末还款2000元,剩余不足2000元的部分在最后一次2000元还款的下一年偿还。
计算第5次偿还款后的贷款余额。
解:550.125.10000 1.1220004917.7rB S =⨯-=2. 甲借款X ,为期10年,年利率8%,若他在第10年末一次性偿还贷款本利和,其中的利息部分要比分10年期均衡偿还的利息部分多468.05元,计算X 。
解:10100.0810(1.081)()468.05,700.14xx x x a ---== 3.一笔贷款每季末偿还一次,每次偿还1500元,每年计息4次的年名义利率为10%。
若第1年末的贷款余额为12000元,计算最初贷款额。
解:0000040410444104410(1)15001200,16514.374150016514.37rB L S L a=+-==+= 或L=12000v4.某人贷款1万元,为期10年,年利率为i ,按偿债基金方式偿还贷款,每年末支出款为X ,其中包括利息支出和偿债基金存款支出,偿债基金存款利率为2i ,则该借款人每年需支出额为1.5X ,计算i 。
解:100.0810000(10000)x i S =-00100.08 6.9i ⇒=10000=(1.5x-20000i)S5.某贷款期限为15年,每年末偿还一次,前5年还款每次还4000元,中间5次还款每次还3000元,后5次还款每次还2000元,分别按过去法和未来法,给出第二次3000元还款之后的贷款余额表达式。
解:72715105521000(2+)(1)1000[4(1)3]rB a a a i S i S =++-++过去法:71510572=1000(2a +a +a )(1+i)-1000(4S -S )373583300020001000(2)ra a V a a =+=+未来法:B6.一笔贷款按均衡偿还方式分期偿还,若t t+1t+2t+3B B B B ,,,为4个连续期间末的贷款余额,证明:(1)2t t+1t+2t+3t+1t+2B -B B -B =B -B ()()()(2)t t+3t+1t+2B +BB +B解:123123t t t t n t n t n t n t B pa +++-------= B =pa B =pa B =pa (1)2123123()()()()t t t t n t n t n t n t B B B B p a a a a +++---------=--21311n t n t p V a V a ----=或 2221=()n t V a --或p212=t t ++或(B -B )(2)1321231n t n t t t t t B B B B VV V ----+++-<-⇔<⇔< 7.某人购买住房,贷款10万元,分10年偿还,每月末还款一次,年利率满足()41+i =1.5。