原子发射光谱实验
- 格式:docx
- 大小:34.66 KB
- 文档页数:1
高中物理原子发射实验教案
实验目的:通过观察原子在激发下发射光线的现象,了解原子结构和光谱现象。
实验材料:汞灯、扩展器、光栅、光电管、示波器、功率源等。
实验步骤:
1. 将汞灯放置在实验台上,并将扩展器对准汞灯形成的光线束。
2. 将光栅插入扩展器中,调整其角度,使得入射光线发生衍射。
3. 将光电管放置在一定位置,并确保其与光线束垂直。
4. 将示波器接入光电管,调节示波器参数,观察输出的光谱信号。
5. 调节功率源的电压和电流,改变激发原子的条件,观察信号的变化。
实验原理:当原子受激发时,会发射特定波长的光线,形成特定的光谱线。
通过光栅的衍射效应,可以将这些光谱线进行分散,使其能够被光电管捕获并转化为电信号。
最终,利用示波器可以观察到这些信号的波形,从而得到原子发射的光谱信息。
实验注意事项:
1. 操作时要注意安全,避免触电和光线伤害。
2. 实验过程中要注意调节光电管和示波器参数,保证信号清晰可见。
3. 实验结束后要关闭功率源和示波器,注意归还实验材料并清理实验台面。
实验结果分析:根据观察到的光谱信号波形和频率,可以推断出激发原子的波长和能级情况。
通过实验数据的分析,可以进一步了解原子结构和光谱现象。
拓展实验:可以尝试使用其他原子源或改变激发条件,观察不同原子的发射光谱,进一步探索原子结构和光谱现象的规律。
(备注:实验的具体步骤和参数设置可以根据实际情况进行调整,以确保实验的顺利进行和结果的准确观察。
)。
原子发射光谱法-摄谱和译谱一、实验目的和要求1、熟悉光谱定性分析的原理;2、了解石英棱镜摄谱仪的工作原理和基本结构;3、学习电极的制作摄谱仪的使用方法及暗室处理技术;4、学会用标准铁光谱比较法定性判断试样中所含未知元素的分析方法;5、根据特征谱线的强度及最后线出现的情况对元素含量进行粗略的估计;6、掌握映谱仪的原理和使用方法。
二、实验内容和原理1、摄谱原子在受到一定能量的激发后,其电子在由高能级向低能级跃迁时将能量以光辐射的形式释放,各种元素因其原子结构的不同而有不同的能级,因此每一种元素的原子都只能辐射出特定波长的光谱线,它代表了元素的特征,这是发射光谱定性分析的依据。
一个元素可以有许多条谱线,各条谱线的强度也不同。
在进行光谱定性分析时,并不需要找出元素的所有谱线,一般只要检查它的几条(2~3条)灵敏线或最后线,根据最后线(灵敏线)是否出现,它们的强度比是否与谱线所表示的相符,就可以判断该元素存在与否。
经典电光源的试样处理:1)固体金属及合金等导电材料的处理棒状金属表面用金刚砂纸除氧化层后,可直接激发。
碎金属屑用酸或丙酮洗去表面污物,烘干后磨成粉末状后,最好以1:1与碳粉混合,在玛瑙研钵中磨匀后装入下电极孔内再激发。
2)非导体固体试样及植物试样非金属氧化物、陶瓷、土壤、植物等试样经灼烧处理后,磨细,加入缓冲剂及内标,置于石墨电极孔中用电弧激发。
3)液体试样处理液体样品经稀释后,滴到用液体石蜡涂过的平头石墨电极上,在红外灯下烘干后进行光谱分析。
摄谱法是用感光板记录光谱。
将光谱感光板置于摄谱仪焦面上,接受被分析试样的光谱作用而感光,再经过显影、定影等过程后,制得光谱底片,其上有许多黑度不同的光谱线。
然后用影谱仪观察谱线位置及大致强度,进行光谱定性及半定量分析。
用测微光度计测量谱线的黑度,进行光谱定量分析。
用发射光谱进行定性分析通常采用在同一块感光板上并列地摄取试样光谱和铁光谱,然后借助光谱投影仪使摄得的铁光谱与“元素标准光谱图”上的铁光谱重合,从“元素标准光谱图”上标记的谱线来辨认摄得的试样谱线。
原子发射光谱实验报告.doc 实验报告:原子发射光谱实验一、实验目的原子发射光谱法是一种通过观测物质内部原子发射的特定光波长来分析物质成分的方法。
本实验旨在通过观察和测量不同元素在火焰中的原子发射光谱,了解和掌握原子发射光谱的基本原理,以及其在元素分析中的应用。
二、实验原理当物质中的原子受到外部能量的激发时,它们会从基态跃迁到激发态,然后从激发态回到基态时,会释放出特定波长的光。
不同元素的原子具有不同的能级结构,因此它们发射的光波长也不同。
通过测量这些光波长及其对应的强度,可以确定物质中元素的种类和含量。
三、实验步骤1.样品制备:选取具有代表性的样品,将其研磨成粉末,与一定比例的酸混合均匀。
2.制备标准溶液:配置不同浓度的标准溶液,以确定最佳的测量条件。
3.安装雾化器:将样品溶液倒入雾化器中,安装至原子发射光谱仪的气体入口。
4.开启燃气和助燃气:点燃燃气和助燃气,产生火焰。
5.调整工作参数:根据标准溶液的测量结果,调整仪器的工作参数,如光源电压、光阑孔径等。
6.测量光谱:观察火焰中的原子发射光谱,记录各个元素的特征谱线。
7.数据处理与分析:根据测量结果,利用相关软件计算元素的含量。
四、实验结果及数据分析本次实验选取了多种元素进行测量,以下是其中几种元素的测量结果:求。
通过本次实验,我们成功掌握了原子发射光谱法的基本原理及其在元素分析中的应用。
通过对不同元素的原子发射光谱进行观察和测量,我们可以准确地确定物质中元素的种类和含量。
这对于实际生产和科研中元素的定量分析具有重要意义。
五、结论本次实验通过观察和测量不同元素在火焰中的原子发射光谱,了解了原子发射光谱的基本原理和其在元素分析中的应用。
实验结果表明,利用原子发射光谱法可以准确地确定物质中元素的种类和含量。
该方法具有操作简便、快速、准确等优点,对于实际生产和科研中元素的定量分析具有指导意义。
六、建议与展望尽管本次实验取得了较好的结果,但仍有一些方面可以改进和提升:1.在实验过程中,应严格控制燃气和助燃气的比例,以获得最佳的火焰效果和稳定的测量结果。
实验31(A )原子发射光谱观测分析【实验目的】1. 学会使用光学多通道分析器的方法2. 通过对钠原子光谱的研究了解碱金属原子光谱的一般规律3. 加深对碱金属原子中外层电子与原子核相互作用以及自旋与轨道运动相互作用的了解【实验仪器】光学多通道分析器、光学平台、汞灯、钠灯、计算机【原理概述】钠属碱金属原子类,碱金属原子和氢原子一样,都只有一个价电子。
但在碱金属原子中除了一个价电子外,还有内封闭壳层的电子,这些内封壳层电子与原子核构成原子实。
价电子是在原子核和内部电子共同组成的力场中运动。
原子实作用于价电子的电场与点电荷的电场有显著的不同。
特别是当价电子轨道贯穿原子实时(称贯穿轨道),这种差别就更为突出。
因此,碱金属原子光谱线公式为:()()222*12*211~ll n R n R n n R μμν--'-'=⎪⎪⎭⎫ ⎝⎛-=' 其中ν~为光谱线的波数;R 为里德堡常数。
n '与n 分别为始态和终态的主量子数*2n 与*1n 分别为始态和终态的有效量子数l '与l 分别为该量子数决定之能级的轨道量子数l ''μ与l μ分别为始态和终态的量子缺(也称量子改正数,量子亏损)根据就的波尔理论,在电子轨道愈接近原子中心的地方,μ的数值愈大。
当轨道是贯穿轨道实,μ得数值还要大些。
因为这时作用在电子上的原子核的有效电荷Z eff 有很大程度的改变。
在非常靠近原子核的地方,全部核电荷作用在电子上。
而距离很远的,原子核被周围电子屏蔽,以致有效核电荷1→eff Z 。
因此s 项的μ值最大,而对p 项来说就小一些,对于d 来说还更小,由此类推。
因而量子缺μ的大小直接反映原子实作用于价电子的电场与点电荷近似偏离的大小对于钠原子光谱分如下四个线系主线系:s np 3~→=ν锐线系:p ns 3~→=ν漫线系:p nd 3~→=ν基线系:d nf 3~→=ν对于某一线系谱线的波数公式可写为:()2~l nT n R A μν--= 其中 为常数,称为固定项。
一、实验目的1. 熟悉原子光谱的基本原理和实验方法;2. 通过观察氢原子光谱,了解原子能级结构;3. 掌握光谱仪的使用方法,提高实验操作技能。
二、实验原理原子光谱是原子在激发态向基态跃迁过程中,释放或吸收的能量以光子的形式发射(或吸收)出来的。
由于原子能级是量子化的,因此发射(或吸收)的光子的能量也是量子化的,从而产生了一系列特定波长的光谱线。
氢原子光谱是最简单、最典型的原子光谱,具有明显的规律性。
本实验采用光栅光谱仪观察氢原子光谱,通过分析光谱线,了解氢原子的能级结构,并计算里德伯常数。
三、实验仪器与材料1. 光栅光谱仪;2. 氢气发生装置;3. 氢灯;4. 激光笔;5. 记录纸;6. 计算器。
四、实验步骤1. 将氢气发生装置连接到氢灯上,确保氢气供应稳定;2. 打开氢灯,预热5-10分钟;3. 将光栅光谱仪调整至适当位置,确保光谱仪光轴与氢灯出光方向一致;4. 调整光谱仪的狭缝宽度,使光谱清晰;5. 观察氢原子光谱,记录光谱线位置及亮度;6. 利用激光笔标出光谱线位置,便于后续数据处理;7. 将记录纸放入光谱仪,进行光谱记录;8. 关闭氢灯,结束实验。
五、实验结果与分析1. 观察到氢原子光谱呈现出一系列特定波长的光谱线,位于可见光区域;2. 通过数据处理,得到氢原子光谱巴尔末系前几条谱线的波长;3. 根据巴尔末公式,计算里德伯常数。
六、实验讨论1. 实验过程中,氢气供应的稳定性对光谱观测结果有较大影响,应确保氢气供应充足、稳定;2. 光栅光谱仪的狭缝宽度对光谱观测结果有一定影响,应调整至合适宽度;3. 实验过程中,注意观察光谱线亮度变化,以判断光谱观测结果的准确性;4. 实验结果与理论值存在一定误差,可能由于仪器精度、实验操作等因素引起。
七、实验总结通过本次实验,我们了解了原子光谱的基本原理和实验方法,观察到了氢原子光谱,并计算了里德伯常数。
实验过程中,我们掌握了光谱仪的使用方法,提高了实验操作技能。
光谱检测技术实验讲义2015.10.10原子光谱测量(A) 原子发射光谱测量【实验目的】1.学会使用光学多通道分析器的方法。
2.了解碱金属原子光谱的一般规律。
3.加深对碱金属原子中外层电子与原子核相互作用以及自旋与轨道运动相互作用的了解。
【仪器用具】光学多通道分析器WGD-6,光学平台GSZ-2,汞灯,钠灯,计算机。
【原理概述】钠原子光谱特点:钠原子光谱分四个线系:主线系:np →3s ( n = 3,4,5, …)锐线系:ns →3p ( n = 4,5,6, …)漫线系:nd →3p ( n = 3,4,5, …)基线系:nf →3d ( n = 4,5,6, …)各线系的共同特点:1.同一线系内,越向短波方向,相邻谱线的波数差越小,最后趋于连续谱与分立谱的边界。
2.在同一线系内,越向短波方向,谱线强度越小。
各线系的区别:1.各线系所在光谱区域不同。
主线系只有3p →3s 的两条谱线(钠双黄线)在可见区,其余在紫外区。
锐线系和漫线系的谱线除第一条线在红外区外,其余都在可见区。
基线系在红外区。
2.由于s能级不分裂,p、d、f能级由于电子自旋与轨道运动作用引起谱项分裂,它们是双重的。
这些双重分裂随能级增高而变小。
因此,根据选择定则,主线系和锐线系是双线的。
主线系双线间的波数差越往短波方向越小,锐线系各双线波数差相等。
漫线系和基线系是复双重线的。
3.从谱线的外表上看,主线系强度较大,锐线系轮廓清晰,漫线系显得弥漫,一般复双重线连成一片。
【实验步骤】1.检查多通道分析器工作状态。
2.点燃汞灯,利用汞灯的546.07nm,576.96nm,578.97nm三条谱线为光学多通道分析器定标,起始波长为440nm。
3.点燃钠灯,实时采集钠灯发射光谱,利用已定标的数据,测出钠谱线双黄线的波长。
4.将光学多通道分析器的起始波长分别改为460nm、480nm、500nm、520nm,重复步骤2和3。
5.求钠双黄线波长的测量平均值,分析误差。
原子发射光谱分析实验一、【实验题目】原子发射光谱分析实验二、【目的要求】要求同学掌握原子发射光谱分析中所用仪器设备基本结构及其原理;了解发射光谱法定性及定量分析的步骤;要求同学利用看谱法分析铬、钨、锰钢中的铬、钨、锰的含量,给出它们的含量范围;掌握铁光谱比较法定性判别未知试样中所含的元素;了解特种钢中可能存在的其它元素。
三、【基本原理】原子发射光谱分析是根据原子所发射的光谱来测定物质的化学组分的。
不同物质由不同元素的原子所组成,而原子都包含着一个结构紧密的原子核,核外围绕着不断运动的电子。
每个电子处在一定的能级上,具有一定的能量。
在正常的情况下,原子处于稳定状态,它的能量是最低的,这种状态称为基态。
但当原子受到外界能量(如热能、电能等)的作用时,原子由于与高速运动的气态粒子和电子相互碰撞而获得了能量,使原子中外层的电子从基态跃迁到更高的能级上,处在这种状态的原子称激发态。
处于激发态的原子是十分不稳定的,在极短的时间内(约10-8s)便跃迁至基态或其它较低的能级上。
当原子从较高能级跃迁到基态或其它较低的能级的过程中,将释放出多余的能量,这种能量是以一定波长的电磁波的形式辐射出去的,其辐射的能量可用下式表示:原子的各个能级是不连续的(量子化)。
电子的跃迁也是不连续的,所以原子光谱是线状光谱。
光谱分析就是从识别这些元素的特征光谱来鉴别元素的存在(定性分析),而这些光谱线的强度又与试样中该元素的含量有关,因此又可利用这些谱线的强度来测定元素的含量(定量分析)。
这就是发射光谱分析的基本依据。
试样在外界能量的作用下转变成气态原子,并使气态原子的外层电子激发至高能态。
当从较高的能级跃迁到较低的能级时,原子将释放出多余的能量而发射出特征谱线。
对所产生的辐射经过摄谱仪器进行色散分光,按波长顺序记录在感光板上,就可呈现出有规则的谱线条,即光谱图。
然后根据所得光谱图进行定性鉴定或定量分析。
四、【仪器与试剂】1. 仪器:WP-1型平面光栅摄谱仪;8W型光谱投影仪;台式看谱镜;天津产红快开型光谱感光板;元素发射光谱图及元素波长线表。
原子发射光谱法和原子吸收光谱法是分析化学中常用的两种技术手段,用于测定样品中的元素含量。
它们在实验原理、仪器设备、分析方法等方面存在一些差异,同时也各自具有一些优点和缺点。
下面将详细介绍这两种光谱法的特点。
一、原子发射光谱法1. 原理:原子发射光谱法是基于原子激发态与基态之间的电子跃迁而进行分析的。
样品先被气体火焰、电弧等高温条件下原子化,然后通过外部能量激发原子使其处于激发态,激发态原子会发射出特定波长的光线。
通过检测和测量这些发射光线的强度和波长,可以确定样品中的元素含量。
2. 优点:- 灵敏度高:原子发射光谱法对于大多数元素都具有较高的灵敏度,可以测定低至微克级别的元素含量。
- 多元素分析:原子发射光谱法可以同时分析多个元素,因为不同元素的激发发射光谱具有独特的特征波长,可以通过同时检测多个波长来分析多种元素。
- 范围广:原子发射光谱法适用于固体、液体和气体样品,可以分析多种不同形态的样品。
3. 缺点:- 精密度较低:原子发射光谱法的精密度相对较低,误差较大。
这是因为在样品原子化和激发过程中,可能会出现非选择性的基态原子和激发态原子共存,导致信号的干扰和背景噪声。
- 不适用于稀释样品:如果样品中元素含量过低,原子发射光谱法的灵敏度可能不足以准确测定元素含量。
- 仪器复杂:原子发射光谱法需要使用高温和高能量的电弧或火焰进行样品原子化和激发,因此仪器设备较为复杂。
二、原子吸收光谱法1. 原理:原子吸收光谱法是基于原子对特定波长的光线的吸收而进行分析的。
样品先被原子化,然后经过光源产生的特定波长的光线通过样品,被原子吸收。
通过测量吸收光线的强度,可以确定样品中的元素含量。
2. 优点:- 精密度高:原子吸收光谱法的精密度相对较高,误差较小。
因为在原子吸收过程中,只有特定波长的光线能够被原子吸收,不会受到其他波长光线的干扰。
- 高选择性:原子吸收光谱法可以通过选择不同的波长来分析不同元素,具有较高的选择性。
【实验题目】原子发射光谱定性和定量分析【实验目的】1、把握光谱定性分析的一样原理和方式。
2、把握光谱定量分析的一样原理和方式。
3、了解电感耦合等离子体原子发射光谱仪的利用方式。
【实验原理】但当原子受到能量(如热能、电能等)的作历时,原子由于与高速运动的气态粒子和电子彼此碰撞而取得了能量,使原子中外层的电子从基态跃迁到激发态,处于激发态的原子是十分不稳固的,在极短的时刻内便跃迁至基态或其它较低的能级上。
当原子从较高能级跃迁到基态或其它较低的能级的进程中,将释放出多余的能量,这种能量是以必然波长的电磁波的形式辐射出去的,其辐射的能量可用下式表示:△E=E2-E1=hv谱线波长:λ=c/v每一种元素因其原子结构不同,受激发后都能够产生自己的特点光谱,每一种元素的特点光谱通常包括有很多谱线,谱线的强度各不相同。
一个试样如含有假设干种元素,谱线上就有这假设干种元素的特点光谱,特点光谱的条数多少与各元素含量高低有关。
当某元素含量降低时,其光谱中的弱线接踵消失,而不被检出。
最后消失的几条谱线叫“灵敏线”定性分析一样只需找出某元素的灵敏线即可确信该元素的存在。
光谱分析依照这些元素的特点光谱就能够够准确无误的辨别元素的存在(定性分析),而这些光谱线的强度又与试样中该元素的含量有关,因此又可利用这些谱线的强度来测定元素的含量(定量分析)。
当温度一按时,光谱线的强度与试样中该元素的浓度之间的关系符合以下体会公式:I=a C blgI=blgc+lga【实验仪器与试剂】(1)仪器:IRIS INTREPIDⅡ XSP 高频电感耦合等离子直读仪。
(2)试剂:氩气;未知样品;钙、镁保准储蓄液:100ug/mL;蒸馏水。
【实验内容与步骤】1、定性分析按仪器操作规程,设置仪器参数,点燃等离子体,运行全谱命令,对未知样品进行分析。
仪器要紧参数:高频功率,1150W;冷却气流量,15L/min;辅助气流量,/min;载气压力,25psi;蠕动泵转速,120r/min;溶液提升量,min。
实验32 电感耦合等离子体原子发射光谱分析一、实验目的1.了解等离子体原子发射光谱仪的基本构造、原理与方法。
2.了解等离子体原子发射光谱分析过程的一般要求和主要操作步骤。
3.掌握等离子体原子发射光谱对样品的要求及制样方法。
4.掌握等离子体原子发射光谱定量分析与数据处理方法。
二、实验内容1.巩固电感耦合等离子体(ICP)原子发射光谱分析法的理论知识。
2.掌握ICP-AES光谱仪的基本构成及使用方法。
3.掌握用ICP-AES法测定样品中Hg2+的方法。
三、实验仪器设备与材料CAPQ等离子体发射光谱仪,见图32-1所示;含Hg2+溶液。
四、实验原理技术指标:1.灵敏度:①轻质量元素:Li> 50 Mcps/ppm;②中质量数元素:In>220 Mcps/ppm;③高质量数元素:U>300 Mcps/ppm。
2.仪器检出限:①轻质量元素:<0.5 ppt;②中质量数元素:<O.l ppt;③高质量数元素:<0.1 ppt。
3.稳定性:①短期稳定性(RSD):<3016;②长期稳定性(RSD):<4%(2h);③质谱校正稳定性:<0.05 amu/8 h。
4.随机背景<cps(4.S),标准模式下,仪器信噪比>150 M(l ppm中质量元素溶液,灵敏度/随机背景),氧化物离子( CeO+/Ce+) <2%5.优良的真空系统:阀门关闭状态:<6×10-8 Torr,工作状态:<6×10-7Torr.从大气压开始抽至可工作的真空度的时间<15 min.6.离子透镜:将待分析离子方向偏转90度,彻底与未电离的中性粒子和光子分离;离子透镜彻底免维护.7.计算机及打印机:不低于双核2G处理器,2G内存,160G硬盘,(35×50) cm显示器等,HP激光打印机。
8.可拆卸式石英矩管,计算机控制X、y、Z方向自动调谐,可自由拆装清洗及维护,后期维护费用较低。
原子发射光谱实验报告篇一:电感耦合等离子体发射光谱实验报告电感耦合等离子体发射光谱法1.基本原理1.1概述原子发射光谱分析(atomic emission spectrometry,AES)是一种已有一个世纪以上悠久历史的分析方法,原子发射光谱分析的进展,在很大程度上依赖于激发光源的改进。
到了60年代中期,Fassel和Greenfield分别报道了各自取得的重要研究成果,创立了电感耦合等离子体(inductively coupled plasma,ICP)原子发射光谱(ICP-AES)新技术,这在光谱化学分析上是一次重大的突破,从此,原子发射光谱分析技术又进入一个崭新的发展时期。
1.2方法原理原子发射光谱是价电子受到激发跃迁到激发态,再由高能态回到较低的能态或基态时,以辐射形式放出其激发能而产生的光谱。
原子发射光谱法的量子力学基本原理如下:(1)原子或离子可处于不连续的能量状态,该状态可以光谱项来描述;(2)当处于基态的气态原子或离子吸收了一定的外界能量时,其核外电子就从一种能量状态(基态)跃迁到另一能量状态(激发态),设高能级的能量为E2,低能级的能量为E1,发射光谱的波长为λ(或频率ν),则电子能级跃迁释放出的能量△E与发射光谱的波长关系为△E= E2- E1=hν=hc/λ(3)处于激发态的原子或离子很不稳定,经约10-8秒便跃迁返回到基态,并将激发所吸收的能量以一定的电磁波辐射出来;(4)将这些电磁波按一定波长顺序排列即为原子光谱(线状光谱);(5)由于原子或离子的能级很多并且不同元素的结构是不同的,因此,对特定元素的原子或离子可产生一系列不同波长的特征光谱,通过识别待测元素的特征谱线存在与否进行定性分析。
半定量是对样品中一些元素的浓度进行大致估算。
一种半定量的方法是对许多元素进行一次曲线校正,并将标准曲线储存起来。
然后在需要进行半定量时,直接采用原来的曲线对样品进行测试。
结果会因仪器的飘移而产生误差或因样品基体的不同而产生误差,但对于半定量来说,可以接受。
实验一火焰原子发射光谱法测定水样中的钠一、实验目的1. 了解火焰原子发射光谱仪的使用方法。
2. 学习利用火焰原子发射光谱测定水样中Na+含量的方法。
二、基本原理原子发射光谱分析(atomic emission spectrosmetry, AES ),是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。
当试样在等离子体光源中被激发,待测元素会发射出特征波长的辐射,经过分光,并按波长顺序记录下来,根据特征波长谱线的存在情况可以进行定性分析,测量其强度可以进行定量分析。
原子吸收分光光度法测定的是占原子总数99%以上的基态原子,而原子发射光谱测定的是占原子总数不到1%的激发态原子,所以前者的灵敏度和准确度比后者高的多。
但原子吸收光谱法适合分析微量、痕量元素,因此,火焰原子发射光谱法可以分析浓度高的样品。
三、仪器与试剂1. GGX-9 型原子吸收分光光度计(使用发射光谱检测功能)。
2. 空气压缩机(应备有除水、除油、除尘装置)。
3. 乙炔钢瓶。
燃气流量:0.9~1.2 l/min4. 容量瓶(50 mL ,100 mL ,l000 mL),移液管(5 mL),烧杯(100 mL,250 mL)。
5. 氯化钠(光谱纯)。
6. 浓硝酸(分析纯)。
四、实验步骤1. 钠的标准溶液配制(1)标准储备液配制钠标准贮备液:称取光谱纯氯化钠11.7000 g (准确到0.0001 g),用60 mL硝酸溶液溶解,用去离子水准确稀释至1000 mL,摇匀。
此溶液浓度为2 mg/mL (以Na计)。
(2)标准溶液配制取Na标准贮备液(2 mg/mL )20 mL ,移入100 mL容量瓶中,用去离子水稀释至刻度,摇匀备用,此溶液Na含量为400冯/mL。
2. 工作曲线的绘制分别移取钠的标准溶液0.00 mL, 1.00 mL, 3.00 mL, 4.00 mL, 5.00 mL 于50 mL 容量瓶中,用蒸馏水稀释至刻度,摇匀。
原子发射光谱原理
原子发射光谱是物理学研究中的一个重要分支,它通过研究原子在受激激发后发射出的光谱来了解原子的结构和性质。
原子发射光谱的实验基于以下几个原理:
1. 原子能级:原子中的电子存在不同能级,当电子从一个能级跃迁到另一个能级时,会吸收或者发射能量。
原子发射光谱通过研究不同能级间的跃迁来确定原子的能级结构。
2. 激发和激发源:为了使原子跃迁到较高能级,我们需要提供足够的能量来激发原子。
常用的激发源包括高温、高压和电磁辐射等。
例如,将气体放电产生等离子体,通过碰撞激发气体中的原子使其跃迁到激发态。
3. 光的发射:当原子从激发态退回到低能级时,会发射出能量等于跃迁能级差的光子。
这些发射的光子组成了原子发射光谱。
4. 光谱分析:经过准确的测量和分析,我们可以获得原子发射光谱中的特征谱线。
这些谱线的波长或频率与原子的能级差密切相关,因此可以用来确定原子的结构和特性。
原子发射光谱广泛应用于化学、物理、天文学等领域。
通过分析光谱,我们可以研究原子的能级结构、同位素的分离和测量、元素的定性分析以及识别天体中的化学成分等。
此外,原子发射光谱也是化学分析和材料研究中常用的分析工具,可以检测和分析样品中的各种元素及其含量。
它不仅具有高灵敏度和高选择性,而且具有非破坏性和快速分析的特点。
总而言之,原子发射光谱是通过研究原子在激发态与基态之间跃迁发射出的光谱来了解原子的能级结构和性质的一门科学。
通过对原子发射光谱的研究,我们可以深入了解物质的微观结构,促进科学技术的发展和应用。
实验一钠原子发射光谱实验目的:1)通过对钠原子光谱的观察与分析加深对碱金属原子的外层电子与原子实相互作用级轨道自旋相互作用的了解。
2)在分析光谱线和测量波长的基础上计算钠原子在不同轨道上运动时的量子数之损3)绘制钠原子的能级跃迁图,并与氢原子的能级进行比较。
实验仪器:钠光灯源光栅光谱仪计算机实验原理:对钠原子光谱的研究能使我们获得有关原子结构,原子内部电子的运动,碱金属原子的外层电子与原子核相互作用以及自旋与轨道运动相互作用的知识,并能对电子自旋的发现和元素周期表做出解释。
(一)原子光谱的产生:1、原子的壳层结构原子是由原子核与绕核运动的电子所组成。
每一个电子的运动状态可用主量子数n、角量子数l、磁量子数l m和自旋量子数S m等四个量子数来描述。
主量子数n,决定了电子的主要能量E。
角量子数l,决定了电子绕核运动的角动量。
电子在原子核库仑场中在一个平面上绕核运动,一般是沿椭圆轨道运动,是二自由度的运动,必须有两个量子化条件。
这里所说的轨道,按照量子力学的含义,是指电子出现几率大的空间区域。
对于一定的主量子数n,可有n个具有相同半长轴、不同半短轴的轨道,当不考虑相对论效应时,它们的能量是相同的。
如果受到外电磁场或多电子原子内电子间的相互摄动的影响,具有不同l的各种形状的椭圆轨道因受到的影响不同,能量有差别,使原来简并的能级分开了,角量子数l最小的、最扁的椭圆轨道的能量最低。
m(轨道方向的量子数),决定了电子绕核运动的角动量沿磁场方向的分量。
磁量子数l所有半长轴相同的在空间不同取向的椭圆轨道,在有外电磁场作用下能量不同。
能量大小不仅与n和l有关,而且也与l m有关。
m(自旋方向量子数),决定了自旋角动量沿磁场方向的分量。
电子自旋在空自旋量子数S间的取向只有两个,一个顺着磁场;另一个反着磁场,因此,自旋角动量在磁场方向上有两个分量。
电子的每一运动状态都与一定的能量相联系。
主量子数n决定了电子的主要能量,半长轴相同的各种轨道电子具有相同的n,可以认为是分布在同一壳层上,随着主量子数不同,可分为许多壳层,n=1的壳层,离原子核最近,称为第一壳层;依次n=2、3、4、……的壳层,分别称为第二、三、四壳层……,用符号K、L、M、N、……代表相应的各个壳层。
原子发射光谱实验
原子发射光谱实验是一种使用气体放电或火焰等方式,将原子激发到高能级,然后观察它们发射的特定波长的光的实验。
这种实验可以用来研究原子的能级结构和光谱特性。
实验过程中,首先需要选择要研究的原子或分子,并将其置于合适的激发条件下。
常用的激发方法包括电火花、电弧放电、电解质溶液中的电解过程等。
激发后的原子会从高能级跃迁到低能级,释放出特定波长的光。
通过将激发后的光通过光栅或单色仪进行分光,可以分离出不同波长的光,并使用光谱仪进行定量分析。
根据不同元素或分子的能级结构不同,它们在发射光谱上的特征波长也不同,因此可以通过观察和测量光谱图谱来确定元素或分子的存在和浓度。
原子发射光谱实验广泛应用于化学、物理、天文学等领域。
在化学分析中,可以用于元素的定性和定量分析;在物理研究中,可以用于研究原子能级结构和原子物理过程;在天文学中,可以用于研究远星中的元素组成和物质结构等。
原子发射光谱实验是一种重要的实验方法,为我们深入了解原子和分子的能级结构和光谱特性提供了有力的工具。