2017-2018学年(上)厦门市八年级质量检测数学卷
- 格式:pdf
- 大小:2.24 MB
- 文档页数:4
八年级(上)期中数学试卷一、单选题(本大题共10小题,每小题4分,共40分)1.如图,图中的图形是常见的安全标记,其中是轴对称图形的是()A.B.C.D.2.已知等腰三角形一边长为2,一边的长为4,则这个等腰三角形的周长为()A.8 B.9 C.10 D.8或103.五边形的内角和的度数为()A.180°B.270°C.360°D.540°4.下面四个图形中,线段BD是△ABC的高的是()A.B.C.D.5.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE6.如图,Rt△ABC中,∠A=30°,BC=2,AC=2,则AB长为()A.2 B.2 C.4 D.47.如图,△ABC与△A′B′C′关于直线l对称,且∠A=98°,∠C′=48°,则∠B的度数为()A.48° B.34° C.74° D.98°8.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC交AC于D,且AD=5cm,AB=12cm,BD=13cm,则点D到BC的距离是()A.5cm B.12cm C.13cm D.不能确定9.如图,把矩形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠C′BD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC′一定是全等三角形10.如图,在△ABC中,AC=4,BC边上的垂直平分线DE分别交BC、AB于点D、E,若△AEC的周长是14,则直线DE上任意一点到A、C距离和最小为()A.28 B.18 C.10 D.7二、填空题(本大题共6小题,每小题4分,共24分)11.点P(2,﹣3)关于x轴的对称点坐标为.12.已知一个多边形的每一个内角都是140°,则这个多边形的边数为.13.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B= .14.如图,AB交CD于点O,OA=OB,要使△AOC≌△BOD,则需要补充的一个条件是.15.如图,△ABC中,∠BAC=110°,AB、CD的垂直平分线分别交BC于点E、F,则∠EAF的度数为°.16.如图,点O是原点,AB∥x轴,点M在线段AB上,且OM=2b,点E是线段AO的中点,若点B和点E关于直线OM对称,点B的坐标是(0,a),则点A的坐标是(结果用a,b表示).三、解答题(本大题共11小题,共86分)17.一个多边形的内角和是外角和的3倍,它是几边形?(要求:列方程解,要有解题过程)18.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求∠ACB的度数.19.已知:如图,点B、F、C、E在一条直线上,∠B=∠E,∠ACB=∠DFE,且BF=EC.求证:△ABC ≌△DEF.20.已知:如图,在△BAC中,AB=AC,D,E分别为AB,AC边上的点,且DE∥BC,求证:△ADE是等腰三角形.21.作图题:尺规作图(不写过程,保留作图痕迹).已知:如图,∠AOB和点C、D.求作点M,使MC=MD,且M到∠AOB两边的距离相等.22.已知点A(1,1),B(﹣1,3),C(﹣3,1),在坐标系中画出△ABC,并作出△ABC关于x 轴的对称图形△A′B′C′,并求△ABC 的面积.23.如图,已知Rt△ABC中,∠ACB=90°,∠A=30°,AC边上的垂直平分线DE交AB于点D,交AC 于E.若DE=3,求AB的长.24.如图,AC=BC,∠ACB=90°,BE⊥CE垂足为E,AD⊥CE垂足为D,AD=5,DE=3,求BE的长.25.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.26.已知,在△ABC中,∠BAC=90°,AB=AC,CE平分∠ACB交AB于点E.(1)如图1,若点D在斜边BC上,DM垂直平分BE,垂足为M.求证:BD=AE;(2)如图2,过点B作BF⊥CE,交CE的延长线与点F.若CE=6,求△BEC的面积.27.在平面直角坐标系中,点A的坐标为(4,4).(1)如图1,若点B 在x轴正半轴上,点C(1,﹣1),且AB=BC,AB⊥BC,求点B坐标.(2)如图2,若点B在x轴负半轴上,AE⊥x轴于E,AF⊥y轴于F,∠BFM=45°,MF交直线AE于M.求证:OB+BM=AM.八年级(上)期中数学试卷参考答案与试题解析一、单选题(本大题共10小题,每小题4分,共40分)1.如图,图中的图形是常见的安全标记,其中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对常见的安全标记图形进行判断.【解答】解:A、有一条对称轴,是轴对称图形,符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.已知等腰三角形一边长为2,一边的长为4,则这个等腰三角形的周长为()A.8 B.9 C.10 D.8或10【考点】等腰三角形的性质;三角形三边关系.【分析】因为已知长度为2和4两边,没由明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:①当2为底时,其它两边都为4,2、4、4可以构成三角形,周长为10;②当2为腰时,其它两边为4和8,∵2+2=4,∴不能构成三角形,故舍去,∴答案只有10.故选C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.3.五边形的内角和的度数为()A.180°B.270°C.360°D.540°【考点】多边形内角与外角.【分析】利用多边形内角和公式可求得答案.【解答】解:五边形的内角和度数=(5﹣2)×180°=540°,故选D.【点评】本题主要考查多边形的内角和公式,掌握多边形的内角和公式是解题的关键,即多边形的内角和=(n﹣2)180°.4.下面四个图形中,线段BD是△ABC的高的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高的定义进行判断.【解答】解:线段BD是△ABC的高,则过点B作对边AC的垂线,则垂线段BD为△ABC的高.故选A.【点评】本题考查了三角形的角平分线、中线和高:三角形有三条中线,有三条高线,有三条角平分线,它们都是线段.锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.5.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.6.如图,Rt△ABC中,∠A=30°,BC=2,AC=2,则AB长为()A.2 B.2 C.4 D.4【考点】含30度角的直角三角形.【分析】在直角三角形中,30°角所对的直角边等于斜边的一半.【解答】解:如图,∵在Rt△ABC中,∠A=30°,BC=2,∴AB=2BC=4.故选C.【点评】本题考查了含30度角的直角三角形.注意:①该性质是直角三角形中含有特殊度数的角(30°)的特殊定理,非直角三角形或一般直角三角形不能应用;②应用时,要注意找准30°的角所对的直角边,点明斜边.7.如图,△ABC与△A′B′C′关于直线l对称,且∠A=98°,∠C′=48°,则∠B的度数为()A.48° B.34° C.74° D.98°【考点】轴对称的性质.【专题】常规题型.【分析】根据轴对称图形的性质可得△ABC与△A′B′C′全等,然后根据全等三角形对应角相等可得∠C=∠C′,再利用三角形内角和定理列式计算即可得解.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴△ABC≌△A′B′C′,∴∠C=∠C′,∵∠A=98°,∠C′=48°,∴∠B=180°﹣∠A﹣∠C=180°﹣98°﹣48°=34°.故选B.【点评】本题考查了轴对称的性质,全等三角形的性质,三角形的内角和定理,求出∠C的度数是解题的关键.8.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC交AC于D,且AD=5cm,AB=12cm,BD=13cm,则点D到BC的距离是()A.5cm B.12cm C.13cm D.不能确定【考点】角平分线的性质.【分析】作DE⊥BC于E,根据角平分线的性质解答即可.【解答】解:作DE⊥BC于E,∵BD平分∠ABC,∠A=90°,DE⊥BC,DE=AD=5cm,故选:A.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.9.如图,把矩形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠C′BD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC′一定是全等三角形【考点】翻折变换(折叠问题).【分析】根据题意结合图形可以证明EB=ED,进而证明△ABE≌△C′DE;此时可以判断选项A、B、D 是成立的,问题即可解决.【解答】解:由题意得:△BC′D≌△BFD,∴DC′=DF,∠C′=∠C=90°;∠C′BD=∠CBD;又∵四边形ABCD为矩形,∴∠A=∠F=90°;DE∥BF,AB=DF;∴∠EDB=∠FBD,DC′=AB;∴∠EDB=∠C′BD,∴EB=ED,△EBD为等腰三角形;在△ABE与△CDE中,∵,∴△ABE≌△C′DE(HL);又∵△EBD为等腰三角形,∴折叠后得到的图形是轴对称图形;综上所述,选项A、C、D成立,∴下列说法错误的是B,故选B.【点评】该命题主要考查了翻折变换及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图中隐含的等量关系;借助矩形的性质、全等三角形的判定等几何知识来分析、判断、推理或解答10.如图,在△ABC中,AC=4,BC边上的垂直平分线DE分别交BC、AB于点D、E,若△AEC的周长是14,则直线DE上任意一点到A、C距离和最小为()A.28 B.18 C.10 D.7【考点】轴对称-最短路线问题;线段垂直平分线的性质.【分析】利用垂直平分线的性质和已知的周长计算.【解答】解:∵DE是BC的中垂线,∴BE=EC,则AB=EB+AE=CE+EA,又∵△ACE的周长为14,故AB=14﹣4=10,直线DE上任意一点到A、C距离和最小为10.故选C.【点评】本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等)有关知识.难度简单.二、填空题(本大题共6小题,每小题4分,共24分)11.点P(2,﹣3)关于x轴的对称点坐标为(2,3).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点P(2,﹣3)关于x轴的对称点坐标为(2,3),故答案为:(2,3).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.12.已知一个多边形的每一个内角都是140°,则这个多边形的边数为九.【考点】多边形内角与外角.【分析】首先求得每个外角的度数,然后利用360度除以外角的底数即可求解.【解答】解:外角的度数是:180﹣140=40°,则多边形的边数为:360÷40=9.故答案是:九.【点评】此题比较简单,理解任意多边形的外角和都是360度是关键.13.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B= 70°.【考点】三角形的外角性质.【专题】应用题.【分析】根据三角形的外角等于与它不相邻的两个内角和,即可得出∠B的度数.【解答】解:∵∠ACD=∠A+∠B,∠A=80°,∠ACD=150°,∴∠B=70°.故答案为:70°.【点评】本题考查了三角形的外角等于与它不相邻的内角和,难度适中.14.如图,AB交CD于点O,OA=OB,要使△AOC≌△BOD,则需要补充的一个条件是OC=OD(或填∠A=∠B或∠C=∠D亦可).【考点】全等三角形的判定.【分析】此题答案不唯一,可以是OC=OD,根据全等三角形的判定定理SAS可证出来,还可以∠C=∠D或∠A=∠B.【解答】解:OC=OD,理由是:∵在△AOC和△BOD中∴△AOC≌△BOD(SAS),故答案为:OC=OD.【点评】本题考查了全等三角形的判定定理的应用,此题是一道开放型的题目,答案不唯一,还可以∠C=∠D或∠A=∠B.15.如图,△ABC中,∠BAC=110°,AB、CD的垂直平分线分别交BC于点E、F,则∠EAF的度数为40 °.【考点】线段垂直平分线的性质.【分析】利用垂直平分线的性质求EA=EB,则∠B=∠EAG,FA=FC,则∠C=∠FAH,再利用三角形的内角和计算.【解答】解:∵AB、AC的垂直平分线分别交BC于点E、F,∴EA=EB,则∠B=∠EAG,设∠B=∠EAG=x度,∵FA=FC,则∠C=∠FAH,设∠C=∠FAH=y,∵∠BAC=110°,∴x+y+∠EAF=110°,根据三角形内角和定理,x+y+x+y+∠EAF=180°,解得∠EAF=40°.故答案为:40.【点评】此题考查了线段垂直平分线的性质、等腰三角形的判定与性质以及三角形外角的性质.此题难度适中,注意掌握数形结合思想与整体思想的应用.16.如图,点O是原点,AB∥x轴,点M在线段AB上,且OM=2b,点E是线段AO的中点,若点B和点E关于直线OM对称,点B的坐标是(0,a),则点A的坐标是(3b,a)(结果用a,b表示).【考点】坐标与图形变化-对称.【分析】根据点B的坐标求出OB的长,再连接ME,根据轴对称的性质可得OB=OE,再求出AO的长度,然后利用三角函数得到∠A=30°,∠AOB=60°,进一步得到∠BOM=∠AOM=30°,再根据等角对等边得到AM=OM=2b,根据三角函数得到BM=OM=b,从而求出AB的长,然后写出点A的坐标即可.【解答】解:∵点B(0,a),∴OB=a,连接ME,∵点B和点E关于直线OM对称,∴OB=OE=a,∵点E是线段AO的中点,∴AO=2OE=2a,∴∠A=30°,∠AOB=60°,∴∠BOM=∠AOM=30°,∴AM=OM=2b,∵BM=OM=b,∴AB=BM+MA=3a,∴点A的坐标是(3b,a).故答案为:(3b,a).【点评】本题考查了轴对称的性质,坐标与图形性质,解直角三角形,熟练掌握轴对称的性质并作出辅助线构造出直角三角形是解题的关键.三、解答题(本大题共11小题,共86分)17.一个多边形的内角和是外角和的3倍,它是几边形?(要求:列方程解,要有解题过程)【考点】多边形内角与外角.【分析】根据多边形的内角和公式与外角和定理列出方程,然后求解即可.【解答】解:设这个多边形是n边形,则根据题意,得:(n﹣2)﹒180°=3×360°,解得n=8,答:这个多边形是八边形;【点评】本题考查了多边形内角与外角,熟记多边形的内角和公式与外角和定理是解题的关键.18.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求∠ACB的度数.【考点】方向角.【分析】根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°,然后根据平行线的性质与三角形内角和定理即可求解.【解答】解:如图,根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°.∵∠BAE=45°,∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°.∵AE,DB是正南正北方向,∴BD∥AE,∵∠DBA=∠BAE=45°,又∵∠DBC=80°,∴∠ABC=80°﹣45°=35°,∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣60°﹣35°=85°.【点评】本题主要考查了方向角的定义,平行线的性质以及三角形的内角和定理,正确理解定义是解题的关键.19.已知:如图,点B、F、C、E在一条直线上,∠B=∠E,∠ACB=∠DFE,且BF=EC.求证:△ABC ≌△DEF.【考点】全等三角形的判定.【专题】证明题.【分析】首先求出BC=EF,进而利用全等三角形的判定定理ASA证明两个三角形全等.【解答】解:∵BF=EC∴BF+CF=EC+CF,∴BC=EF,在△ABC和△DEF中,∵∴△ABC≌△DEF (ASA).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20.已知:如图,在△BAC中,AB=AC,D,E分别为AB,AC边上的点,且DE∥BC,求证:△ADE是等腰三角形.【考点】等腰三角形的判定与性质.【专题】证明题.【分析】根据等腰三角形的性质得到∠B=∠C,根据平行线的性质得到∠B=∠ADE,∠C=∠AED,等量代换得到∠ADE=∠AED,即可得到结论.【解答】证明:∵AB=AC,∴∠B=∠C,又∵DE∥BC,∴∠B=∠ADE,∠C=∠AED,∴∠ADE=∠AED,∴AD=AE,∴△ADE是等腰三角形.【点评】本题考查了等腰三角形的性质和判定,平行线的性质,三角形内角和定理,熟记定理与性质是解题的关键.21.作图题:尺规作图(不写过程,保留作图痕迹).已知:如图,∠AOB和点C、D.求作点M,使MC=MD,且M到∠AOB两边的距离相等.【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】画出CD的垂直平分线,画出∠AOB的平分线,两线的交点就是M位置.【解答】解:如图所示:点M即为所求.【点评】此题主要考查了复杂作图,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.角平分线上的点到角两边的距离相等.22.已知点A(1,1),B(﹣1,3),C(﹣3,1),在坐标系中画出△ABC,并作出△ABC关于x 轴的对称图形△A′B′C′,并求△ABC 的面积.【考点】作图-轴对称变换.【分析】在坐标系内找出各点,再顺次连接即可得到△ABC,再分别作出各点关于x轴的对称点,顺次连接即可.【解答】解:如图,△ABC、△A′B′C′为所求作的三角形.=×4×2=4.S△ABC【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.23.如图,已知Rt△ABC中,∠ACB=90°,∠A=30°,AC边上的垂直平分线DE交AB于点D,交AC 于E.若DE=3,求AB的长.【考点】含30度角的直角三角形;线段垂直平分线的性质.【分析】首先根据线段垂直平分线的性质得到CD=AD,进而求出BD=CD,利用含30度角直角三角形的性质即可求出AB的长.【解答】解:∵AC边上的垂直平分线是DE,∴CD=AD,DE⊥AC,∴∠A=∠DCA=30°,∵∠ACB=90°,∴∠BCD=∠ACB﹣∠DCA=90°﹣30°=60°,∵∠B=180°﹣∠ACB﹣∠A=180°﹣90°﹣30°=60°∴∠BCD=∠B=60°∴BD=CD,∴BD=CD=AD=AB,∵DE=3,DE⊥AC,∠A=30°∴AD=2DE=6,∴AB=2AD=12.【点评】本题主要考查了含30度角的直角三角形以及线段垂直平分线的性质,解题的关键是求出BD=CD,此题难度不大.24.如图,AC=BC,∠ACB=90°,BE⊥CE垂足为E,AD⊥CE垂足为D,AD=5,DE=3,求BE的长.【考点】全等三角形的判定与性质.【专题】证明题.【分析】可先证明△BCE≌△CAD,可求得CE=AD,结合条件可求得CD,则可求得BE.【解答】解:∵∠ACB=90°,∴∠BCE+∠ACD=90°,又∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠BCE+∠CBE=90°,∴∠CBE=∠ACD,在△CBE和△ACD中,∴△CBE≌△ACD(AAS),∴BE=CD,CE=AD=5,∵DE=3,∴CD=CE﹣DE=AD﹣DE=5﹣3=2,∴BE=CD=2.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等).25.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.【考点】全等三角形的判定与性质;平行线的判定;等边三角形的性质.【专题】证明题.【分析】根据等边三角形性质推出BC=AC,CD=CE,∠BCA=∠ECD=60°,求出∠BCD=∠ACE,根据SAS 证△ACE≌△BCD,推出∠EAC=∠DBC=∠ACB,根据平行线的判定推出即可.【解答】证明:∵△ABC和△DEC是等边三角形,∴BC=AC,CD=CE,∠BCA=∠ECD=60°,∠B=60°,∴∠BCA﹣∠DCA=∠ECD﹣∠DCA,即∠BCD=∠ACE,∵在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∵∠B=60°,∴∠EAC=∠B=60°=∠ACB,∴AE∥BC.【点评】本题考查了等边三角形性质,全等三角形的判定和性质,平行线的判定,关键是求出△ACE ≌△BCD,主要考查学生的推理能力.26.已知,在△ABC中,∠BAC=90°,AB=AC,CE平分∠ACB交AB于点E.(1)如图1,若点D在斜边BC上,DM垂直平分BE,垂足为M.求证:BD=AE;(2)如图2,过点B作BF⊥CE,交CE的延长线与点F.若CE=6,求△BEC的面积.【考点】全等三角形的判定与性质;线段垂直平分线的性质;等腰直角三角形.【分析】(1)连接DE,由∠BAC=90°,AB=AC,可得∠B=45°,由DM垂直平分BE,可得BD=DE,进而判断△BDE是等腰直角三角形,所以ED⊥BD,然后由角平分线的性质可得ED=AE,根据等量代换可得BD=AE;(2)延长BF,CA,交与点G,由CE平分∠ACB,可得∠ACE=∠BCE,由BF⊥CE,可得∠BFC=∠GFC=90°,然后由三角形内角和定理可得:∠GBC=∠G,进而可得BC=GC,然后由等腰三角形的三线合一,可得BF=FG=BG,所以BG=2BF=2FG=4,然后再由ASA,可证△ACE≌△ABG,可得EC=BG=4,最后根据三角形的面积公式即可求△BEC的面积.【解答】解:(1)连接ED,如图1,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵DM垂直平分BE,∴BD=ED,∴∠BED=∠B=45°,∴∠EDC=∠B+∠BED=90°,∵CE平分∠ACB,∠BAC=90°,∠EDC=90°,∴ED=EA,∴BD=AE;(2)延长BF和CA交于点G,如图2,∵CE平分∠ACB,∴∠ACF=∠BCF,∵BF⊥CE,∴∠BFC=∠GFC=90°,∴∠CBG=∠CGB,∴CG=CB,∴BF=GF=BG,∵∠GFC=∠GAB=90°,∴∠ACF+∠G=90°,∴∠ABG+∠G=90°,∴∠ACF=∠ABG,在△ACE和△ABG中,,∴△ACE≌△ABG(ASA),∴CE=BG,∴CE=2BF,∵CE=6,∴BF=CE=3,=CE•BF=×6×3=9.S△BEC【点评】该题主要考查了全等三角形的判定及其性质的应用问题;准确找出命题中隐含的等量关系,是证明全等三角形的关键.27.(2015秋•翔安区校级期中)在平面直角坐标系中,点A的坐标为(4,4).(1)如图1,若点B 在x轴正半轴上,点C(1,﹣1),且AB=BC,AB⊥BC,求点B坐标.(2)如图2,若点B在x轴负半轴上,AE⊥x轴于E,AF⊥y轴于F,∠BFM=45°,MF交直线AE于M.求证:OB+BM=AM.【考点】全等三角形的判定与性质;坐标与图形性质.【分析】(1)如图1,过A作AD⊥x轴,CE⊥x轴,垂足分别为D、E.根据余角的性质得到∠DAB=∠EBC,根据全等三角形的性质得到BD=CE,根据线段的和差即可得到结论;(2)如图2,在AM上截取AN=OB,连接FN,由已知得到OF=AF=4,根据全等三角形的性质得到∠BFO=∠NFA,BF=NF,推出△BFM≌△NFM(SAS),得到BM=NM,由线段的和差即可得到结论.【解答】(1)解:如图1,过A作AD⊥x轴,CE⊥x轴,垂足分别为D、E.∵AD⊥x轴,CE⊥x轴,∴∠ADB=∠BEC=90°,∴∠DAB+∠ABD=90°,∵AB⊥BC,∴∠EBC+∠ABD=90°,∴∠DAB=∠EBC,在△ADB与△BEC中,,∴△ADB≌△BEC(AAS),∴BD=CE,∵A(4,4),C(1,﹣1),∴OD=4,CE=1,∴OB=OD+BD=OD+CE=4+1=5,∴B(5,0);(2)解:如图2,在AM上截取AN=OB,连接FN,∵A(4,4),∴OF=AF=4,在△BOF与△NAF中,,∴△BOF≌△NAF(SAS),∴∠BFO=∠NFA,BF=NF,∵∠BFM=∠BFO+∠OFM=45°,∴∠NFA+∠OFM=45°,∴∠OFA=90°,∴∠NFM=∠OFA﹣(∠NFA+∠OFM)=900﹣450=45°,∴∠BFM=∠NFM,在△BFM与△NFM中,,∴△BFM≌△NFM(SAS),∴BM=NM,∴AM=AN+NM=OB+BM.【点评】本题考查了全等三角形的判定和性质,正确的作出辅助线是解题的关键.。
2015-2016学年(上)厦门市八年级质量检测数学(试卷满分:150分 考试时间:120分钟) 准考证号 姓名 座位号注意事项:1.全卷三大题,27小题,试卷共4页,另有答题卡.2.答案必须写在答题卡上,否则不能得分.3.可以直接 使用2B铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.多边形的外角和是( )A.720°B.540° C.360° D.180° 2.下列式子中,表示“n 的3次方”的是( )A. 3n B. n 3 C. n 3 D.3n3.下列图形,具有稳定性的是( )4.计算:42313a a ÷=( ) A .69a B. 6a C.29-a D. 29a5.2)643(-+y x 展开式的常数项是( ) A . -12 B.-6 C.9 D. 366.如图1,已知OE 是∠AOD 的平分线,可以作为假命题“相等的角是对顶角”的反例的是( )A . ∠AO B=∠D OC B.∠AOE=∠DOEC. ∠EOC<∠DOC D.∠EOC >∠D OC7.如图2,在△ABC 中,AB =A C,∠B=50°,P 是边AB 上的一个动点(不与顶点A 重合),则∠BP C的值可能是( )A . 135° B. 85° C.50° D.40°8.某部队第一天行军5h,第二天行军6h ,两天共行军120km,且第二天比第一天多走2k m.设第一天和第二天行军的平均速度分别是xkm/h 和y km/h,则符合题意的二元一次方程是( )A .5x+6y=118 B.5x=6y+2 C.5x=6y -2 D . 5(x+2)=6y9.622--x x 的一个因式是( )A . x-2 B.2x+1 C. x+3 D. 2x-310.在平面直角坐标系中,已知点P(a ,5)在第二象限,则点P关于直线m(直线m 上各点的横坐标都为2)对称的点的坐标是( )A . (-a ,5) B. (a,-5) C. (-a+2,5) D . (-a+4,5)二、填空题(本大题有6小题,每小题4分,共24分)11.在△A BC 中,∠C=100°,∠A=30°,∠B= 度. 12.计算:(a-1)(a+1)= .13.已知∠A=70°,则∠A 的补角是 度.14.某商店原有7袋大米,每袋大米为a 千克.上午卖出4袋,下午又购进同样包装的大米 3袋,进货后这个商店有大米 千克.15.如图3,在△ABC中,点D 在边BC 上,若∠BAD=∠CAD ,AB=6,AC=3,3=∆ABD S ,则ACD S ∆= .16.计算:21274252212621262++-= .三、解答题17.(本题满分7分)计算:)3)(12(++x x18.(本题满分7分)如图4,点E ,F 在线段B C上,AB=DC ,BF=C E,∠B=∠C.求证:AF=DE.19.(本题满分7分) 计算:11112++++-x x x x20.(本题满分7分)解不等式⎪⎩⎪⎨⎧-≤+>+132121x x x21.(本题满分7分)已知△ABC 三个顶点的坐标分别是A(-4,0),B(-3,2),C(-1,1),将△AB C向下平移2个单位长度,得到△111C B A .请画出一个平面直角坐标系,并在该平面直角坐标第中画出△ABC 和△111C B A .22.(本题满分7分)一个等腰三角形的一边长是5cm,周长是20cm ,求其他两边的长.23.(本题满分7分)如图5,在△AB C中,点D,E ,F 在边BC上,点P 在线段A D上,若PF ∥AB,∠PFD =∠C ,点D 到PE和PF 的距离相等.求证:点D到A B和AC 的距离相等.24.(本题满分7分)A,B 两地相距25km.甲上午8点由A地出发骑自行车去B 地,平均速度不大于10km/h;乙上午9点30分由A地出发乘汽车去B 地,若乙的速度是甲的4倍.判断乙能否在途中超过甲,请说明理由.25.(本题满分7分)阅读下列材料:“为什么说2不是有理数”. 假设2是有理数,那么存在两个互质的正整数m,n,使得mn =2,于是有222n m =. ∵22m 是偶数,∴2n 也是偶数,∴n 是偶数.设t n 2=(t是正整数),则224t n =,即2224m t =.∴222m t =.∴m 也是偶数. ∴m ,n 都是偶数,不互质,与假设矛盾.∴假设错误.∴2不是有理数.用类似的方法,请证明3不是有理数.26.(本题满分11分)如图6,已知D 是△AB C的边BC 上的一点,CD=AB ,∠BD A=∠B AD,A E是△AB D的中线.⑴若∠B=60°,求∠C 的值;⑵求证:AD 是∠EAC 的平分线.27.(本题满分12分)已知a是大于1的实数,且有p aa =+-33,q a a =--33成立.⑴若p+q =4,求p -q的值⑵当2212222-+=nn q (n ≥1,且n是整数)时,比较p 与(413+a )的大小 ,并说 明理由.。
2017—2018学年(上)厦门市八年级质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1。
三角形的内角和是A. 60°B. 90° C 。
180° D. 360° 2. 3的算术平方根是A. -3B.3C. -错误!D. 错误! 3. 如图1,在直角三角形ABC 中,∠C =90°,∠B =60°,BC =a ,AC =b ,则AB 的长是A 。
2b B. 错误!b C 。
错误!a D 。
2a4。
在平面直角坐标系中,点A (-1,3)与点B 关于x 轴对称,则点B 的坐标是A 。
(-1,-3)B 。
(-1,3)C 。
(1,3) D. (1,-3) 5。
要使式子错误!有意义,则A 。
x ≠-3 B. x ≠ 0 C. x ≠2 D 。
x ≠36。
如图2,在长方形ABCD 中,点E 在边BC 上,过点E 作EF ⊥AD , 垂足为F ,若EF =BE ,则下列结论中正确的是图2CAFEDBA 。
EF 是∠AED 的角平分线B 。
DE 是∠FDC 的角平分线 C 。
AE 是∠BAF 的角平分线 D. EA 是∠BED 的角平分线7.已知m ,n 是整数,a ≠ 0,b ≠ 0,则下列各式中,能表示 “积的乘方法则”的是 A 。
a n a m =a n +m B 。
(a m )n =a mn C. a 0=1 D. (ab )n =a n b n 8。
如图3,在△ABC 中,AB =AC ,AD 是底边BC 的中线,∠BAC 是钝角,则下列结论正确的是A. ∠BAD >∠ADBB. ∠BAD >∠ABD C 。
2019—2020学年(上)厦门市八年级质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1.计算2-1的结果是A . 0B . 12C . 1D .22.下列长度的三条线段能组成三角形的是A . 3,4,7B . 3,4,8C . 3,3,5D . 3,3,73.分式xx -2有意义,则x 满足的条件是A . x ≠2B . x =0C . x =2D . x >2 4. 如图1,在△ABC 中,AD 交边BC 于点D .设△ABC 的重心为M , 若点M 在线段AD 上,则下列结论正确的是A . ∠BAD =∠CADB .AM =DMC . △ABD 的周长等于△ACD 的周长 D .△ABD 的面积等于△ACD 的面积 5.已知正方形ABCD 边长为x ,长方形EFGH 的一边长为2,另一边的长为x ,则正方形ABCD 与长方形EFGH 的面积之和等于A .边长为x +1的正方形的面积B . 一边长为2,另一边的长为x +1的长方形面积C . 一边长为x ,另一边的长为x +1的长方形面积D . 一边长为x ,另一边的长为x +2的长方形面积6.从甲地到乙地有两条路:一条是全长750km 的普通公路,另一条是全长600km 高速公路.某客车从甲地出发去乙地,若走高速公路,则平均速度是走普通公路的平均速度的2倍,所需时间比走普通公路所需时间少5小时.设客车在普通公路上行驶的平均速度是x km /h ,则下列等式正确的是 A . 600x +5=7502x B . 600x -5=7502x C .6002x +5=750x D . 6002x -5=750x7.在△ABC 中,D ,E 分别是边AB ,AC 上的点,且AD =CE ,∠DEC =∠C =70°, ∠ ADE =30°,则下列结论正确的是A .DE =CEB .BC =CE C .DB =DED .AE =DB图18.在平面直角坐标系中,O 是坐标原点,点A (3,2),点P (m ,0)(m <6),若△POA 是等腰三角形,则m 可取的值最多有A . 2个B .3个C .4个D . 5个9. 下列四个多项式,可能是2x 2+mx -3 (m 是整数)的因式的是A . x -2B . 2x +3C . x +4D . 2x 2-1 10. 如图2,点D 在线段BC 上,若BC =DE ,AC =DC ,AB =EC ,且∠ACE =180°—∠ABC —2x °,则下列角中,大小为x °的角是A . ∠EFCB . ∠ABC C . ∠FDCD . ∠DFC二、填空题(本大题有6小题,每小题4分,共24分)11.计算:(1)(2a )3= ;(2)3a (5a 2+2b 2) = . 12.计算:4x 23y ·3yx3= .13. 如图3,在△ABC 中,∠ACB =90°,AD 平分∠CAB ,交边BC 于点D , 过点D 作DE ⊥AB ,垂足为E .若∠CAD =20°,则∠EDB 的度数是 . 14. 如图4,有一张边长为x 的正方形ABCD 纸板,在它的一个角上切去一个 边长为y 的正方形AEFG ,剩下图形的面积是32,过点F 作FH ⊥DC ,垂 足为H .将长方形GFHD 切下,与长方形EBCH 重新拼成一个长方形,若 拼成的长方形的较长的一边长为8,则正方形ABCD 的面积是 . 15. 已知锐角∠MPN ,依照下列步骤进行尺规作图: (1)在射线PN 上截取线段P A ;(2)分别以P ,A 为圆心,大于12P A 的长为半径作弧,两弧相交于E ,F两点; (3)作直线EF ,交射线PM 于点B ; (4)在射线AN 上截取AC =PB ; (5)连接BC .则∠BCP 与∠MPN 之间的数量关系是 .16.在△ABC 中,∠C =90°,D 是边BC 上一点,连接AD ,若∠BAD +3∠CAD =90°,DC =a ,BD =b ,则AB = . (用含a ,b 的式子表示)三、解答题(本大题有9小题,共86分)17.(本题满分12分)(1)计算:(y +2)(y —2) +(2y —4)(y +3); (2)分解因式:2a 2x 2+4a 2xy +2a 2y 2.18. (本题满分7分)如图5,点B ,E ,C ,F 在一条直线上,AB =DE ,∠A =∠D ,AB ∥DE. 求证:BE =CF .F A B CD E图2 ABCDE图3AB DCE F图5FA B CD EHG图4先化简,再求值:1m 2-49÷1m 2-7m+1,其中m =2.20. (本题满分8分) 已知点A (1,1),B (-1,1),C (0,4). (1)在平面直角坐标系中描出A ,B ,C 三点;(2)在同一平面内,点与三角形的位置关系有三种:点在三角形内、点在三角形边上、 点在三角形外.若点P 在△ABC 外,请判断点P 关于y 轴的对称点P ′与△ABC 的 位置关系,直接写出判断结果.21. (本题满分8分)如图6,在△ABC 中,AB =AC ,过点B 作BD ⊥AC ,垂足为D ,若D 是边AC 的中点, (1)求证:△ABC 是等边三角形;(2)在线段BD 上求作点E ,使得CE =2DE . (要求:尺规作图,不写画法,保留作图痕迹)22. (本题满分9分)某企业在甲地有一工厂(简称甲厂)生产某产品,2017年的年产量过万件,2018年甲 厂经过技术改造,日均生产的该产品数是该厂2017年的2倍还多2件. (1)若甲厂2018年生产200件该产品所需的时间与2017年生产99件该产品所需的时间相同,则2017年甲厂日均生产该产品多少件?(2)由于该产品深受顾客欢迎,2019年该企业在乙地建立新厂(简称乙厂)生产该产品.乙厂的日均生产的该产品数是甲厂2017年的3倍还多4件.同年该企业要求甲、乙两厂分别生产m ,n 件产品(甲厂的日均产量与2018年相同),m :n =14:25,若甲、乙两厂同时开始生产,谁先完成任务?请说明理由.图6AB CD已知一些两位数相乘的算式:62×11,78×69,34×11,63×67,18×22,15×55,12×34,54×11. 利用这些算式探究两位数乘法中可以简化运算的特殊情形:(1)观察已知算式,选出具有共同特征的3个算式,并用文字描述它们的共同特征; (2)分别计算你选出的算式.观察计算的结果,你能发现不经过乘法运算就可以快速、 直接地写出积的规律吗?请用文字描述这个规律; (3)证明你发现的规律;(4)在已知算式中,找出所有可以应用(或经过转化可以应用)上述规律的算式,并将 它们写在横线上: .24. (本题满分11分)在△PQN 中,若∠P =12∠Q +α(0°<α≤25°),则称△PQN 为“差角三角形”,且∠P 是∠Q 的“差角”.(1)已知△ABC 是等边三角形,判断△ABC 是否为“差角三角形”,并说明理由; (2)在△ABC 中,∠C =90°,50°≤∠B ≤70°,判断△ABC 是否为“差角三角形”,若是,请写出所有的“差角”并说明理由;若不是,请说明理由.25. (本题满分14分)如图7,在四边形ABCD 中,AC 是对角线,∠ABC =∠CDA =90°,BC =CD ,延长 BC 交AD 的延长线于点E . (1)求证:AB =AD ;(2)若AE =BE +DE ,求∠BAC 的值;(3)过点E 作ME ∥AB ,交 AC 的延长线于点M ,过点M 作MP ⊥DC ,交DC 的延长 线于点P ,连接PB .设PB =a ,点O 是直线AE 上的动点,当MO +PO 的值最小 时,点O 与点E 是否可能重合?若可能,请说明理由并求此时MO +PO 的值(用 含a 的式子表示);若不可能,请说明理由.图7B E DC A。
2018—2019 学年(上)厦门市八年级质量检测数 学(试卷满分:150 分 考试时间:120 分钟)一、选择题(本大题有 10 小题,每小题 4 分,共 40 分.每小题都有四个选项,其中有且只有一个选项正确)1. 计算 2-1 的结果是( )A .-2B .-12C .12D .12. x =1 是方程 2x +a =-2 的解,则 a 的值是()A .-4B .-3C .0D .43. 四边形的内角和是()A .90°B .180°C .360°D .540°4. 在平面直角坐标系 xoy 中,若△ABC 在第一象限,则△ABC 关于 x 轴对称的图形所在的位置是( )A .第一象限B .第二象限C .第三象限D .第四象限5. 若 AD 是△ABC 的中线,则下列结论正确的是()A .BD =CDB .AD ⊥BCC .∠BAD =∠CADD .BD =CD 且 AD ⊥BC 6. 运用完全平方公式(a +b )2=a 2+2ab +b 2 计算(x +1)2,则公式中的 2ab 是()2A .1xB .xC .2xD .4x27. 甲完成一项工作需要 n 天,乙完成该项工作需要的时间比甲多 3 天,则乙一天能完成的工作量是该项工作的( ) A .3 B . 1C .1+1D .1 n 3nn 3n +38.如图1,点F,C 在BE 上,△ABC≌△DEF,AB 和DE,AC 和DF 是对应边,AC,DF 交于点M,则∠AMF 等于( )A.2∠B B.2∠ACB C.∠A+∠D D.∠B+∠ACB图 19.在半径为R 的圆形钢板上,挖去四个半径都为r 的小圆.若R=16.8,剩余部分的面积为272π,则r 的值是( )A.3.2 B.2.4 C.1.6 D.0.810.在平面直角坐标系xoy 中,点A(0,a),B(b,12-b),C(2a-3,0),0<a<b<12,若OB 平分∠AOC,且AB=BC,则a+b 的值为( )A.9 或12 B.9 或11 C.10 或11 D.10 或12二、填空题(本大题有 6 小题,每小题4 分,共24 分.)11.计算下列各题:(1) x·x4÷x2=;(2) (ab)2=.12.要使分式1有意义,x 应满足的条件是.x-313.如图2,在△ABC 中,∠C=90°,∠A=30°,AB=4,则BC 的长为.图 214.如图3,在△ABC 中,∠B=60°,AD 平分∠BAC,点E 在AD 延长线上,且EC⊥AC.若∠E=50°,则∠ADC 的度数是.15.如图4,已知E、F、P、Q 分别是长方形纸片ABCD(AD>AB)各边的中点,将该纸片对折,使顶点B、D 重合,则折痕所在的直线可能是.图3 图416.已知a、b 满足(a-2b)( a+b)-4ab+4b2+2b=a-a2,且a≠2b,则a 与b 的数量关系是.三、解答题(本大题有9 小题,共86 分)17.(本题满分12 分)计算:(1)10mn2÷5mn·m3n (2) (3x+2)(x-5).18.(本题满分7 分)如图5,在△ABC 中,∠B=60°,过点C 作CD∥AB,若∠ACD=60°,求证:△ABC 是等边三角形.图(2)(19.(本题满分 14 分)(1)(2a -1)2-(2a +4)2,其中 4a +3=2;3 +1)÷ 3m +3 ,其中 m =4 m -2 m 2-420.(本题满分 7 分)如图 6,已知 AB ∥CF , D 是 AB 上的一点,DF 交 AC 于点 E ,若 AB =BD +CF , 求证:△ADE ≌△CFE .图 621.(本题满分 7 分)在平面直角坐标系中 xoy 中,点 A 在第一象限,点 A 、B 关于 y 轴对称.(1) 若 A (1,3),写出点 B 的坐标;(2) 若 A (a ,b ),且△AOB 的面积为 a 2,求点 B 的坐标(用含 a 的代数式表示).22. 已知一组数23,65-,127,209-……,[])1()1()1(1+++-+n n n n n (从左往右数,第一个数是23),第二个数是56-,第三个数是127,第四个数是209-,以此类推,第n 个数是[])1()1()1(1+++-+n n n n n .(1)分别写出第五个,第六个数;(2)设这组数的前n 个数的和是n S ,如: 231=S (可表示为211+) 32)65(232=-+=S ((可表示为1-31) 45127)56(233=+-+=S (可表示为411+) 54)209(127)56(234=-++-+=S (可表示为511-)请计算99S 的值.23.(本题满分9 分)如图7,在△ABC 中,D 是边AB 上的动点,若在边AC、BC 上分别有点E、F,使得AE=AD,BF=BD.(1)设∠C=α,求∠EDF(用含α的代数式表示);(2)尺规作图:分别在边AB、AC 上确定点P、Q(PQ 不与DE 平行或重合),使得∠CPQ=∠EDF.(请在图7 中作图,保留作图痕迹,不写作法)图7 备用图24.(本题满分10 分)一条笔直的公路依次经过A、B、C 三地,且A、B 两地相距1000m,B、C 两地相距2000m,甲、乙两人骑车分别从A、B 两地同时出发前往C 地.(1)若甲每分钟比乙多骑100m,且甲、乙同时到达C 地,求甲的速度;(2)若出发5min,甲还未骑到B 地,且此时甲、乙两人相距不到650m,请判断谁先到达C 地,并说明理由.25.(本题满分12 分)如图8,在△ABC 中,∠A<∠C,BD⊥AC,垂足为D,点E 是边BC 上的一个动点,连接DE,过点E 作EF⊥DE,交AB 的延长线于点F,连接DF 交BC 于点G.(1)请根据题意补全示意图;(2)当△ABD 与△DEF 全等时,①若AD=FE,∠A=30°,∠AFD=40°,求∠C 的度数;②试探究GF、AF、DF 之间的数量关系,并证明.图82018—2019学年(上) 厦门市八年级质量检测数学参考答案一、选择题(本大题共10小题,每小题4分,共40分)题号1 2 3 4 5 6 7 8 9 10 选项C A CD A B D B C B 二、填空题(本大题共6小题,每小题4分,共24分) 11. (1)x 3;(2)a 2b 2. 12. x ≠3. 13.2. 14. 100°. 15. MH . 16. 2a -b =1.17.(本题满分12分)(1)(本小题满分6分) 解: 10mn 2÷5mn ·m 3n =2n ·m 3n ……………………………3分 =2m 3n 2. ……………………………6分(2)(本小题满分6分)解: (3x +2)( x -5)=3x 2-15x +2x -10 ……………………………4分 =3x 2-13x -10. ……………………………6分 18.(本题满分7分)证明:证法一: ∵ CD ∥AB , ∴ ∠A =∠ACD =60°.………………………4分 ∵ ∠B =60°, 在△ABC 中,∠ACB =180°-∠A -∠B =60°.………………………6分 ∴ ∠A =∠B =∠ACB .∴ △ABC 是等边三角形. ……………………………7分证法二: ∵ CD ∥AB , ∴ ∠B +∠BCD =180°. ∵ ∠B =60°, ∴ ∠BCD =120°. ………………………3分 ∴ ∠ACB =∠BCD -∠ACB =60°.………………………4分 在△ABC 中, ∠A =180°-∠B -∠ACB =60°.………………………6分 ∴ ∠A =∠B =∠ACB .∴ △ABC 是等边三角形. ……………………………7分19.(本题满分14分)(1)(本小题满分7分) 解:(2a -1)2-(2a +4)2=[(2a -1)+(2a +4)][(2a -1)-(2a +4)] ……………………………3分 =-5(4a +3) …………………………5分 当4a +3=2时,原式=-5×2=-10 ……………………………7分 (2)(本小题满分7分)图5A B C D解:(3m -2+1) ÷3m +3m 2-4=3+m -2m -2·m 2-43m +3 ……………………………2分=m +1m -2·(m+2)( m -2)3(m +1) ……………………………5分=m+23 ……………………………6分当m =4时,原式=2 …………………………7分20.(本题满分7分)证明:∵ AB =BD +CF , 又∵ AB =BD +AD ,∴ CF =AD , ……………………2分 ∵ AB ∥CF ,∴ ∠A =∠ACF ,∠ADF =∠F ………………6分 ∴ △ADE ≌△CFE . ………………7分21.(本题满分7分)解:(1)点B 的坐标为(-1,3). ……………2分 (2)解法一:如图:连接AB ,交y 轴于点P , ∵ 点A ,B 关于y 轴对称,∴ AB ⊥y 轴且AP =BP . ……………4分 ∵ A (a , b )在第一象限, ∴ a >0,且b >0. ∴ AP =a ,OP =b . ∴ AB =2b .∴ S △AOB =12AB ·OP =ab . ……………5分 ∵ S △AOB =a 2, ∴ ab =a 2.∴ a =b . ……………6分 ∴ A (a , a ).∵ 点A ,B 关于y 轴对称,∴ B (-a , a ). ……………7分解法二:如图:∵ A (a , b )在第一象限, ∴ a >0,且b >0.∵ 点A ,B 关于y 轴对称, 又∵ A (a , b ), ∴ B (-a , b ).连接AB ,交y 轴于点P ,可得AB ⊥y 轴,且AP =BP =a ,OP =b . ……………4分 ∴ AB =2a .∴ S △AOB =12AB ·OP =ab . ……………5分 ∵ S △AOB =a 2, ∴ ab =a 2.图6ABCD EFABP11∴ a =b . ……………6分 ∴ B (-a , a ). ……………7分 22.(本题满分8分)解:(1)第5个数是:1130 ,第6个数是:-1342. ……………4分(2)因为第n 个数是(-1)n +1[n +(n +1)]n (n +1),所以当n 为奇数时,第n 个数为n +(n +1) n (n +1)=1n +1n +1;当n 为偶数时,第n 个数为-n +(n +1) n (n +1)=-(1n +1n +1). …………2分所以s 99=(1+12)-(12+13)+(13+14)... -(198+199)+(199+1100) =1+1100=101100. ……………4分23.(本题满分9分)(1)(本小题满分4分) 解:∵ AE =AD ,∴ ∠AED =∠ADE , …………………1分在△ADE 中,∠ADE =12(180°-∠A ). ……………2分同理可得∠BDF =12(180°-∠B ). ……………3分∴ ∠EDF =180°-∠ADE -∠BDF =180°-12(180°-∠A )-12(180°-∠B ) =12(∠A +∠B ). 在△ABC 中, ∠A +∠B =180°-∠C =180°-α.∴ ∠EDF =12(180°-α)=90°-12α. ……………5分 (2)(本小题满分4分)解:尺规作图:如图点P ,Q 即为所求. …………………9分24.(本题满分10分)解:(1)设甲的速度为x m /min ,则乙的速度为(x -100)m /min ,由题意得3000x =2000x -100. ……………2分解得x =300 . ……………3分 经检验,x =300是原方程的解.答:甲的速度为300 m /min . ……………4分 (2)解法一:设甲的速度为x m /min ,乙的速度为y m /min ,因为出发5 min ,甲还未骑到B 地,可得5x <1000, ……………5分 解得x <200.因为出发5 min ,甲、乙两人相距不到650 m ,可得图7 A B C D EFP Q125y +1000—5x <650. ………………………6分 化简得x —y >70.设甲、乙从出发到到达C 地所用的时间分别为t 甲,t 乙,则t 甲—t 乙=3000x — 2000y ………………………7分=1000(3y —2xxy ).因为x —y >70,所以y <x —70. 所以3y —2x <3(x —70)—2x . 即3y —2x <x —210. 又因为x <200, 所以3y —2x <0.因为由实际意义可知xy >0, 所以t 甲—t 乙<0.即t 甲<t 乙 . ………………………9分 所以甲先到达C 地. ………………………10分解法二:设甲的速度为x m /min ,乙的速度为y m /min ,因为出发5 min ,甲还未骑到B 地,可得5x <1000, ……………5分 解得x <200.因为出发5 min ,甲、乙两人相距不到650 m ,可得 5y +1000—5x <650. ………………………6分 化简得x —y >70.由题可知,出发后,甲经过1000x —y min 追上乙,则此时s 甲=1000xx —y . ………………………7分 因为x —y >70,且x <200,所以s 甲<1000×20070<3000. ………………………9分 也即甲追上乙时,两人还未到达C 地. 因为x >y ,所以甲先到达C 地. ………………………10分25.(本题满分12分) 解: (1)(本小题满分2分)如图8即为所求示意图. ………………2分(2)(本小题满分10分) ①(本小题满分4分) ∵ DE ⊥EF , BD ⊥AC , ∴ ∠DEF =∠ADB =90°. ∵ △ABD 与△DEF 全等, ∴ AB =DF .图8ABCD EFGEFG图8(1)ABCD13又∵ AD =FE ,∴ ∠ABD =∠FDE , …………………4分 BD =DE .在Rt △ABD 中,∠ABD =90°-∠A =60°. ∴ ∠FDE =60°. ∵ ∠ABD =∠BDF +∠AFD , ∵ ∠AFD =40°, ∴ ∠BDF =20°.∴ ∠BDE =∠BDF +∠FDE =20°+60°=80°.…………………5分 ∵ BD =DE ,∴ ∠DBE =∠BED =12(180°-∠BDE )=50°.在Rt △BDC 中, ∠C =90°-∠DBE =90°-50°=40°. …………………6分 ②(本小题满分6分)GF ,AF ,DF 之间的数量关系为:AF =DF +FG . 证明:由①得,AB =DF .(I )若BD =DE , 设∠ABD =α,∠DBE =β, ∵ △ABD 与△DEF 全等, ∴ ∠ABD =∠FDE =α. ∵ BD =DE ,∴ ∠DBE =∠DEB =β.∴ ∠FBG =180°-∠ABD -∠DBE =180°-α-β.在△DGE 中,∠DGE =180°-∠FDE -∠DEB =180°-α-β. ∴ ∠FBG =∠DGE . 又∵ ∠DGE =∠FGB ,∴ ∠FBG =∠FGB . …………………9分 ∴ FB =FG . 又∵ AB =DF ,∴ AF =AB +FB =DF +FG . …………………10分(II )若AD =DE , 如图,延长FE 交AC 于H ,EFGH I 图8(2)②ABCD∵DE⊥FH,∴DH>DE.则在线段DH上存在点I,使得DI=DE.连接BI,∵AD=DE=DI,又∵BD⊥AC,∴AB=BI.∴∠A=∠BID.…………………11分∵∠BID=∠C+∠IBC,∴∠BID>∠C.∴∠A>∠C.不符合题意.综上所述,GF,AF,DF之间的数量关系为:AF=DF+FG.…………………12分14。
2016-2017学年(上)厦门市八年级数学质量检测数学参考答案说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后续部分但未改变后继部分的测量目标,视影响的程度决定后继部分的给分,但原则上不超过后续部分应得分数的一半. 3.解答题评分时,给分或扣分均以1分为基本单位.一、选择题(本大题有10小题,每小题4分,共40分.)二、填空题(本大题共6小题,每题4分,共24分)11. 2x ≠. 12.41.0210-⨯. 13. 13. 14. 40 或80 .15.21113112⨯+=, 2(31)(31)1(3)n n n -++=. 16. 7 , 4.5 . 三、解答题(本大题共11小题,共86分) 17.(本题满分8分)(1) 解:原式=2221x x x +++ …………… 2分 =223 1.x x ++ …………… 4分 (2) 解:原式=3432x y y x …………… 1分 =2213x…………… 3分 =223x …………… 4分 注: 1.写出正确答案,至少有一步过程,不扣分. 2.只有正确答案,没有过程,只扣1分.3.没有写出正确答案的,若过程不完整,按步给分.(以下题目类似)18.(本题满分8分)解:在ABE ∆与ACD ∆中,,,,AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩……………4分 ∴ABE ∆≌ACD ∆ . ……………6分 ∴B C ∠=∠ . ……………8分19.(本题满分8分)解:由①得 2x > …………… 2分 由②得 32(1)x x -≤+ ……………3分 322x x -≤+ ……………4分223x x -≤+ ……………5分5x -≤ ……………6分 5x ≥- ……………7分所以原不等式组的解集为 2x > . …………… 8分20.(本题满分8分)说明:平面直角坐标系正确得2分,A 、B 、C 、A 1、B 1、C 1位置正确各得1分.21.(本题满分8分)解:方程两边同乘以(x -2)得2(2)1x x +-=-. ……………3分241x x +-=-.314x =-+. ……………4分33x =.1x =. ……………5分检验:当1=x 时,20x -≠, ……………6分所以,原分式方程的解为1=x . ……………7分去分母的作用是把分式方程化为整式方程(或一元一次方程). …………8分22. (本题满分10分)解:设2015年居民用水价格为x 元/m 3,则2016年1月起居民用水价格为2(1)9x +元/m 3. ……………1分EDCB A依题意得:33185(1)9xx -=+. ………………5分 解得 1.8x =. ……………8分 检验:当 1.8x =时,2(1)09x +≠.所以,原分式方程的解为 1.8x =. ……………9分答:2015年居民用水价格为1.8元/m 3. ……………10分23. (本题满分10分)解:(1)原等式变形得,222(1)(1)5(1)m m m m +-=- ……………2分22m m ==若,即 =(21)(21)3,+-=等式左边 ……………3分=5m (21)⨯-=±等式右边 ……………4分∵左边≠右边,22.m ∴的值不等于 ……………5分 (2)由222(1)(1)5(1)m m m m +-=- 知 ①2210,1m m -==当即时, ……………6分 221112m m +=+= ……………7分 ②210m -≠当时,215m m += ……………8分0== m =当时,左边1,右边0, 0m ∴≠. 15m m∴+=. ……………9分 ∴222211()25223m m m m+=+-=-=. ……………10分24. (本题满分12分)GFEDCBA证明(1):∵90,90B C ∠=∠=∴在Rt ABE ∆与Rt ACD ∆中,AE DEAB EC=⎧⎨=⎩ ∴Rt ABE ∆≌Rt ACD ∆ . ……………2分 ∴.BAE CED ∠=∠ ……………3分 ∵90,B ∠=∴90BAE BEA ∠+∠=∴90CED BEA ∠+∠=∴90AED ∠=. ……………4分∴45ADE DAE ∠=∠= . ……………5分 (2)解法一 过点E 作EF ⊥AD 于点F ,90B ∠= ,AE 平分BAD ∠,EB EF ∴=. ……………6分 在Rt ABE ∆和Rt AFE ∆中,EF EB AE AE =⎧⎨=⎩,,Rt AEF Rt AEB ∴∆∆≌. 2AB AF ∴==. …………… 7分105,AED ∠=75EAD EDA ∴∠+∠= .,AE BAD ED CDA ∠∠ 平分平分, 150BAD CDA ∴∠+∠=. 120.C ∴∠=……………8分 过点E 作EG ⊥DC 交DC 的延长线于点G EF EG ∴=. …………… 9分 在Rt DEF ∆和Rt DEG ∆中, EF EG ED ED =⎧⎨=⎩,,CDRt EDF Rt EDG ∴∆∆≌. DF DG ∴=. …………… 10分.3090120=∠∴=∠=∠GEC EGC DCE ,,1122CG EC y ∴==. ……………11分 1.2DF DG DC CG x y ∴==+=+12.2AD AF DF x y ∴=+=++…………… 12分解法二:过点E 作EF ⊥AD 于点F90B ∠= ,AE 平分BAD ∠,EB EF ∴=. …………… 6分 在Rt ABE ∆和Rt AFE ∆中, EF EB AE AE =⎧⎨=⎩,,Rt AEF Rt AEB ∴∆∆≌. 2AB AF ∴==. …………… 7分10510521375.12,330....83,...934,,,.AED FED FED FED HED AD H HED CED DE DE HDE CDE HDE CDE DH DC x∠=∴∠=-∠∠+∠=∠=∠∴∠=∠+⋯⋯⋯⋯⋯⋯∠∠=∠⋯⋯⋯⋯⋯⋯∆∆∠=∠⎧⎪=⎨⎪∠=∠⎩∴∆∆∴==,,分在内部作交于点分在和中,≌.EH EC y == …………… 10分中,在EFH Rt ∆304=∠-∠=∠FED FEH111222FH EH EC y ∴===. …………… 11分122AD AF FH HD y x ∴=++=++. …………… 12分 25.解:(本题满分14分)(1)示意图 …………3分说明:点A 、B 位置正确各得1分,点C 的位置和直角正确得1分.(2)过点A 作AE ⊥x 轴于点E ,过点A 作AF ⊥y 轴于点F , ……………4分 则OF =OE =AF =AE =2, ……………5分90AEO AFB ∠=∠= 90BAC ∠=190FAC ∴∠+∠=. 290FAC ∠+∠= ,12∴∠=∠. ……………6分(ABF ACE ASA ∴∆∆≌). ……………7分1BF CE OB OF ∴==-=211OC OE CE ∴=-=-= …………… 8分(3)过点A 作AE ⊥x 轴于点E ,作AF ⊥y 轴于点F ,则OF =OE =AF =AE=a , 90.AEC AFB ∠=∠=由(2)得( ABF ACE ASA ∆∆≌)3.BF CE a ∴==- ……………9分2 3.OC a ∴=- ……………10分228,CAD OB OC S ∆-=29(23)8.CAD a S ∆∴--= (11)分211248.2a a CD a ∴-=⨯⨯⨯ 3.CD a ∴=- ……………12分3 6.OD OC CD a ∴=-=- 连接OA,OAB OAD OBAD S S S ∆∆=+ 四边形 4531(36).822a a a ∴=+-……………13分 2154a a ∴-=. ……………14分。
2017-2018学年福建省厦门市五校联考八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)在平面直角坐标系中,点(3,﹣2)关于y轴对称的点的坐标是()A.(3,2) B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)3.(3分)下列长度的三条线段能组成三角形的是()A.1cm 2cm 3cm B.6cm 2cm 3cmC.4cm 6cm 8cm D.5cm 12cm 6cm4.(3分)如图,在△ABC中,∠A=55°,∠B=45°,那么∠ACD的度数为()A.110 B.100 C.55 D.455.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE6.(3分)如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点(P不与AA′共线),下列结论中错误的是()A.△AA′P是等腰三角形B.MN垂直平分AA′,CC′C.△ABC与△A′B′C′面积相等D.直线AB、A′B′的交点不一定在MN上7.(3分)如图,△ABC中,AB=AC,∠BAC=100°,AD是BC边上的中线,且BD=BE,则∠ADE的大小为()A.10°B.20°C.40°D.70°8.(3分)如图,在△ABC中,BE、CE分别是∠ABC和∠ACB的平分线,过点E作DF ∥BC交AB于D,交AC于F,若AB=4,AC=3,则△ADF周长为()A.6 B.7 C.8 D.109.(3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)10.(3分)已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形二、填空题(共6小题,每小题3分,满分18分)11.(3分)在△ABC中,已知∠A=60°,∠B=80°,则∠C是°.12.(3分)五边形的内角和为.13.(3分)如图,△ABC的边BC的垂直平分线M N交AC于D,若△ADB的周长是10cm,AB=4cm,则AC=cm.14.(3分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D 到AB的距离是.15.(3分)如图,把长方形纸片ABCD纸沿对角线折叠,若∠BDE=25°,那么∠BED=.16.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为.三、解答题(本题共9小题,共86分)17.(8分)一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.18.(8分)如图,AB=AC,AE=AF.求证:∠B=∠C.19.(8分)如图,在直角坐标系中,先描出点A(1,3),点B(4,1).(1)描出点A关于x轴的对称点A1的位置,写出A1的坐标;(2)用尺规在x轴上找一点C,使AC+BC的值最小(保留作图痕迹);(3)用尺规在x轴上找一点P,使PA=PB(保留作图痕迹).20.(8分)如图,△ABC是等腰三角形,AB=AC,∠A=36°.(1)尺规作图:作∠B的角平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)判断△DBC是否为等腰三角形,并说明理由.21.(8分)已知三角形一条边上的中线等于这条边的一半,证明这个三角形是直角三角形.22.(10分)如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.23.(10分)如图,△ABC是等边三角形,BD⊥AC,AE⊥BC,垂足分别为D、E,AE、BD相交于点O,连接DE.(1)判断△CDE的形状,并说明理由.(2)若AO=12,求OE的长.24.(12分)如图1和2,△ABC中,BE平分∠ABC交AC边于点E,(1)过点E作DE∥BC交AB于点D,求证:△BDE为等腰三角形;(2)若AB=AC,AF⊥BD,∠ACD=∠ABC,判断BF、CD、DF的数量关系,并说明理由.25.(14分)在平面直角坐标系中,点A(a,b)的坐标满足(a﹣2)2+(b+2)2=0(1)A点坐标为,则OA==;(2)y轴上是否存在点P使△OAP为等腰三角形,若存在请求出P点坐标;(3)若直线l过点A,且平行于y轴,如果点N的坐标是(﹣n,0),其中n>0,点N 关于y轴的对称点是点N1,点N1关于直线l的对称点是点N2,求NN2的长.2017-2018学年福建省厦门市五校联考八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选;B.2.(3分)在平面直角坐标系中,点(3,﹣2)关于y轴对称的点的坐标是()A.(3,2) B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)【解答】解:点(3,﹣2)关于y轴对称的点的坐标是(﹣3,﹣2),故选:D.3.(3分)下列长度的三条线段能组成三角形的是()A.1cm 2cm 3cm B.6cm 2cm 3cmC.4cm 6cm 8cm D.5cm 12cm 6cm【解答】解:A.∵1+2=3,∴1cm 2cm 3cm不能组成三角形,故A错误;B.∵3+2<6,∴6cm 2cm 3cm不能组成三角形,故B错误;C.∵4+6>8,∴4cm 6cm 8cm能组成三角形,故C正确;D.∵5+6<12,∴5cm 12cm 6cm不能组成三角形,故D错误;故选:C.4.(3分)如图,在△ABC中,∠A=55°,∠B=45°,那么∠ACD的度数为()A.110 B.100 C.55 D.45【解答】解:由三角形的外角的性质可知,∠ACD=∠A+∠B=100°,故选:B.5.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE【解答】解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故选:B.6.(3分)如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点(P不与AA′共线),下列结论中错误的是()A.△AA′P是等腰三角形B.MN垂直平分AA′,CC′C.△ABC与△A′B′C′面积相等D.直线AB、A′B′的交点不一定在MN上【解答】解:∵△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,∴△AA′P是等腰三角形,MN垂直平分AA′,CC′,这两个三角形的面积相等,A、B、C 选项正确;直线AB,A′B′关于直线MN对称,因此交点一定在MN上.D错误;故选D.7.(3分)如图,△ABC中,AB=AC,∠BAC=100°,AD是BC边上的中线,且BD=BE,则∠ADE的大小为()A.10°B.20°C.40°D.70°【解答】解:∵△A BC中,AB=AC,∠BAC=100°∴∠B=∠C=(180°﹣∠BAC)=(180°﹣100°)=40°∵BD=BE∴∠BED=∠BDE=(180°﹣∠B)=(180°﹣40°)=70°∴∠ADE=90°﹣70°=20°.故选B.8.(3分)如图,在△ABC中,BE、CE分别是∠ABC和∠ACB的平分线,过点E作DF ∥BC交AB于D,交AC于F,若AB=4,AC=3,则△ADF周长为()A.6 B.7 C.8 D.10【解答】(1)证明:∵E是∠ABC,∠ACB平分线的交点,∴∠EBD=∠EBC,∠ECF=∠ECB,∵DF∥BC,∴∠DEB=∠EBC,∠FEC=∠ECB,∴∠DEB=∠DBE,∠FEC=∠FCE,∴DE=BD,EF=CF,∴DF=DE+EF=BD+CF,即DE=BD+CF,∴△ADF的周长=AD+DF+AF=(AD+BD)+(CF+AF)=AB+AC,∵AB=4,AC=3,∴△ADF的周长=4+3=7,故选B.9.(3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.10.(3分)已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形【解答】解:根据轴对称的性质可知,OP1=OP2=OP,∠P1OP2=60°,∴△P1OP2是等边三角形.故选:D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)在△ABC中,已知∠A=60°,∠B=80°,则∠C是40°.【解答】解:∵∠A=60°,∠B=80°,∴∠C=180°﹣60°﹣80°=40°,故答案为:40.12.(3分)五边形的内角和为540°.【解答】解:(5﹣2)•180°=540°.故答案为:540°.13.(3分)如图,△ABC的边BC的垂直平分线MN交AC于D,若△ADB的周长是10cm,AB=4cm,则AC=6cm.【解答】解:∵MN是线段BC的垂直平分线,∴CD=BD,∵△ADB的周长是10cm,∴AD+BD+AB=10cm,∴AD+CD+AB=10cm,∴AC+AB=10cm,∵AB=4cm,∴AC=6cm,故答案为:6.14.(3分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D 到AB的距离是3.【解答】解:作DE⊥AB于E,∵AD是∠CAB的角平分线,∠C=90°,∴DE=DC,∵DC=3,∴DE=3,即点D到AB的距离DE=3.故答案为:3.15.(3分)如图,把长方形纸片ABCD纸沿对角线折叠,若∠BDE=25°,那么∠BE D= 130°.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠BDE=∠DBC,根据折叠的性质得:∠EBD=∠DBC,∴∠EBD=∠EDB=25°,∴∠BED=130°,故答案为:130°.16.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为10.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=16,解得AD=8,∴S△ABC∵E F是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故答案为:10.三、解答题(本题共9小题,共86分)17.(8分)一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.【解答】解:设这个多边形的边数是,则(n﹣2)×180=360×4,n﹣2=8,n=10.答:这个多边形的边数是10.18.(8分)如图,AB=AC,AE=AF.求证:∠B=∠C.【解答】证明:在△ABF和△ACE中,∴△ABF≌△ACE(SAS),∴∠B=∠C.19.(8分)如图,在直角坐标系中,先描出点A(1,3),点B(4,1).(1)描出点A关于x轴的对称点A1的位置,写出A1的坐标(1,﹣3);(2)用尺规在x轴上找一点C,使AC+BC的值最小(保留作图痕迹);(3)用尺规在x轴上找一点P,使PA=PB(保留作图痕迹).【解答】解:(1)如图所示:A1的坐标(1,﹣3);故答案为:(1,﹣3);(2)如图所示:点C即为所求;(3)如图所示:点P即为所求.20.(8分)如图,△ABC是等腰三角形,AB=AC,∠A=36°.(1)尺规作图:作∠B的角平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)判断△DBC是否为等腰三角形,并说明理由.【解答】解:(1)如图所示:BD即为所求;(2)∵AB=AC,∴∠ABC=∠C,∵∠A=36°,∴∠ABC=∠ACB=(180°﹣36°)÷2=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=36°+36°=72°,∴BD=BC,∴△DBC是等腰三角形.21.(8分)已知三角形一条边上的中线等于这条边的一半,证明这个三角形是直角三角形.【解答】已知:如图1,在△ABC中,点D是AB的中点,连接CD,且CD=AB求证:△ABC为直角三角形证明:由条件可知,AD=BD=CD则∠A=∠DCA,∠B=∠DCB又∵∠A+∠DCA+∠B+∠DCB=180°∴∠DCA+∠DCB=90°即∠ACB=90°∴△ABC为直角三角形22.(10分)如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.【解答】(1)解:∵∠BAC=50°,AD平分∠BAC,∴∠EAD=∠BAC=25°,∵DE⊥AB,∴∠AED=90°,∴∠EDA=90°﹣25°=65°.(2)证明∵DE⊥AB,∴∠AED=90°=∠ACB,又∵AD平分∠BAC,∴∠DAE=∠DAC,∵AD=AD,∴△AED≌△ACD,∴AE=AC,∵AD平分∠BAC,∴AD⊥CE,即直线AD是线段CE的垂直平分线.23.(10分)如图,△ABC是等边三角形,BD⊥AC,AE⊥BC,垂足分别为D、E,AE、BD相交于点O,连接DE.(1)判断△CDE的形状,并说明理由.(2)若AO=12,求OE的长.【解答】解:(1)∵△ABC是等边三角形,且BD⊥AC,AE⊥BC,∴∠C=60°,CE=BC,CD=AC;而BC=AC,∴CD=CE,△CDE是等边三角形.(2)由(1)知:AE、BD分别是△ABC的中线,∴AO=2OE,而AO=12,∴OE=6.24.(12分)如图1和2,△ABC中,BE平分∠ABC交AC边于点E,(1)过点E作DE∥BC交AB于点D,求证:△BDE为等腰三角形;(2)若AB=AC,AF⊥BD,∠ACD=∠ABC,判断BF、CD、DF的数量关系,并说明理由.【解答】(1)证明:∵BE平分∠ABC,∴∠ABE=∠EBC,∵DE∥BC,∴∠DEB=∠EBC=∠ABE,∴BD=ED,∴△DBE为等腰三角形;(2)解:过A作AG=AD,交BD于G,∵AF⊥BD,∴DF=FG,∵∠ACD=∠ABC,BE平分∠ABC,∴∠ACD=∠ABD,∴A,B,C,D四点共圆,∴∠DAC=∠CBD,∠ADB=∠ACB=∠ABC=∠AGD,∵∠AGD=∠BAG+∠ABG,∠ABG=ABC=∠AGD,∴∠BAG=∠CAD,在△ABG与△ACD中,∴△ABG≌△ACD,∴BG=CD,∴BF=BG+DF,即BF=CD+DF.25.(14分)在平面直角坐标系中,点A(a,b)的坐标满足(a﹣2)2+(b+2)2=0(1)A点坐标为(2,﹣2),则OA==2;(2)y轴上是否存在点P使△OAP为等腰三角形,若存在请求出P点坐标;(3)若直线l过点A,且平行于y轴,如果点N的坐标是(﹣n,0),其中n>0,点N 关于y轴的对称点是点N1,点N1关于直线l的对称点是点N2,求NN2的长.【解答】解:(1)∵(a﹣2)2+(b+2)2=0,∴a﹣2=0且b+2=0,则a=2,b=﹣2,故A(2,﹣2),OA==2.故答案是:(2,﹣2),2.(2)如图1所示,①当OA=OP=2时,符合条件的点P的坐标是P(0,﹣4),P′(0,2);②当OP=AP=2时,符合条件的点P的坐标是P″(0,﹣2);综上所述,符合条件的点的坐标是:P(0,﹣4)或P′(0,2)或P″(0,﹣2);(3)如图2,①当n≥2时,∵N与N1关于y轴对称,N(﹣n,0),∴N1(n,0),又∵N1与N2关于l:直线x=3对称,设N2(x,0),可得:=2,即x=4﹣n,∴N2(4+n,0),则NN2=4﹣n﹣(﹣n)=4.②如图3,当0<a<2时,∵N与N1关于y轴对称,N(﹣n,0),∴N1(n,0),又∵N1与N2关于l:直线x=2对称,设N2(x,0),可得:=2,即x=4﹣n,∴P2(4﹣n,0),则PP2=4﹣n+n=4.③综上所述,NN2的长是4.。
2016—2017学年(上)厦门市八年级质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1.下列四个标志中,是轴对称图形的是 A .B .C .D .2.4的算术平方根是A .2B .-2C .D.3.下列计算结果为a 5的是A .a 2+a 3B .a 2· a 3C .(a 3)2D .153a a ÷4.分式211x x --的值为0,则x 的值为A .0B .1C .﹣1D .5.下列四组值中不是..二元一次方程21y x =+的解的是 A .01x y =⎧⎨=⎩ B . 13x y =⎧⎨=⎩C .120x y ⎧=-⎪⎨⎪=⎩D .11x y =-⎧⎨=⎩6.下列等式从左到右的变形中,属于因式分解的是A .(x +1)(x ﹣1)=x 2﹣1B .x 2+2x +1=(x +1)2C .x 2+2x ﹣1=x (x +2)﹣1D .x (x ﹣1) =x 2﹣x7.若2(1)(3)x x x ax b -+=++,则a ,b 的值分别为A .a =2,b =3B .a =﹣2,b =﹣3C .a =﹣2,b =3D .a =2,b =﹣38.在△ABC 中, AB =AC =4,∠B =30°,点P 是线段 BC 上一动点,则线段AP 的长可能是A .1 B. C.D.9.若02017=a ,2201620172015-⨯=b ,20172016)23()32(⨯-=c ,则下列a ,b ,c 的大小关系正确的是A .a <b <cB .a <c <bC .b <a <cD .c <b <a10.如图1,在△ABC 中, AB =AC ,∠BAC =120°, AD ⊥BC 于点D ,AE ⊥AB交BC 于点E .若 229nm S ABC +=∆,mnS ADE =∆,则m 与n 之间的数量关系是A .m =3nB .m =6nC .n =3mD .n =6m二、填空题(本大题有6小题,每小题4分,共24分) 11.若分式12x -有意义,则x 的取值范围为 . 12.某细胞的直径约为0.000102毫米,用科学记数法表示0.000102为 . 13.若点A (a ,1)与点B (3,b )关于x 轴对称,则a b =________.14.若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为 . 15.观察下列等式:①2×4+1=32 ,②5×7+1=62,③8×10+1=92,……按照以上规律,第4个等式是 ,第n 个等式是 . 16. 如图2,在△ABC 中,∠B =30°,点D 是BC 的中点,DE ⊥BC 交AB 于点E , 点O 在DE 上,OA =OC ,OD =1, OE =2.5,则BE = ,AE = . 三、解答题(本大题有11小题,共86分) 17.(本题满分8分,每小题4分)计算:(1) (1)(21)x x ++; 34223x x y y÷()18.(本题满分8分) 19.(本题满分8分)E D CBA图1C如图3,AB =AC ,AD =AE .求证:∠B =∠C . 解不等式组 -20,3 1.2x x x >⎧⎪⎨-≤+⎪⎩20. (本题满分8分)在平面直角坐标系中,已知△ABC 的三个顶点为A (3,0),B (1,1),C (0,-2),将△ABC 关于y 轴对称得到111C B A ∆.请画出平面直角坐标系,并在其中画出△ABC 和 111C B A ∆. 21.(本题满分8分)解方程1222x x x+=--,并说明“去分母”这一步骤的作用.22.(本题满分10分) EDCB A 图3某市为节约水资源,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨29.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5 m 3,求该市2015年居民用水的价格.23.(本题满分10分)已知43155m m m -=-.(1)试问:2m 的值能否等于2?请说明理由;(2)求221m m +的值.24. (本题满分12分)在四边形ABCD 中,∠B =90°,点E 在BC 边上.(1)如图4,∠C =90°,AE =DE ,AB =EC .求∠ADE 的度数; (2)如图5,AB =2,AE 平分∠BAD ,DE 平分∠ADC ,∠AED =105°.设CD =x ,CE =y ,请用含有x ,y 的式子表示AD .EDCBAEDCBA图4图525. (本题满分14分)在平面直角坐标系中,O 为坐标原点,点A (a ,a )在第一象限,点B (0,3),点C (c ,0),其中0<c <3,∠BAC =90°.(1)根据题意,画出示意图;(2)若a =2,求OC 的长;(3)已知点D 在线段OC 上,若 CAD S OC OB ∆=-822,四边形OBAD 的面积为845,求a a -2的值.。
2017-2018学年(上)厦门市八年级质量检测地 理(试卷满分:100分 考试时间:60分钟)准考证号__________________姓名____________座位号________ 注意事项:1.全卷二大题,共30小题,试卷共6页,另有答题卡。
2.答案一律写在答题卡上,否则不能得分。
一、单项选择题(本大题共25小题,每小题2分,共50分)小鹭爸爸开着车,带她行驶在某路上,图1示意该处交通指示牌,读图完成1~3题。
1.汽车正行驶在A .钟宅西一路B .枋湖路C .金山路D .云顶北路2.车行驶的方向大致为A .自北向南B .自东向西C .自南向北D .自西向东3.小鹭跟爸爸要去云顶北路,应在十字路口A .往东走B .往西走C .往南走D .往北走 图2示意我国沿32°N 地形剖面,甲、乙、丙为我国主要地形区,丁为黄海。
读图完成4~6题。
4.图中①是A .太行山脉B .巫山C .雪峰山D .横断山脉 5.乙地区主要的地形类型是A .平原B .高原C .山地D .盆地6.甲、乙、丙、丁中,种植业最为发达的是A .甲和乙B .甲和丙C .乙和丙D .丙和丁11月10日,在上海自主研发的中国大型干线客机C919首飞成功。
据此完成7~9题。
7.中国大型客机制造业得以快速发展的关键原因是A .原料充足B .技术进步C .市场需求大D .劳动力丰富 图1图28.C919客机研发地点位于我国四大工业基地中的A.辽中南B.京津唐C.沪宁杭D.珠三角9.C919客机研发与制造属于A.农业B.旅游业C.汽车制造业D.高新技术产业12月6日我国首条穿越秦岭山脉的高铁——西成高铁全线开通运营。
图3示意西成高铁线路。
读图完成10~11题。
10.西成高铁在建设过程中,容易遭遇的地质灾害是A.滑坡B.干旱C.洪涝D.暴雨11.西成高铁跨越的温度带是A.热带、亚热带B.亚热带、暖温带C.暖温带、中温带D.亚热带、青藏高原区图4示意我国四地日平均气温≥10℃的开始日期与结束日期,读图完成12~13题。
2017-2018学年度第一学期期末教学质量检测八年级数学试题(时间:120分钟)友情提示:亲爱的同学,你好!今天是你展示才能的时候,只要你仔细审题,认真答题,你就会有出色的表现!1.考生务必将姓名、班级、座号、准考证号填写在答题卡规定的位置上。
2.本试题分第Ⅰ卷和第Ⅱ卷,共25道小题。
3.第Ⅰ卷是选择题,共8道小题,每小题选出的答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试卷上。
4.第Ⅱ卷是填空题和解答题,共17小题,答案必须用0.5毫米黑色签字笔写在答题卡题目指定区域内相应的位置,不能写在试题上;如需改动,先划掉原来的答案,然后再写上新的答案。
不按以上要求作答的答案无效。
5.考试结束只上交答题卡。
第Ⅰ卷一、选择题:下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的,请将所选答案的字母标号涂在答题卡的相应位置。
1.3的相反数是()A、3B、-3C、3D、-32.在平面直角坐标系中,点P(-2,3)关于x轴的对称点坐标为()A、(-2,3)B、(2,-3)C、(-2,-3)D、(3,-2)3.下列语句:①三角形的内角和是180°;②作为一个角等于一个已知角;③两条直线被第三条直线所截,同位角相等;④延长线段AB到C,使BC=AB,其中是命题的有()A、①②B、②③C、①④D、①③4.方程组的解是()A、 B、 C、 D 、5.若一次函数y=kx+b,(k,b为常熟,且k≠0)的图像经过点(1,2)且y随x的增大而减小,则这个函数的表达式可能是()A、y=2x+4B、y=3x-1C、y=-3x-1D、y=-2x+46.如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()A、60°B、80°C、100°D、120°x +|y-2|=0,则(x+y)2017的值为()7.若3A、-1B、1C、±1D、08.若一组数据10,9.a,12,9的平均数是10,则这组数的方差是()A、0.9B、1C、1.2D、1.4第Ⅱ卷二、填空题:请把正确答案填写在答题卡的相应位置9.实数7的整数部分是_______10.命题“对顶角相等”的条件是_______________ ,结论是___________ 。
2016—2017学年(上)厦门市八年级期末质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 __________________ 姓名 _________________ 座位号 _____________一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一 个选项正确)1. 下列四个标志中,是轴对称图形的是5.下列四组值中不是二元一次方程y = 2x + l 的解的是2. 3.4. 4的算术平方根是A. 2B. -2C. D.下列计算结果为/的是C. (/) 2D. a分式匸的值为0,x~\则x 的值为A. oB. C. D.A.x = 0B.)=3C.1 x =——2y = 0D.6.下列等式从左到右的变形中,属于因式分解的是A. (x+ 1 ) (x - l )=x 2 - 1B. X 2+2X + 1 =(兀+ 1 )A. D.C. f+2x- 1 =x(x+2) - 1 De x (x - 1) =x2 - X7.若(兀—l)(x + 3) = A T + ctx + b ,A. a=2, b=3 B・a= - 2, 则G b的值分别为b= - 3 C・a= - 2, b=3 D. a=2, b= - 38.在△ABC中,AB=AC=4, ZB=30°,点P是线段BC上一动点,则线段AP的长可能是A. 1B. V2C. >/3D. V57 39.若a = 2017° /? = 2015 x 2017 - 20162, c = (--)2016 x (-)20*7 ' 3 2则下列a, b, c的大小关系正确的是A. a<b<cB. a<c<bC. b<ci<cD. c<b<a10-如图 1,在ZiABC 屮,AB=AC. ZBAC=120° , AD 丄BC 于点 D AE 丄AB 交 BC 于点 E ,若S^BC =m 2+9n 2 S MDE = mn 则就与川之间的数量关系是 A. m=3nB. m=6nC ・ n=3mD. n=6m二、填空题(本大题有6小题,每小题4分,共24分)11. 若分式丄有意义,则x 的取值范围为 ____________ .x~ 212. 某细胞的直径约为0. 000102毫米,用科学记数法表示0. 000102为 ______________________ . 13. 若点A (d, 1)与点B (3, b)关于x 轴对称,则/= ___________________ .14. 若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为 ________ •15. 观察下列等式:① 2X4+1=32 , ② 5X7+1=66 ③ 8X10+l=92,按照以上规律,第4个等式是 ____________ ,第〃个等式是 _____________三、解答题(本大题有11小题,共86分)17.(木题满分8分,每小题4分)计算:(1) (x + l)(2x +1)(2) ------- : --- ; 3y y16. 如图2,在ZXABC 中, DE 丄〃C 交AB 于点& ZB=30°,点D 是BC 的中点,_点。
2017~2018学年度第一学期阶段性质量调研八年级数学试题一、选择题(每小题2分,共16分) 1.以下四个银行标志中,是轴对称图形的是 ----------------------------------------------------- 【 】 A . B .C .D .2.下列说法中,正确的是 ------------------------------------------------------------------------------ 【 】A .形状相同的两个三角形全等B .线段不是轴对称图形C .等腰三角形的底角必小于90°D .面积相等的两个三角形全等 3.请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 ------------------------------------------------- 【 】A .SASB .ASAC .AASD .SSS 4. 如图,△ABC 中,∠B =90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知∠C =38°,则∠BAE 的度数为 ---------------- 【 】A .13°B .14°C .15°D .16° 5.下列各组数中不能作为直角三角形的三边长的是 --------------------------------------------- 【 】 A .6,12,8 B .7,24,25 C .1.5,2,2.5 D .9,12,156.等腰△ABC 的周长为20,其中一边长为9,则这个等腰三角形的腰长为 ------------- 【 】 A .5.5 B .9 C .11 D .5.5或97.△ABC 中,∠A >90°,AB =6,AC =8,则BC 的长度可能是 ------------------------- 【 】 A .8 B .10 C .12 D .14A O D C BA'C'O 'D'B'2017.11A B E C D8.如图,正方形ABCD 中,AD =5,点E 、F 是正方形ABCD 内的两点,且AE =FC =4,BE=DF =3,则以EF 为直径的圆的面积为 ------------------------- 【 】A .π21B .π53C .π43D .π A B C DE F二、填空题(每小题2分,共20分)9.已知△ABC ≌△DEF (A 、B 分别对应 D 、E ),若BC =10cm ,AB =5cm ,则EF 为 cm .10.在镜子中看到时钟显示的时间是,则实际时间是 .11.等腰三角形最多有 条对称轴.12.如图,CD =CB ,那么添加条件 能根据SAS 判定△ABC ≌△ADC .第12题 第14题 第15题13.△ABC 中,∠A ∶∠B ∶∠C =1∶3∶2,且最长边为10cm ,则最短边长为 cm .14.如图,△ABC 中,∠BAC =90°,BC =6,以△ABC 的三边向外作正方形,以AC 为边的正方形的面积为25cm 2,则正方形M 的面积为 cm 2.15.如图,是4×4正方形网格,其中已有4个小方格涂成了黑色.现在要从其余白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有 种选择.16.如图,BD 是∠ABC 的角平分线,DE ⊥AB 于E ,△ABC 的面积是50cm 2,AB =11cm ,BC =14cm ,则DE = cm .第16题 第17题17.如图,△ABC 中,D 是BC 上一点,若AB =AC =CD ,AD =BD ,∠ADB 的度数为 .18.△ABC 中,AB =AC =9,BC =12,D 是线段BC 上的动点(不含端点B ,C ),当线段AD =7时,BD 的长为 .三、作图题(共14分,其中第19题6分,第20题8分)19.(6分)如图,已知∠ABC =50°,请你利用直尺和圆规在射线BA 上找一点P ,使得∠BPC =80°,并画出△BPC .(保留作图痕迹)A B C M 25 AB C D AD C BE AB C D AB C20.(8分)如图,在8×8的正方形网格中,已知△ABC的三个顶点在格点上.⑴ 在图中画出△ABC 关于直线l 的轴对称图形△A 1B 1C 1;⑵ 在⑴中,将点B 1沿网格线平移一次到格点D ,使得△A 1C 1D 为直角三角形,且A 1C 1为直角边.试在图中画出点D 的位置.四、解答题(共50分)21.(6分)如图,△ABC 中,AB =AC ,点D 、E 、F 分别在△ABC 的三边上,且∠B =∠1,BD =CF .求证:△EBD ≌△DCF .22.(8分)如图,已知BA ⊥AC ,CD ⊥DB ,AC 与BD 交于O ,BD =CA .求证:⑴ BA =CD ; ⑵ △OBC 是等腰三角形. OD B C AlA B C A B C D E F 123.(8分)如图,小明所在学校的旗杆BD 高约为13米,距离旗杆20米处刚好有一棵高约为3米的香樟树AE .活动课上,小明有意在旗杆与香樟树之间的连线上来回踱步,发现有一个位置到旗杆顶部与树顶的距离相等.请你求出该位置与旗杆之间的距离.24.(8分)如图,△ABC 中,∠ACB =90°,AC =4,BC =3,点P 是AB 边上一动点.当△PCB 是等腰三角形时,求AP 的长度.E D A BA BC P25.(10分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.△ABC 的三个顶点都在格点上.⑴ 在线段AC 上找一点P (不能借助圆规),使得222PC PA AB -=,画出点P 的位置,并说明理由.⑵ 求出⑴中线段P A 的长度.CB A26.(10分)在△ABC 中,∠BAC =90°,AC =AB ,点D 为直线BC 上的一动点,以AD 为边作△ADE (顶点A 、D 、E 按逆时针方向排列),且∠DAE =90°,AD =AE ,连接CE . ⑴ 如图1,若点D 在BC 边上(点D 与B 、C 不重合),求∠BCE 的度数.⑵ 如图2,若点D 在CB 的延长线上,连结BE ,若DB =5,BC =7,求△ADE 的面积.图2图1ECEC A B B AD D八年级数学参考答案及评分意见一、选择题(每小题2分,共16分) 题号1 2 3 4 5 6 7 8 答案 B C D B A D C A二、填空题(每小题2分,共20分)9.10 10.16:25:08(下午4点25分08秒) 11.3 12.∠DCA =∠BCA 13.5 14.11 15.3 16.4 17.108 18.4或8三、作图题(共14分)19.作线段BC 的垂直平分线l ------- 3分交射线AB 于点P ----------------- 4分 连接PC ------------------------------ 6分A l PB C20.⑴ 如图,△A 1B 1C 1为所作三角形-- 4分 ⑵ 如图,点D 1与点D 2即为所作点 8分 (作对一个点D 得2分)lD 2D 1B 1A 1C 1A BC四、解答题(共50分)21.∵ AB =AC ∴ ∠B =∠C ------------------------------- 1分 ∵ ∠EDC 是△EBD 的外角∴ ∠EDC =∠BED +∠B即∠1+∠FDC =∠BED +∠B --------------------------- 2分 ∵ ∠B =∠1 ∴ ∠FDC =∠BED ----------------------------------------------- 3分在△EBD 和△DCF 中 ⎪⎩⎪⎨⎧=∠=∠∠=∠CF BD CB FDC BED ∴ △EBD ≌△DCF (AAS ) ---------------------------------------- 6分 1FED C B A22.⑴ ∵ BA ⊥AC ,CD ⊥DB ∴∠A =∠D =90° ---------- 1分在Rt △ABC 和Rt △DCB 中⎩⎨⎧==BC BC DBAC ∴ △ABC ≌△DCB (HL) -------------------------------------- 4分 ∴ BA =CD ------------------------------------------------------- 5分 ⑵ ∵ △ABC ≌△DCB∴ ∠ACB =∠DBC --------------------------------------------- 6分 ∴ BO =CO ------------------------------------------------------- 7分∴ △OBC 是等腰三角形 ------------------------------------- 8分23.根据题意可得:AE =3m ,AB =20m ,BD =13m.如图,设该位置为点C ,且AC =xm .由AC =xm 得:BC =(20-x)m ----------------------------------- 1分 由题意得:CE =CD ,则CE 2=CD 2 ---------------------------- 2分 ∴ 222213)20(3+-=+x x ------------------------------------ 4分解得:x =14 ---------------------------------------------------- 5分 ∴ CB =20-x =6 ---------------------------------------------------- 6分由0<14<20可知,该位置是存在的. ------------------- 7分答:该位置与旗杆之间的距离为6米. ------------------- 8分24.△ABC 中,∠ACB =90°,由AC =4,BC =3,得AB =5 ---------------------------- 1分当△PCB 为等腰三角形时,则PC =PB 或BC =BP 或CB =CP① 若PC =PB ,易得:AP =2.5 -------------------------------------------------------------- 3分 ② 若BC =BP ,易得:AP =2 ----------------------------------------------------------------- 5分 ③ 若CB =CP ,过点C 作CD ⊥AB 于点D ∴ DP =DB 利用面积可求得:CD =2.4, ------------------------------------------------------------- 6分 Rt △CBD 中,利用勾股定理求得:BD =1.8 ------------------------------------------ 7分∴ BP =2BD =3.6 ∴ AP =1.4 ------------------------------------------------------ 8分综上:AP 的长为2.5或2或1.4.图3图2图1DCAACCABPBPBPODBCACB ADE图2图1FECECBAB ADD25.⑴ 作BC 的垂直平分线,分别交AC 、BC 于点P 、Q ,则PC =PB . ------------- 2分△APB 中,∠A =90°, 由根据定理得:222PB AB PA =+,即:222AB PA PB =- --------------------------------------- 3分∴ 222AB PA PC =-. ---------------------------------------- 5分⑵ 由图可得:AC=6,AB=4,设P A=x ,则PB=PC=6-x - 6分 △P AB 中,∠A =90°,222PB BA PA =+∴ 222)6(4x x -=+ ------------------------------------------- 8分解得:35=x . ------------------------------------------------------- 9分答:线段P A 的长度为35. ---------------------------------------- 10分26.⑴ ∵ ∠BAC =90°,∠DAE =90°∴ ∠BAD +∠DAC =90°,∠EAC +∠DAC =90°∴ ∠BAD =∠EAC -------------------------------------------------------------------------- 1分在△ABD 和△ACE 中⎪⎩⎪⎨⎧=∠=∠=EA DA CAE BAD CA BA∴ △ABD ≌△ACE (SAS ) ------------------------------------------------------------- 3分 ∴ ∠ACE =∠B ------------------------------------------------------------------------------- 4分 ∵ ∠BAC =90° ∴ ∠B +∠ACB =90°∴ ∠ACE +∠ACB =90° 即:∠BCE =90° ------------------------------------- 5分 ⑵ 过点A 作AF ⊥DE 于点F .∵ AD=AE ∴ 点F 是DE 的中点 ∵ ∠DAE =90° ∴ DE AF 21=--------------------------------------------------- 6分 同理可证:△ABD ≌△ACE ∴ ∠ADB =∠AEC ,DB =EC∵ DB =5,BC =7 ∴ EC =5,DC =12 ------------------------------------------ 7分 ∵ ∠DAE =90° ∴ ∠ADE +∠AED =90° ∴ ∠ADC +∠CDE +∠AED =90° ∴ ∠AEC +∠AED +∠CDE =90° 即:∠CED +∠CDE =90°∴ ∠ECD =90° ----------------------------------------------------------------------------- 8分 ∴ DE 2=CE 2+CE 2=25+144=169 ∵ DE >0 ∴ DE =13 ---------------- 9分∴ AF =213 ∴ △ADE 的面积为=4169213132121=⨯⨯=⋅AF DE ----- 10分P QCBA。
2015-2016学年(上)厦门市八年级质量检测数学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,27小题,试卷共4页,另有答题卡.2.答案必须写在答题卡上,否则不能得分.3.可以直接 使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.多边形的外角和是( )A.720°B.540°C.360°D.180°2.下列式子中,表示“n 的3次方”的是( )A . 3n B. n 3 C. n 3 D.3n3.下列图形,具有稳定性的是( )4.计算:42313a a ÷=( ) A .69a B. 6a C.29-a D. 29a5.2)643(-+y x 展开式的常数项是( ) A . -12 B.-6 C.9 D. 366.如图1,已知OE 是∠AOD 的平分线,可以作为假命题“相等的角是对顶角”的反例的是( )A . ∠AOB=∠DOC B.∠AOE=∠DOEC. ∠EOC<∠DOCD.∠EOC>∠DOC7.如图2,在△ABC 中,AB=AC ,∠B=50°,P 是边AB 上的一个动点(不与顶点A 重合),则∠BPC 的值可能是( )A . 135° B. 85° C.50° D. 40°8.某部队第一天行军5h ,第二天行军6h ,两天共行军120km ,且第二天比第一天多走2km.设第一天和第二天行军的平均速度分别是xkm/h 和y km/h ,则符合题意的二元一次方程是( )A .5x+6y=118 B.5x=6y+2 C.5x=6y-2 D. 5(x+2)=6y9.622--x x 的一个因式是( )A . x-2 B.2x+1 C. x+3 D. 2x-310.在平面直角坐标系中,已知点P (a ,5)在第二象限,则点P 关于直线m (直线m 上各点的横坐标都为2)对称的点的坐标是( )A . (-a ,5) B. (a ,-5) C. (-a+2,5) D. (-a+4,5)二、填空题(本大题有6小题,每小题4分,共24分)11.在△ABC 中,∠C=100°,∠A=30°,∠B= 度.12.计算:(a-1)(a+1)= .13.已知∠A=70°,则∠A 的补角是 度.14.某商店原有7袋大米,每袋大米为a 千克.上午卖出4袋,下午又购进同样包装的大米3袋,进货后这个商店有大米 千克.15.如图3,在△ABC 中,点D 在边BC 上,若∠BAD=∠CAD ,AB=6,AC=3,3=∆ABD S ,则ACD S ∆= .16.计算:21274252212621262++-= .三、解答题17.(本题满分7分)计算:)3)(12(++x x18.(本题满分7分)如图4,点E ,F 在线段BC 上,AB=DC ,BF=CE ,∠B=∠C.求证:AF=DE.计算:11112++++-x x x x20.(本题满分7分) 解不等式⎪⎩⎪⎨⎧-≤+>+132121x x x21.(本题满分7分)已知△ABC 三个顶点的坐标分别是A(-4,0),B(-3,2),C(-1,1),将△ABC 向下平移2个单位长度,得到△111C B A .请画出一个平面直角坐标系,并在该平面直角坐标第中画出△ABC 和△111C B A .22.(本题满分7分)一个等腰三角形的一边长是5cm ,周长是20cm ,求其他两边的长.23.(本题满分7分)如图5,在△ABC 中,点D ,E ,F 在边BC 上,点P 在线段AD 上,若PF ∥AB ,∠PFD=∠C ,点D 到PE 和PF 的距离相等.求证:点D 到AB 和AC 的距离相等.24.(本题满分7分)A,B 两地相距25km.甲上午8点由A 地出发骑自行车去B 地,平均速度不大于10km/h ;乙上午9点30分由A 地出发乘汽车去B 地,若乙的速度是甲的4倍.判断乙能否在途中超过甲,请说明理由.阅读下列材料:“为什么说2不是有理数”. 假设2是有理数,那么存在两个互质的正整数m,n ,使得m n =2,于是有222n m =. ∵22m 是偶数,∴2n 也是偶数,∴n 是偶数.设t n 2=(t 是正整数),则224t n =,即2224m t =.∴222m t =.∴m 也是偶数. ∴m,n 都是偶数,不互质,与假设矛盾.∴假设错误. ∴2不是有理数. 用类似的方法,请证明3不是有理数.26.(本题满分11分)如图6,已知D 是△ABC 的边BC 上的一点,CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线.⑴若∠B=60°,求∠C 的值;⑵求证:AD 是∠EAC 的平分线.27.(本题满分12分)已知a 是大于1的实数,且有p aa =+-33,q a a =--33成立.⑴若p+q=4,求p-q 的值 ⑵当2212222-+=n n q (n ≥1,且n 是整数)时,比较p 与(413+a )的大小 ,并说 明理由.。
2018—2019学年(上)厦门市八年级质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1. 计算2-1的结果是A .-2B .-12C .12D .12. x =1是方程2x +a =-2的解,则a 的值是A .-4B .-3C .0D .4 3. 四边形的内角和是A .90°B .180°C .360°D .540°4. 在平面直角坐标系xOy 中,若△ABC 在第一象限,则△ABC 关于x 轴对称的图形所在的位置是A .第一象限B .第二象限C .第三象限D .第四象限 5. 若AD 是△ABC 的中线,则下列结论正确的是 A .BD =CD B .AD ⊥BCC .∠BAD =∠CAD D .BD =CD 且AD ⊥BC6. 运用完全平方公式(a +b ) 2=a 2+2ab +b 2计算(x +12)2,则公式中的2ab 是A .12x B . x C .2x D .4x 7. 甲完成一项工作需要n 天,乙完成该项工作需要的时间比甲多3天,则乙一天能完成的工作量是该项工作的 A .3n B .13n C .1n +13 D . 1n +3 8. 如图1,点F ,C 在BE 上,△ABC ≌△DEF ,AB 和DE , AC 和DF 是对应边,AC ,DF 交于点M ,则∠AMF 等于 A . 2∠B B . 2∠ACB C . ∠A +∠D D . ∠B +∠ACB 图1MF E CDBA9. 在半径为R 的圆形钢板上,挖去四个半径都为r 的小圆.若R =16.8,剩余部分的面积为272π,则r 的值是A . 3.2B . 2.4C . 1.6D . 0.8 10. 在平面直角坐标系xOy 中,点A (0,a ),B (b ,12-b ),C (2a -3,0),0<a <b <12, 若OB 平分AOC ,且AB =BC ,则a +b 的值为A.9或12B. 9或11C. 10或11D.10或12 二、填空题(本大题有6小题,每小题4分,共24分) 11. 计算下列各题:(1)x ·x 4÷x 2= ; (2)(ab )2 = . 12. 要使分式1x -3有意义,x 应满足的条件是 .13. 如图2,在△ABC 中,∠C =90°,∠A =30°,AB =4,则 BC 的长为 .14. 如图3,在△ABC 中,∠B =60°,AD 平分∠BAC ,点E 在AD 延长线上,且EC ⊥AC .若∠E =50°,则∠ADC 的度数是 . 15. 如图4,已知E ,F ,P ,Q 分别是长方形纸片ABCD将该纸片对折,使顶点B ,D 重合,则折痕所在的直线可能16. 已知a ,b 满足(a —2b ) (a +b )—4ab +4b 2+2b =a —a 2,且a ≠2则a 与b 的数量关系是 . 三、解答题(本大题有9小题,共86分) 17. (本题满分12分)计算:(1)10mn 2÷5mn ×m 3n ; (2) (3x +2)( x -5) .18. (本题满分7分)如图5,在△ABC 中,∠B =60°,过点C 作CD ∥AB ,若∠ACD =60°,求证:△ABC 是等边三角形. 图4图5AD图3 AB CD B图219.(本题满分14分) 化简并求值:(1)(2a -1)2-(2a +4)2,其中4a +3=2;(2)(3m -2+1) ÷3m +3m 2-4,其中m =4.20.(本题满分7分)如图6,已知AB ∥CF , D 是AB 上一点,DF 交AC 于点E , 若AB =BD +CF ,求证:△ADE ≌△CFE .21.(本题满分7分)在平面直角坐标系xOy 中,点A 在第一象限,点A ,B 关于y 轴对称.(1)若A (1,3),写出点B 的坐标;(2)若A (a ,b ),且△AOB 的面积为a 2,求点B 的坐标 (用含a 的代数式表示).22.(本题满分8分)已知一组数32,-56,712,-920,…,(-1)n +1[n +(n +1)] n (n +1)(从左往右数,第1个数是32,第2个数是-56,第3个数是712,第4个数是-920,依此类推,第n 个数是(-1)n +1[n +(n +1)]n (n +1)).(1)分别写出第5个、第6个数; (2)记这组数的前n 个数的和是s n ,如:s 1=32(可表示为1+12);s 2=32+(-56)=23(可表示为1-13); s 3=32+(-56)+712=54(可表示为1+14); s 4=32+(-56)+712+(-920)=45(可表示为1-15).请计算s 99的值.备用图图6ABCD EF23.(本题满分9分)如图7,在△ABC 中,D 是边AB 上的动点,若在边AC ,BC 上分别有点E ,F ,使得AE =AD ,BF =BD .(1)设∠C =α,求∠EDF (用含α的代数式表示);(2)尺规作图:分别在边AB ,AC 上确定点P ,Q (PQ 不与DE 平行或重合),使得 ∠CPQ =∠EDF .(保留作图痕迹,不写作法)24.(本题满分10分)一条笔直的公路依次经过A ,B ,C 三地,且A ,B 两地相距1000m ,B ,C 两地相距2000 m .甲、乙两人骑车分别从A ,B 两地同时出发前往C 地.(1)若甲每分钟比乙多骑100m ,且甲、乙同时到达C 地 ,求甲的速度;(2)若出发5 min ,甲还未骑到B 地,且此时甲、乙两人相距不到650 m ,请判断谁先到 达C 地,并说明理由.25.(本题满分12分)如图8,在△ABC 中,∠A <∠C ,BD ⊥AC ,垂足为D ,点E 是边BC 上的一个动点,连接DE ,过点E 作EF ⊥DE ,交AB 的延长线于点F ,连接DF 交BC 于点G .(1)请根据题意补全示意图; (2)当△ABD 与△DEF 全等时, 图7B C DEF①若AD=FE,∠A=30°,∠AFD=40°,求∠C的度数;②试探究GF,AF,DF之间的数量关系,并证明.A BC D。