高等数学练习题附答案
- 格式:doc
- 大小:847.00 KB
- 文档页数:18
高等数学试题一、单项选择题(本大题共5小题,每小题2分,共10分)1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x2.()002lim 1cos tt x x e e dt x -→+-=-⎰( )A .0B .1C .-1D .∞ 3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )A.不连续B.连续但左、右导数不存在C.连续但不可导D. 可导5.设C +⎰2-x xf(x)dx=e ,则f(x)=( )2222-x -x -x -x A.xe B.-xe C.2e D.-2e二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-14)的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞++++<=8.arctan lim _________x x x→∞= 9.已知某产品产量为g 时,总成本是2g C(g)=9+800,则生产100件产品时的边际成本100__g ==MC 10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.11.函数3229129y x x x =-+-的单调减少区间是___________.12.微分方程3'1xy y x -=+的通解是___________.13.设2ln 2,6a a π==⎰则___________.14.设2cos x z y =则dz= _______. 15.设{}2(,)01,01y D D x y x y xedxdy -=≤≤≤≤=⎰⎰,则_____________.三、计算题(一)(本大题共5小题,每小题5分,共25分)16.设1x y x ⎛⎫= ⎪⎝⎭,求dy.17.求极限0ln cot lim ln x x x+→18.求不定积分.19.计算定积分I=0.⎰ 20.设方程2z x 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。
《高等数学》专业年级学号姓名一、判断题.将√或×填入相应的括号内.(每题2分,共20分)()1.收敛的数列必有界.()2.无穷大量与有界量之积是无穷大量.()3.闭区间上的间断函数必无界.()4.单调函数的导函数也是单调函数.()5.若f (x )在x 0点可导,则f (x )也在x 0点可导.()6.若连续函数y =f (x )在x 0点不可导,则曲线y =f (x )在(x 0,f (x 0))点没有切线.()7.若f (x )在[a ,b ]上可积,则f (x )在[a ,b ]上连续.()8.若z =f (x ,y )在(x 0,y 0)处的两个一阶偏导数存在,则函数z =f (x ,y )在(x 0,y 0)处可微.()9.微分方程的含有任意常数的解是该微分方程的通解.()10.设偶函数f (x )在区间(-1,1)内具有二阶导数,且f ''(0)=f '(0)+1,则f (0)为f (x )的一个极小值.二、填空题.(每题2分,共20分)1.设f (x -1)=x ,则f (x +1)=.22.若f (x )=2-12+11x1x,则lim +=.x →03.设单调可微函数f (x )的反函数为g (x ),f (1)=3,f '(1)=2,f ''(3)=6则---------------------------------------------------------------------------------------------------------------------------------g '(3)=.4.设u =xy +2x,则du =.y35.曲线x =6y -y 在(-2,2)点切线的斜率为.6.设f (x )为可导函数,f '(1)=1,F (x )=f ()+f (x ),则F '(1)=.7.若1x2⎰f (x )0t 2dt =x 2(1+x ),则f (2)=.8.f (x )=x +2x 在[0,4]上的最大值为.9.广义积分⎰+∞0e -2x dx =.2210.设D 为圆形区域x +y ≤1,⎰⎰y D1+x 5dxdy =.三、计算题(每题5分,共40分)111+Λ+).1.计算lim(2+22n →∞n (n +1)(2n )2.求y =(x +1)(x +2)(x +3)ΛΛ(x +10)在(0,+∞)内的导数.23103.求不定积分⎰1x (1-x )dx .4.计算定积分⎰πsin 3x -sin 5xdx .3225.求函数f (x ,y )=x -4x +2xy -y 的极值.6.设平面区域D 是由y =x ,y =x 围成,计算⎰⎰Dsin ydxdy .y7.计算由曲线xy =1,xy =2,y =x ,y =3x 围成的平面图形在第一象限的面积.---------------------------------------------------------------------------------------------------------------------------------8.求微分方程y '=y -2x的通解.y四、证明题(每题10分,共20分)1.证明:arc tan x=arcsinx 1+x 2(-∞<x <+∞).2.设f (x )在闭区间[a ,b ]上连续,且f (x )>0,F (x )=⎰f (t )dt +⎰x xb1dt f (t )证明:方程F (x )=0在区间(a ,b )内有且仅有一个实根.《高等数学》参考答案一、判断题.将√或×填入相应的括号内(每题2分,共20分)1.√;2.×;3.×;4.×;5.×;6.×;7.×;8.×;9.√;10.√.二、填空题.(每题2分,共20分)21.x +4x +4; 2.1; 3.1/2;4.(y +1/y )dx +(x -x /y )dy ;25.2/3;6. 1;7.336;8.8;9.1/2;10.0.三、计算题(每题5分,共40分)n +1111n +1<++L +<1.解:因为(2n )2n 2(n +1)2(2n )2n 2且lim 由迫敛性定理知:lim(n →∞n +1n +1=0lim ,=0n →∞(2n )2n →∞n 2111++Λ+)=0222n (n +1)(2n )2.解:先求对数ln y =ln(x +1)+2ln(x +2)Λ+10ln(x +10)---------------------------------------------------------------------------------------------------------------------------------∴11210y '=++Λ+y x +1x +2x +10∴y '=(x +1)Λ(x +10)(3.解:原式=21210++Λ+)x +1x +2x +10⎰11-xd x =2⎰11-(x )2d x=2arcsin4.解:原式=x +c⎰πsin 3x cos 2xdxπ32=⎰π2020cos x sin xdx -⎰cos x sin xdx232ππ32=⎰sin xd sin x -⎰ππ2sin xd sin x32222-[sin 2x ]π=[sin 2x ]0π552=4/525.解:f x'=3x -8x -2y =0f y'=2x -2y =05π5故⎨⎧x =0⎧x =2或⎨⎩y =0⎩y =2当⎨⎧x =0''(0,0)=-2,f xy ''(0,0)=2''(0,0)=-8,f yy 时f xx⎩y =0---------------------------------------------------------------------------------------------------------------------------------Θ∆=(-8)⨯(-2)-22>0且A=-8<0∴(0,0)为极大值点且f (0,0)=0当⎨⎧x =2''(2,2)=-2,f xy ''(2,2)=2''(2,2)=4,f yy 时f xxy =2⎩Θ∆=4⨯(-2)-22<0∴无法判断6.解:D=(x ,y )0≤y ≤1,y 2≤x ≤y{}∴⎰⎰D1y sin y 1sin y sin y dxdy =⎰dy ⎰2dx =⎰[x ]y dyy 20y 0y y y =⎰(sin y -y sin y )dy1=[-cos y ]+10⎰1yd cos y 1=1-cos1+[y cos y ]0-⎰cos ydy 01=1-sin17.解:令u =xy ,v =y;则1≤u ≤2,1≤v ≤3x1x uJ =yuxv =2uv y vv-u 2v v =12v u2u v231dv =ln 3∴A =⎰⎰d σ=⎰du ⎰112v D8.解:令y =u ,知(u )'=2u -4x由微分公式知:u =y =e ⎰22dx 2(⎰-4xe ⎰-2dx dx +c )---------------------------------------------------------------------------------------------------------------------------------=e 2x (⎰-4xe -2x dx +c )=e 2x (2xe -2x +e -2x +c )四.证明题(每题10分,共20分)1.解:设f (x )=arctan x -arcsinx 1+x 221Θf '(x )=-21+x 1x 1-1+x 221+x -⋅1+x 2x 21+x 2=0∴f (x )=c-∞<x <+∞令x =0Θf (0)=0-0=0∴c =0即:原式成立。
高等数学试题及参考答案一、选择题(每题4分,共20分)1. 以下哪个函数是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = \sin(x) \)D. \( f(x) = \cos(x) \)答案:B2. 计算极限 \(\lim_{x \to 0} \frac{\sin(x)}{x}\) 的值。
A. 0B. 1C. 2D. \(\infty\)答案:B3. 以下哪个级数是收敛的?A. \(\sum_{n=1}^{\infty} \frac{1}{n^2}\)B. \(\sum_{n=1}^{\infty} \frac{1}{n}\)C. \(\sum_{n=1}^{\infty} \frac{1}{2^n}\)D. \(\sum_{n=1}^{\infty} \frac{1}{n^3}\)答案:A4. 函数 \(y = e^x\) 的导数是?A. \(e^x\)B. \(-e^x\)C. \(\ln(e)\)D. \(\frac{1}{e^x}\)答案:A5. 计算定积分 \(\int_0^1 x^2 dx\) 的值。
A. \(\frac{1}{3}\)B. \(\frac{1}{2}\)C. \(\frac{1}{4}\)D. \(\frac{1}{6}\)答案:A二、填空题(每题6分,共30分)1. 函数 \(y = \ln(x)\) 的反函数是 \(y = \boxed{e^x}\)。
2. 函数 \(y = x^2 + 2x + 1\) 的最小值是 \(\boxed{0}\)。
3. 函数 \(y = \sin(x)\) 的周期是 \(\boxed{2\pi}\)。
4. 函数 \(y = \frac{1}{x}\) 的不定积分是 \(\boxed{\ln|x| + C}\)。
5. 函数 \(y = \cos(x)\) 的导数是 \(\boxed{-\sin(x)}\)。
高数习题集及答案一、极限1. 求下列极限:- \( \lim_{x \to 0} \frac{\sin x}{x} \)- \( \lim_{x \to \infty} (1 + \frac{1}{x})^x \)2. 利用夹逼定理证明:- \( \lim_{n \to \infty} (1 + \frac{1}{n})^n = e \)答案:1. 对于第一个极限,我们可以使用洛必达法则或者直接利用三角函数的性质得到:\[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \]对于第二个极限,我们可以使用重要极限:\[ \lim_{x \to \infty} (1 + \frac{1}{x})^x = e \]2. 利用夹逼定理,我们可以找到两个序列 \( a_n \) 和 \( b_n \) 使得:\[ a_n \leq (1 + \frac{1}{n})^n \leq b_n \]并且 \( \lim_{n \to \infty} a_n = e \) 和 \( \lim_{n \to \infty} b_n = e \),从而证明 \( \lim_{n \to \infty} (1 +\frac{1}{n})^n = e \)。
二、导数与微分1. 求下列函数的导数:- \( f(x) = x^3 - 2x^2 + x \)- \( g(x) = \ln(x) \)2. 利用导数求函数的单调区间:- 对于函数 \( h(x) = x^2 - 4x + 4 \),求其单调增区间。
答案:1. 对于 \( f(x) \) 的导数,我们有:\[ f'(x) = 3x^2 - 4x + 1 \]对于 \( g(x) \) 的导数,我们有:\[ g'(x) = \frac{1}{x} \]2. 对于函数 \( h(x) \),我们先求导:\[ h'(x) = 2x - 4 \]令 \( h'(x) > 0 \),解得 \( x > 2 \),因此 \( h(x) \) 在\( (2, \infty) \) 上单调增。
高等数学练习题(附答案)高等数学一、判断题(每题2分,共20分)1.√2.√3.×4.√5.×6.√7.×8.√9.√ 10.√二、填空题(每题2分,共20分)1.f(x+2)=x+12.03.g'(3)=1/64.du=ydx+xdy5.-1/26.5/47.9/48.69.-2 10.π/2三、计算题(每题5分,共40分)1.1/42.y'=(∑(i=1 to 10) i/(x+i))^23.ln|x-1|+ln|x|+C4.2π5.(2,2)6.1-cos(1)7.ln3/28.y=e^x-x-1/2x^2+C一、判断题1.√2.×3.×4.×5.×二、填空题1.22.13.14.15.1三、改写后的文章2.根据函数的定义,f(x)在点x处有定义是指该点的函数值存在,而f(x)在点x处连续是指当x在该点附近时,函数值的变化趋势与x的变化趋势一致。
因此,f(x)在点x处有定义是f(x)在点x处连续的充分条件,但不是必要条件。
3.若y=f(x)在点x不可导,则曲线y=f(x)在(x,f(x))处可能有切线,也可能没有切线。
因此,该说法是错误的。
4.若f(x)在[a,b]上可积,g(x)在[a,b]上不可积,则f(x)+g(x)在[a,b]上可能可积,也可能不可积。
因此,该说法是错误的。
=0和x+y+z=0在空间直角坐标系中分别表示一个坐标轴和一个平面,而不是三个坐标轴和一个点。
因此,该说法是错误的。
四、证明题1.设f(x)=arctanx-arcsin(x/(1+x^2)^(1/2)),则f'(x)=1/(1+x^2)-x/(1+x^2)(1-x^2/(1+x^2))=0.化简可得x^2=1,即x=±1.因此,f(x)在(-∞,1)和(1,+∞)上单调递减,故在(-∞,+∞)上存在唯一实根。
高等数学试题库及答案doc一、选择题1. 下列函数中,哪一个是偶函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = sin(x)答案:A2. 曲线 y = x^2 在点 (1,1) 处的切线斜率是多少?A. 0B. 1C. 2D. -2答案:C二、填空题1. 极限lim(x→0) (sin(x)/x) 的值是 __________。
答案:12. 函数 f(x) = x + 1 在 x = 2 处的导数是 __________。
答案:1三、计算题1. 求函数 f(x) = x^3 - 2x^2 + 3x 的导数。
解:f'(x) = 3x^2 - 4x + 32. 计算定积分∫(0 到 1) x^2 dx。
解:∫(0 到 1) x^2 dx = [1/3 * x^3] (从0到1) = 1/3四、证明题1. 证明函数 f(x) = e^x 是严格单调递增的。
证明:设任意 x1 < x2,则 f(x1) - f(x2) = e^x1 - e^x2。
由于e^x 是严格单调递增的,所以当 x1 < x2 时,e^x1 < e^x2,从而f(x1) < f(x2)。
因此,函数 f(x) 是严格单调递增的。
五、应用题1. 一个物体从静止开始,以初速度为零的匀加速直线运动,其加速度为 2 m/s²。
求物体在前 3 秒内的位移。
解:根据匀加速直线运动的位移公式 s = 1/2 * a * t²,代入 a = 2 m/s²和 t = 3 s,得到 s = 1/2 * 2 * 3² = 9 m。
六、论述题1. 论述微积分在物理学中的应用。
答案:微积分在物理学中有广泛的应用,例如在力学中计算物体的运动轨迹、在电磁学中分析电场和磁场的变化、在热力学中研究温度分布等。
微积分的基本原理—极限和导数,为物理学家提供了一种强大的工具,用以描述和预测物理现象的变化趋势。
完整)高等数学练习题附答案第一章自测题一、填空题(每小题3分,共18分)1.lim (sinx-tanx)/(3xln(1+2x)) = 1/22.lim (2x^2+ax+b)/(x-1) =3.a = 5.b = 123.lim (sin2x+e^(2ax)-1)/(x+1) = 2a4.若f(x)在(-∞,+∞)上连续,则a=05.曲线f(x) = (x-1)/(2x-4x+3)的水平渐近线是y=1/2,铅直渐近线是x=3/26.曲线y=(2x-1)/(x+1)的斜渐近线方程为y=2x-3二、单项选择题(每小题3分,共18分)1.“对任意给定的ε∈(0,1),总存在整数N,当n≥N时,恒有|x_n-a|≤2ε”是数列{x_n}收敛于a的充分条件但非必要条件2.设g(x)={x+2,x<1.2-x^2,1≤x<2.-x,x≥2},f(x)={2-x,x<1.x^2,x≥1},则g(f(x))=2-x^2,x≥13.下列各式中正确的是 lim (1-cosx)/x = 04.设x→0时,e^(tanx-x-1)与x^n是等价无穷小,则正整数n=35.曲线y=(1+e^(-x))/(1-e^(-x^2))没有渐近线6.下列函数在给定区间上无界的是 sin(1/x),x∈(0,1]三、求下列极限(每小题5分,共35分)1.lim (x^2-x-2)/(4x+1-3) = 3/42.lim x+e^(-x)/(2x-x^2) = 03.lim (1+2+3+。
+n)/(n^2 ln n) = 04.lim x^2sin(1/x) = 01.设函数$f(x)=ax(a>0,a\neq1)$,求$\lim\limits_{n\to\infty}\frac{1}{\ln\left(\frac{f(1)f(2)\cdotsf(n)}{n^2}\right)}$。
2.求$\lim\limits_{4x\to1}\frac{x^2+e\sin x+6}{1+e^x-\cosx}$。
高等数学试题及答案解析一、选择题1. 函数f(x) = x^2 - 4x + 3在区间[0, 5]上的最大值是:A. 3B. 5C. 7D. 9答案:D解析:首先求导f'(x) = 2x - 4,令f'(x) = 0得到x = 2,这是函数的极值点。
计算f(2) = 2^2 - 4*2 + 3 = -1。
接下来检查区间端点,f(0) = 3,f(5) = 5^2 - 4*5 + 3 = 9。
因此,最大值为f(5) = 9。
2. 若f(x) = sin(x) + cos(x),则f'(x)等于:A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) + cos(x)D. -sin(x) - cos(x)答案:A解析:根据导数的基本公式,sin(x)的导数是cos(x),cos(x)的导数是-sin(x)。
因此,f'(x) = cos(x) - sin(x)。
二、填空题1. 求不定积分∫(2x + 1)dx = __________。
答案:x^2 + x + C解析:根据不定积分的基本公式,∫x^n dx = (x^(n+1))/(n+1) + C,其中n ≠ -1。
将n = 1代入公式,得到∫(2x + 1)dx = ∫2x dx + ∫1 dx = x^2 + x + C。
2. 若y = ln(x),则dy/dx = __________。
答案:1/x解析:对自然对数函数求导,根据对数函数的导数公式,ln(x)的导数是1/x。
三、解答题1. 求函数f(x) = x^3 - 6x^2 + 9x - 2的极值点。
答案:极值点为x = 3。
解析:首先求导f'(x) = 3x^2 - 12x + 9。
令f'(x) = 0,解得x = 1 和 x = 3。
计算二阶导数f''(x) = 6x - 12,代入x = 1得到f''(1) = -6 < 0,说明x = 1是极大值点;代入x = 3得到f''(3) = 18 > 0,说明x = 3是极小值点。
高等数学试题及答案大全一、选择题1. 下列函数中,不是周期函数的是()。
A. y = sin(x)B. y = cos(x)C. y = e^xD. y = tan(x)2. 函数f(x) = x^2 + 3x - 2在区间[-5, 2]上的最大值是()。
A. 0B. 3C. 4D. 5二、填空题1. 若函数f(x) = 2x - 3在x = 1处的导数为5,则原函数在x = 1处的值为______。
2. 曲线y = x^3 - 2x^2 + x在x = 2处的切线斜率为______。
三、解答题1. 求函数f(x) = ln(x) + 1的导数,并说明其在x = e处的导数值。
2. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求其极值点。
四、证明题1. 证明函数f(x) = x^3在R上的单调性。
2. 证明等差数列的前n项和公式S_n = n(a_1 + a_n)/2。
五、应用题1. 某工厂生产一种产品,其成本函数为C(x) = 3x + 200,销售价格为P(x) = 50 - 0.05x,其中x表示产品数量。
求该工厂的盈利函数,并求出其盈利最大时的产品数量。
2. 一个圆的半径为r,求其面积与周长的比值。
答案:一、选择题1. C解析:函数y = e^x不是周期函数,其他选项都是周期函数。
2. D解析:函数f(x) = x^2 + 3x - 2的导数为f'(x) = 2x + 3,令其等于0,解得x = -3/2,但x = -3/2不在区间[-5, 2]内。
检查区间端点,f(-5) = -8,f(2) = 5,因此最大值为5。
二、填空题1. -1解析:由f'(x) = 2,且f'(1) = 5,可得f(1) = f'(1) * (1 - 0) + f(0) = 5 + f(0),又因为f(0) = -3,所以f(1) = 5 - 3 = 2。
2. -4解析:由y' = 3x^2 - 4x + 1,代入x = 2,得y' = 3 * 2^2 - 4 * 2 + 1 = 12 - 8 + 1 = 5。
高等数学(A)1习题1-11.求下列函数的自然定义域:(3)y =1-1-x 2x⎧1-x 2≥0⎧-1≤x ≤1解:由⎨,所以函数的定义域为:[-1,0)⋃(0,1]⇒⎨⎩x ≠0⎩x ≠0(7)y =arcsin(x -3)解:由-1≤x -3≤1⇒2≤x ≤4,所以函数的定义域为:[2,4]1(8)y =3-x +arctanx⎧3-x ≥0⎧x ≤3解:由⎨x ≠0⇒⎨x ≠0,所以函数的定义域为:(-∞,0)⋃(0,3]⎩⎩9.求下列函数的反函数:(1)y =3x +1解:由y 3=x +1⇒x =y 3-1,所以反函数为:y =x 3-11-xy =(2)1+x解:由y (1+x )=1-x ⇒x =1-x 1-yy =1+x1+y ,所以反函数为:习题1-21.下列各题中,哪些数列收敛?哪些数列发散?1(2){(-1)n }n 收敛.且极限为0.⎧n -1⎫(4)⎨⎬n +1⎩⎭收敛,且极限为12n -1(6){3n }2n -12n 1n收敛.且因为:3n =(3)-(3),知极限为0.习题1-3x |x |当x →0时的左、右极限,并说明它们在x →0时的极限4.求f (x )=,φ(x )=x x 是否存在.解:x →0lim -f (x )=lim -x →0x →0x x=lim -1=1,lim +f (x )=lim +=lim +1=1x →0x →0x x →0x x →0∴lim f (x )=1|x |-x |x |x=lim -lim(-1)=-1,lim φ(x )=lim =lim =lim +1=1x →0x →0x x →0x x →0-x →0+x →0+x x →0+x x →0∴lim φ(x )不存在.lim -φ(x )=lim -x →0习题1-44.求下列极限并说明理由.(1)lim x →∞2x +1x2x +1112x +1=2+,而lim =0,由定理1可知:lim =2.解:x x →∞x →∞x x x 1-x 2(2)lim x →∞1-x1-x 2(1-x )(1+x )1-x 2=1+x ,而lim x =0,由定理1可知:lim =1解:1-x =x →0x →01-x1-x 习题1-51.计算下列极限.x 2-32(2)x lim →3x +1解:lim x →x -3x →30===023x +1lim(x 2+1)4x →32lim(x 2-3)x 2-2x +1(3)lim x →1x 2-1x 2-2x +1(x -1)2x -1lim =lim =lim =0解:x →1x 2-1x →1(x +1)(x -1)x →1x +14x 3-2x 2+x (4)lim x →03x 2+2x 解:lim 4x -2x +x 4x -2x +1=lim =x →0x →03x 2+2x 3x +2322lim(4x 2-2x +1)x →0lim(3x +2)x →0=1=02x 2-1(7)lim x →∞2x 2-x -11)2x -11x →∞x lim =lim ==解:x →∞2x 2-x -1x →∞111122--2lim(2--2)x x x →∞x x 21-1x 2lim(1-x 2-6x +8(9)lim x →4x 2-5x +4x 2-6x +8(x -4)(x -2)(x -2)2lim =lim =lim 解:x →4x 2-5x +4x →4(x -4)(x -1)x →4(x -1)=3习题1-61.计算下列极限:1-cos2x lim (5)x →0x sin x 1-cos2x 2sin 2x sin xlim =lim =2lim =2⋅1=2解:x →0x sin x x →0x sin x x →0x 2.计算下列极限.-x )(1)lim(1x →0-1lim(1-x )=lim[(1+(-x ))]=e 解:x →0x →01x1-x -11x+2x )(2)lim(1x →02lim(1+2x )=lim[(1+2x )]=e 解:x →0x →01x12x 21x习题1-75.利用等价无穷小的性质,求下列极限:tan3xlim (1)x →02x tan3x ~3x ,∴lim 解:当x →0时,(3)lim x →0tan3x 3x 33=lim =lim =x →0x →02x x →022x 2tan x -sin xsin 3x 1x ⋅x 2tan x -sin x tan x (1-cos x )2=lim 1=1lim =lim =lim 333x →0x →0x →0x →02sin xsin x x 2解:1(x →0,tan x ~x ,1-cos x ~x 2,sin 3x ~x 3)2习题1-83.下列函数在指出的点处间断,说明这些间断点属于哪一类,如果是可去间断点,那么补充或改变函数的定义使它连续:x 2-1(1)y =x 2-3x +2,x =1,x =2解:在x =1点,lim y =lim x →1(x -1)(x +1)(x +1)=lim =-2x →1(x -1)(x -2)x →1(x -2)故x =1点为第一类中的可去间断点.如果补充f (1)=-2,则f (x )在x =2点连续。
高等数学试题及及答案高等数学试题及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^2-2x+1的最小值是()。
A. 0B. 1C. -1D. 22. 极限lim(x→0) (sin(x)/x)的值是()。
A. 0B. 1C. -1D. 23. 函数y=e^x的导数是()。
A. e^xB. -e^xC. 1/e^xD. 04. 曲线y=x^3-3x+2在x=1处的切线斜率是()。
A. 0B. 1C. -1D. 25. 积分∫(0 to 1) (x^2 dx)的值是()。
A. 1/3B. 1/2C. 1D. 2二、填空题(每题4分,共20分)6. 函数f(x)=3x^2-6x+5的顶点坐标是()。
7. 函数y=ln(x)的定义域是()。
8. 函数y=x^3的二阶导数是()。
9. 曲线y=e^x与直线y=x相切的切点坐标是()。
10. 积分∫(0 to 1) (x dx)的值是()。
三、解答题(每题15分,共60分)11. 求函数f(x)=x^3-3x+2在区间[-1, 2]上的定积分,并画出积分图。
12. 求极限lim(x→∞) ((x^2+1)/(x^3+x))。
13. 求函数y=x^2-4x+3的极值点,并说明极值点的性质。
14. 求曲线y=x^2+2x-3在点(1, -2)处的切线方程。
四、附加题(10分)15. 证明:对于任意正整数n,有1/n^2 < 1/(n^2-1) + 1/(n^2+1)。
答案:一、选择题1. B2. B3. A4. C5. A二、填空题6. (1, 2)7. (0, +∞)8. 6x9. (1, e)10. 1/2三、解答题11. ∫(-1 to 2) (x^3-3x+2 dx) = (1/4x^4 - 3/2x^2 + 2x) | (-1 to 2) = 17/4积分图略。
12. 原式=lim(x→∞) (x^2+1)/(x^3+x) = lim(x→∞) (1/x + 1/x^3) = 013. y'=2x-4,令y'=0,得x=2,此时y=3,为极小值点。
高等数学练习册及答案一、单项选择题1. 函数f(x) = x^2 + 3x - 2在x=-2处的导数是()。
A. -1B. 2C. 5D. 72. 曲线y = x^3 - 6x^2 + 9x + 5在x=1处的切线斜率是()。
A. -7B. -6C. 0D. 73. 微分方程dy/dx + 2y = 4x的通解是()。
A. y = 2x^2 + CB. y = 2x^2 - CC. y = x^2 + CD. y = x^2 - C二、填空题4. 若f(x) = sin(x) + cos(x),则f'(x) = _______。
5. 函数y = ln(x)的原函数是 _______。
6. 已知∫(2x - 1)dx = 3x^2 - x + C,求∫(4x - 2)dx。
三、解答题7. 求函数f(x) = x^3 - 6x^2 + 11x - 6的极值点。
8. 证明:对于任意正数a和b,不等式a + b ≥ 2√(ab)总是成立。
9. 求解微分方程dy/dx - 3y = 6e^(3x),且y(0) = 1。
四、应用题10. 某工厂生产一种产品,其成本函数为C(x) = 5x + 100,其中x是生产数量。
求生产多少单位产品时,平均成本最低。
答案:一、单项选择题1. B2. D3. A二、填空题4. f'(x) = cos(x) - sin(x)5. 原函数是 xln(x) - x + C6. ∫(4x - 2)dx = 2(3x^2 - x) + C = 2x^2 - 2x + C三、解答题7. 求导f'(x) = 3x^2 - 12x + 11,令f'(x) = 0得x = (4 ±√7)/3。
检验二阶导数f''(x) = 6x - 12,f''((4 + √7)/3) < 0,所以x = (4 + √7)/3是极大值点;f''((4 - √7)/3) > 0,所以x = (4 - √7)/3是极小值点。
高等数学考试题库及答案2024一、选择题(每题4分,共20分)1. 极限的定义中,如果函数f(x)在x趋近于a时的极限等于L,那么对于任意的正数ε,存在一个正数δ,使得当0<|x-a|<δ时,|f(x)-L|<ε。
以下哪个选项正确描述了极限的定义?A. 当x趋近于a时,f(x)趋近于LB. 当x趋近于a时,f(x)等于LC. 当x趋近于a时,f(x)与L的差的绝对值小于任意正数εD. 当x趋近于a时,f(x)与L的差的绝对值等于ε答案:C2. 以下哪个函数是偶函数?A. f(x) = x^2 + xB. f(x) = x^3 - xC. f(x) = cos(x)D. f(x) = sin(x)答案:C3. 以下哪个选项是函数f(x) = x^2在区间[0, 1]上的定积分?A. 1/3B. 1/2C. 2/3D. 1答案:B4. 以下哪个选项是函数f(x) = e^x的导数?A. e^xB. -e^xC. 1/e^xD. 0答案:A5. 以下哪个选项是函数f(x) = ln(x)的不定积分?A. x*ln(x) - x + CB. x*ln(x) + x + CC. x*ln(x) + CD. x + C答案:A二、填空题(每题3分,共15分)6. 函数f(x) = 2x + 3的反函数是_________。
答案:f^(-1)(x) = (x-3)/27. 函数f(x) = x^3 - 3x + 2的极值点是_________。
答案:x = 1, x = -28. 函数f(x) = sin(x)的周期是_________。
答案:2π9. 函数f(x) = e^x的不定积分是_________。
答案:e^x + C10. 函数f(x) = x^2的二阶导数是_________。
答案:2三、解答题(每题10分,共20分)11. 求函数f(x) = x^3 - 6x^2 + 11x - 6在区间[1, 3]上的定积分。
高等数学考试题库及答案2024一、选择题(每题5分,共50分)1. 函数y=f(x)=x^2+1在x=0处的导数是:A. 0B. 1C. 2D. 3答案:B2. 求极限lim(x→0) (sin x / x)的值是:A. 0B. 1C. 2D. 3答案:B3. 以下哪个选项是连续函数:A. f(x) = x^2, x ≠ 0B. f(x) = 1 / x, x ≠ 0C. f(x) = x^3, x ≠ 1D. f(x) = sin x答案:D4. 函数y=x^3-3x+1的拐点是:A. x=0B. x=1C. x=-1D. x=2答案:B5. 以下哪个级数是收敛的:A. 1 + 1/2 + 1/4 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1 + 2 + 3 + ...D. 1/2 + 1/4 + 1/8 + ...答案:D6. 函数y=ln(x)的定义域是:A. (-∞, 0)B. (0, ∞)C. (-∞, ∞)D. [0, ∞)答案:B7. 以下哪个函数是奇函数:A. f(x) = x^2B. f(x) = x^3C. f(x) = cos xD. f(x) = sin x答案:D8. 以下哪个函数是偶函数:A. f(x) = x^2B. f(x) = x^3C. f(x) = cos xD. f(x) = sin x答案:A9. 以下哪个选项是正确的:A. ∫(0 to 1) x dx = 1/2B. ∫(0 to 1) x^2 dx = 1/3C. ∫(0 to 1) x^3 dx = 1/4D. ∫(0 to 1) x^4 dx = 1/5答案:B10. 以下哪个函数是周期函数:A. f(x) = e^xB. f(x) = ln xC. f(x) = sin xD. f(x) = x^2答案:C二、填空题(每题5分,共30分)1. 函数y=x^3的二阶导数是______。
高等数学试题题库及答案一、单项选择题(每题2分,共10题)1. 函数f(x)=x^2+2x+1的导数是:A. 2x+2B. 2x+1C. x^2+2xD. 2x^2+2x+1答案:A2. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. -1D. 不存在答案:B3. 若f(x)在x=a处连续,则下列哪个选项一定成立:A. f(a)存在B. f(a)=lim(x→a)f(x)C. f(a)=lim(x→a)f(x)且f(a)存在D. f(a)不存在答案:C4. 函数y=e^x的不定积分是:A. e^x + CB. e^xC. ln(e^x) + CD. ln(x) + C答案:A5. 曲线y=x^3-3x^2+2在点(1,0)处的切线斜率是:A. 0B. 1C. -2D. 2答案:C6. 以下哪个函数是奇函数:A. f(x)=x^2B. f(x)=x^3C. f(x)=x+1D. f(x)=x^2+1答案:B7. 二重积分∬(x^2+y^2)dxdy在区域D上,其中D是由x^2+y^2≤1定义的圆盘,其值是:A. πB. 2πC. π/2D. 4π答案:A8. 微分方程dy/dx=2x的通解是:A. y=x^2+CB. y=2x+CC. y=x^2D. y=2x^2+C答案:A9. 函数f(x)=x^3在x=0处的泰勒展开式是:A. x^3B. x^3+3x^2+3x+1C. x^3+3x^2+3xD. x^3+3x^2答案:C10. 以下哪个级数是收敛的:A. 1+1/2+1/4+1/8+...B. 1-1/2+1/3-1/4+...C. 1+1/2+1/3+1/4+...D. 1-1/2+1/3-1/4+1/5-...答案:A二、填空题(每题3分,共5题)11. 函数f(x)=x^2+3x+2的二阶导数是________。
答案:212. 极限lim(x→∞) (x^2-3x+2)/(x^3+x)的值是________。
高等数学考试题库(附答案)1. 解析:求函数 f(x) = x^2 在区间 [0, 2] 上的定积分。
2. 解析:求函数 f(x) = e^x 在区间 [1, 1] 上的定积分。
3. 解析:求函数 f(x) = sin(x) 在区间[0, π] 上的定积分。
4. 解析:求函数 f(x) = cos(x) 在区间[0, π/2] 上的定积分。
5. 解析:求函数 f(x) = ln(x) 在区间 [1, e] 上的定积分。
6. 解析:求函数 f(x) = x^3 在区间 [1, 1] 上的定积分。
7. 解析:求函数f(x) = √x 在区间 [0, 4] 上的定积分。
8. 解析:求函数 f(x) = 1/x 在区间 [1, 2] 上的定积分。
9. 解析:求函数 f(x) = tan(x) 在区间[0, π/4] 上的定积分。
10. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [0, 1] 上的定积分。
11. 解析:求函数 f(x) = x^2 + 1 在区间 [0, 1] 上的定积分。
12. 解析:求函数 f(x) = e^(x) 在区间 [0, 2] 上的定积分。
13. 解析:求函数 f(x) = sin^2(x) 在区间[0, π] 上的定积分。
14. 解析:求函数 f(x) = cos^2(x) 在区间[0, π/2] 上的定积分。
15. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [1, 1] 上的定积分。
16. 解析:求函数f(x) = √(1 x^2) 在区间 [1, 1] 上的定积分。
17. 解析:求函数 f(x) = x^3 3x^2 + 2x 在区间 [0, 2] 上的定积分。
18. 解析:求函数 f(x) = e^(2x) 在区间 [1, 1] 上的定积分。
19. 解析:求函数 f(x) = ln(x) 在区间 [1, e^2] 上的定积分。
20. 解析:求函数 f(x) = sin(x)cos(x) 在区间[0, π/2] 上的定积分。
完整版)高等数学测试题及答案高等数学测试试题一、是非题(3’×6=18’)1、$\lim_{x\to 1}(1-x)=e$。
(×)2、函数$f(x)$在点$x=x_0$处连续,则它在该点处必可导。
(×)3、函数的极大值一定是它的最大值。
(×)4、设$G(x)=f(x)$,则$G(x)$为$f(x)$的一个原函数。
(√)5、定积分$\int_{-1}^1 x\cos x dx=0$.(√)6、函数$y=x-2$是微分方程$x\frac{dy}{dx}+2y$的解。
(√)二、选择题(4’×5=20’)7、函数$f(x)=\sin\frac{1}{x}$是定义域内的()A、单调函数B、有界函数C、无界函数D、周期函数答案:C8、设$y=1+2x$,则$dy$=()A、$2xdx$B、$2x\ln2$C、$2x\ln2dx$D、$(1+2x\ln2)dx$答案:A9、设在区间$[a,b]$上$f'(x)>0$,$f''(x)>0$,则曲线$y=f(x)$在该区间上沿着$x$轴正向A、上升且为凹弧B、上升且为凸弧C、下降且为凹弧D、下降且为凸弧答案:B10、下列等式正确的是()A、$\int f'(x)dx=f(x)$B、$\int f(x)dx=f'(x)$C、$\int f'(x)dx=f(x)+C$D、$\int f(x)dx=f'(x)+C$答案:C11、$P=-\int \cos^2 x dx$,$Q=3\int dx$,$R=\int xdx$,则int_0^{\frac{\pi}{2}} \sin x dx < \int_0^1 \sin^2 x dx <\int_0^{\frac{\pi}{2}} \sin 2x dx$A、$P<Q<R$B、$Q<P<R$C、$P<R<Q$D、$R<Q<P$答案:D三、选择题(4’×5=20’)12.函数$f(x)=\frac{x^2}{3x-3}$的间断点为()A、3B、4C、5D、6答案:A13、设函数$f(x)$在点$x=0$处可导,且$\lim_{h\to 0}\frac{f(-h)-f(0)}{h}=\frac{1}{2}$,则$f'(0)$=()A、2B、1C、-1D、-2答案:B14、设函数$f(x)=x^2\ln x$,则$f''(1)$=()A、2B、3C、4D、5答案:B15、$\frac{d}{dx}\int_0^{\ln(1+x)}\ln(1+t)dt=$A、$\ln(1+x)$B、$\ln(1+x^2)$C、$2x\ln(1+x^2)$D、$x^2\ln(1+x^2)$答案:C16、$\int f'(e^x)e^xdx=$A、$f(e^x)$B、$f(e^x)+C$C、$f'(e^x)$D、$f'(e^x)+C$答案:B四、选择题(7’×6=42’)17、$\lim_{x\to 2x-2}\frac{x^2+x-6}{x-2x+2}=$A、5B、6C、7D、8答案:B18、函数$y=x^3-3x$的单调减少区间为()A、$(-\infty,-1)$B、$(-\infty,1)$C、$(-1,+\infty)$D、$[-1,1]$答案:A19、已知曲线方程$y=\ln(2+x)$,则点$M(0,\ln2)$处的切线方程为()A、$y=\frac{x}{2}+\ln2$B、$y=\frac{x}{2}-\ln2$C、$y=2x+\ln2$D、$y=2x-\ln2$答案:AB、y=x+1C、y=x^2+ln2D、y=x+ln2x10、函数f(x)=∫lntdt的极值点与极值分别为:A、x=2,极小值f(2)=1B、x=1,极小值f(1)=1/2(ln2-1)C、x=2,极大值f(2)=1D、x=1,极大值f(1)=1/2(ln2-1)21、曲线y=4-x^2,x∈[0,4]与x轴,y轴以及x=4所围的平面图形的面积值S=A、4B、8C、16D、3222、微分方程dy/dx=ex-2y满足初始条件y(0)=1的特解为:A、lny=ex-1B、e2y=2ex-1C、e2y=ex-1D、e2y=e2x-1。
高等数学练习册及答案### 高等数学练习册及答案#### 第一章:极限与连续练习题1:计算下列极限:1. \(\lim_{x \to 0} \frac{\sin x}{x}\)2. \(\lim_{x \to \infty} \frac{\sin x}{x}\)3. \(\lim_{x \to 1} (x^2 - 1)\)答案:1. 根据洛必达法则,我们首先对分子分母同时求导,得到 \(\lim_{x \to 0} \frac{\cos x}{1} = 1\)。
2. 由于 \(\sin x\) 的周期为 \(2\pi\),当 \(x\) 趋向无穷大时,\(\frac{\sin x}{x}\) 趋向于0。
3. 直接代入 \(x = 1\),得到 \(\lim_{x \to 1} (x^2 - 1) = 0\)。
练习题2:判断函数 \(f(x) = \frac{x^2 - 1}{x - 1}\) 在 \(x =1\) 处是否连续。
答案:函数 \(f(x)\) 在 \(x = 1\) 处的极限为2,但 \(f(1)\) 未定义,因此 \(f(x)\) 在 \(x = 1\) 处不连续。
#### 第二章:导数与微分练习题1:求下列函数的导数:1. \(f(x) = x^3 - 2x\)2. \(g(x) = \sin x + e^x\)答案:1. \(f'(x) = 3x^2 - 2\)2. \(g'(x) = \cos x + e^x\)练习题2:利用导数求函数 \(h(x) = x^2\) 在 \(x = 2\) 处的切线方程。
答案:首先求 \(h'(x) = 2x\),然后计算 \(h'(2) = 4\),切点坐标为\((2, 4)\)。
切线方程为 \(y - 4 = 4(x - 2)\),简化得 \(y = 4x - 4\)。
#### 第三章:积分学练习题1:计算下列不定积分:1. \(\int x^2 dx\)2. \(\int \frac{1}{x} dx\)答案:1. \(\int x^2 dx = \frac{x^3}{3} + C\)2. \(\int \frac{1}{x} dx = \ln |x| + C\)练习题2:计算定积分 \(\int_{0}^{1} x^2 dx\)。
高等数学教材习题答案第一章:函数与极限1. 习题一答案:1)a) f(-3) = -2b) f(2) = 4c) f(0) = 12)a) g(-1) = -1b) g(0) = 0c) g(2) = 93) f(g(1)) = f(1) = 32. 习题二答案:a) 导数不存在的点:x = -1, 1, 2b) 间断点:x = 0, 1c) f(x)在(-∞, -1) ∪ (-1, 0) ∪ (0,1) ∪ (1, 2) ∪ (2, +∞)上连续3. 习题三答案:a) 极限存在,为1b) 极限存在,为2c) 极限不存在第二章:导数与微分1. 习题一答案:a) f'(x) = 3x^2 + 4x + 5b) f'(x) = 4x^3 + 2x^2 - 8xc) f'(x) = -cos(x)2. 习题二答案:a) f'(x) = -2sin(2x)b) f'(x) = -4x^-5 + 3x^-4c) f'(x) = -5e^(-5x)3. 习题三答案:a) f'(x) = 2x + 1b) f'(x) = 4x^3 + 3x^2 - 2xc) f'(x) = 2cos(x)第三章:微分中值定理与导数应用1. 习题一答案:a) -∞ < x < -1 或者 -1 < x < 1 或者 x > 1b) -∞ < x < 0 或者 x > 0c) -∞ < x < 1 或者 x > 12. 习题二答案:a) 在c = 2的时候,函数在区间[-1, 1]上满足罗尔定理的条件b) 在c = -1的时候,函数在区间[-2, 2]上满足罗尔定理的条件c) 在c = 1的时候,函数在区间[-5, 5]上满足罗尔定理的条件3. 习题三答案:a) 在x = 2附近存在驻点b) 在x = -1附近存在极小值点c) 在x = 0附近存在极大值点第四章:不定积分1. 习题一答案:a) F(x) = x^3 + 4x^2 + 3x + 1 + Cb) F(x) = 4x^3 + 3x^2 + 2x + 1 + Cc) F(x) = -3x + cos(x) + C2. 习题二答案:a) F(x) = -cos(2x) + Cb) F(x) = -6x^-4 + x^-3 + 2x + Cc) F(x) = e^(-5x) + C3. 习题三答案:a) F(x) = x^2 + x + 1 + Cb) F(x) = x^4 + x^3 - x^2 + Cc) F(x) = 2sin(x) + C注意:以上只是题目习题的答案示例,实际上数学题目答案有多种可能性,需要根据具体问题进行求解验证。
第一章 自测题一、填空题(每小题3分,共18分)1. ()3limsin tan ln 12x x xx →=-+ .2. 1x →= . 3.已知212lim 31x x ax bx →-++=+,其中为b a ,常数,则a = ,b = . 4. 若()2sin 2e 1,0,0ax x x f x xa x ⎧+-≠⎪=⎨⎪=⎩在()+∞∞-,上连续,则a = . 5. 曲线21()43x f x x x -=-+的水平渐近线是 ,铅直渐近线是 . 6. 曲线()121e xy x =-的斜渐近线方程为 .二、单项选择题(每小题3分,共18分)1. “对任意给定的()1,0∈ε,总存在整数N ,当N n ≥时,恒有ε2≤-a x n ”是数列{}n x 收敛于a 的 .A. 充分条件但非必要条件B. 必要条件但非充分条件C. 充分必要条件D. 既非充分也非必要条件2. 设()2,02,0x x g x x x -≤⎧=⎨+>⎩,()2,0,x x f x x x ⎧<=⎨-≥⎩则()g f x =⎡⎤⎣⎦ . A. 22,02,0x x x x ⎧+<⎨-≥⎩ B. 22,02,0x x x x ⎧-<⎨+≥⎩ C. 22,02,0x x x x ⎧-<⎨-≥⎩ D. 22,02,0x x x x ⎧+<⎨+≥⎩3. 下列各式中正确的是 .A .01lim 1e x x x +→⎛⎫-= ⎪⎝⎭B.01lim 1e xx x +→⎛⎫+= ⎪⎝⎭ C.1lim 1e x x x →∞⎛⎫-=- ⎪⎝⎭ D. -11lim 1e xx x -→∞⎛⎫+= ⎪⎝⎭4. 设0→x 时,tan e1x-与n x 是等价无穷小,则正整数n = .A. 1B. 2C. 3D. 45. 曲线221e 1ex x y --+=- .A. 没有渐近线B. 仅有水平渐近线C. 仅有铅直渐近线D. 既有水平渐近线又有铅直渐近线 6.下列函数在给定区间上无界的是 . A.1sin ,(0,1]x x x ∈ B. 1sin ,(0,)x x x ∈+∞ C. 11sin ,(0,1]x x x ∈ D. 1sin ,(0,)x x x∈+∞三、求下列极限(每小题5分,共35分)1.22x →2.()120lim ex xx x -→+3.()1lim 123nn nn →∞++4.21sinlimx x5. 设函数()()1,0≠>=a a a x f x ,求()()()21lim ln 12n f f f n n →∞⎡⎤⎣⎦L .6.142e sin lim1exxxxx→⎛⎫+⎪+⎪⎪+⎝⎭7.limx+→四、确定下列极限中含有的参数(每小题5分,共10分)1.2212lim22xax x bx x→-+=-+-2.(lim1 xx→-∞=五、讨论函数,0()(0,0,1,1)0,0x xa bxf x a b a bxx⎧-≠⎪=>>≠≠⎨⎪=⎩在0x=处的连续性,若不连续,指出该间断点的类型.(本题6分)六、设sin sin sin ()lim sin x t xt x t f x x -→⎛⎫= ⎪⎝⎭,求()f x 的间断点并判定类型. (本题7分)七、设()f x 在[0,1]上连续,且(0)(1)f f =.证明:一定存在一点10,2ξ⎡⎤∈⎢⎥⎣⎦,使得1()2f f ξξ⎛⎫=+ ⎪⎝⎭.(本题6分)第二章 自测题一、填空题(每小题3分,共18分)1.设()f x 在0x 可导,且00()0,()1f x f x '==,则01lim h hf x h →∞⎛⎫-= ⎪⎝⎭. 2.设21cos f x x ⎛⎫=⎪⎝⎭,则()f x '=. 3.d x = . 4.设sin (e )xy f =,其中()f x 可导,则d y = .5.设y =12y ⎛⎫'=⎪⎝⎭. 6.曲线1sin xy x y =+在点1,ππ⎛⎫⎪⎝⎭的切线方程为 . 二、单项选择题(每小题3分,共15分)1.下列函数中,在0x =处可导的是 .A.||y x =B.|sin |y x =C.ln y x =D.|cos |y x =2.设()y f x =在0x 处可导,且0()2f x '=,则000(2)()limx f x x f x x x→+--=V V V V .A.6B.6-C.16D.16-3.设函数()f x 在区间(,)δδ-内有定义,若当(,)x δδ∈-时恒有2|()|f x x ≤,则0x =是()f x 的 .A.间断点B.连续而不可导的点C.可导的点,且(0)0f '=D.可导的点,且(0)0f '≠4.设2sin ,0(),0x x f x x x <⎧=⎨≥⎩,则在0x =处()f x 的导数 .A.0B.1C.2D.不存在5.设函数()f u 可导,2()y f x =当自变量x 在1x =-处取得增量0.1x =-V 时,相应的函数增量y V 的线性主部为0.1,则(1)f '= .A.1-B.0.1C.1D.0.5三、解答题(共67分)1.求下列函数的导数(每小题4分,共16分)(1)(ln e x y =+(2))11y⎫=⎪⎭(3)aaxa x ay x a a =++(4)cos (sin )xy x =2.求下列函数的微分(每小题4分,共12分) (1)2ln sin y x x x =+ (2)21cot e xy =(3)y x=3.求下列函数的二阶导数(每小题5分,共10分) (1)2cos ln y x x = (2)11xy x-=+4.设e ,1(),1x x f x ax b x ⎧≤=⎨+>⎩在1x =可导,试求a 与b .(本题6分)5.设sin ,0()ln(1),0x x f x x x <⎧=⎨+≥⎩,求'()f x .(本题6分)6.设函数()y y x =由方程22ln 1x xy y-=所确定,求d y .(本题6分)7.设()y y x =由参数方程ln tan cos 2sin t x a t y a t⎧⎛⎫=+⎪ ⎪⎝⎭⎨⎪=⎩,求22d d ,d d y y x x .(本题6分)8.求曲线3213122t x t y t t +⎧=⎪⎪⎨⎪=+⎪⎩在1t =处的切线方程和法线方程.(本题5分)第三章 自测题一、填空题(每小题3分,共15分)1.若0,0a b >>均为常数,则30lim 2x xxx a b →⎛+⎫=⎪⎝⎭. 2.2011lim tan x x x x →⎛⎫-=⎪⎝⎭. 3.3arctan limln(12)x x xx →-=+ . 4.曲线2e xy -=的凹区间 ,凸区间为 .5.若()e x f x x =,则()()n fx 在点x = 处取得极小值.二、单项选择题(每小题3分,共12分)1.设,a b 为方程()0f x =的两根,()f x 在[,]a b 上连续,(,)a b 内可导,则()f x '0=在(,)a b 内 .A.只有一个实根B.至少有一个实根C.没有实根D.至少有两个实根2.设()f x 在0x 处连续,在0x 的某去心邻域内可导,且0x x ≠时,0()()0x x f x '->,则0()f x 是 .A.极小值B.极大值C.0x 为()f x 的驻点D.0x 不是()f x 的极值点 3.设()f x 具有二阶连续导数,且(0)0f '=,0()lim1||x f x x →''=,则 . A.(0)f 是()f x 的极大值 B.(0)f 是()f x 的极小值C .(0,(0))f 是曲线的拐点D .(0)f 不是()f x 的极值,(0,(0))f 不是曲线的拐点 4.设()f x 连续,且(0)0f '>,则0δ∃>,使 .A.()f x 在(0,)δ内单调增加.B.()f x 在(,0)δ-内单调减少.C.(0,)x δ∀∈,有()(0)f x f >D.(,0)x δ∀∈-,有()(0)f x f >.三、解答题(共73分)1.已知函数()f x 在[0,1]上连续,(0,1)内可导,且(1)0f =,证明在(0,1)内至少存在一点ξ使得()()tan f f ξξξ'=-.(本题6分)2.证明下列不等式(每小题9分,共18分) (1)当0a b <<时,ln b a b b ab a a--<<.(2)当02x π<<时,2sin x x x π<<.3.求下列函数的极限(每小题8分,共24分)(1)0e e 2lim sin x x x xx x-→---(2)21sin 0lim(cos )xx x →(3)10(1)elimxx x x→+-4.求下列函数的极值(每小题6分,共12分) (1)1233()(1)f x x x =-(2)2,0()1,0x x x f x x x ⎧>=⎨+<⎩5.求2ln xy x=的极值点、单调区间、凹凸区间和拐点.(本题6分)6.证明方程1ln0ex x+=只有一个实根.(本题7分)第一章自测题一、填空题(每小题3分,共18分)1. 2. 3. , 4.5. 水平渐近线是,铅直渐近线是6.二、单项选择题(每小题3分,共18分)1. C2. D3. D4. A5. D 6.C三、求下列极限(每小题5分,共35分)解:1.. 2..3.,又.4.. 5.. 6.,,所以,原式.7..四、确定下列极限中含有的参数(每小题5分,共10分)解:1.据题意设,则,令得,令得,故.2.左边,右边故,则.五、解:,故在处不连续,所以为得第一类(可去)间断点.六、解:,而,故,都是的间断点,,故为的第一类(可去)间断点,均为的第二类间断点.七、证明:设,显然在上连续,而,,,故由零点定理知:一定存在一点,使,即.第二章自测题一、填空题(每小题3分,共18分)1. 2. 3. 4.5. 6.或二、单项选择题(每小题3分,共15分)1. D2. A3. C4. D5. D三、解答题(共67分)解:1.(1).(2).(3).(4) 两边取对数得,两边求导数得,.2.求下列函数的微分(每小题4分,共12分)(1) .(2).(3) .3.求下列函数的二阶导数(每小题5分,共10分)(1),.(2),.4.首先在处连续,故,故,其次,,,由于在处可导,故,故,.5.,,故,由于在,时均可导,故.6.方程可变形为,两边求微分得,故.7.,.8.,故.当时,.故曲线在处的切线方程为,即,法线方程为,即.第三章自测题一、填空题(每小题3分,共15分)1.2.3. 4., 5.二、单项选择题(每小题3分,共12分)1.B 2.A3.B,提示:由题意得,,当时,;即当时,,当时,,从而在取得极小值4. C,提示:由定义,由极限的保号性得,当时,,即三、解答题(共73分)证明:1.令,则在上连续,内可导,且;由罗尔定理知,至少存在一点,使得,故,即.2.(1)令,则在区间上满足拉格朗日中值定理的条件.由拉格朗日中值定理得,至少存在一点,使得即,又,得到,从而.(2)令,则,从而当时单调递增,即,故;令,则,即当时单调递减,即,故;从而当时,.解:3.(1).(2).(3).4.⑴函数的定义域为;,令得驻点,不可导点;当时,;当时,;当时,;当时,;故为极大值点,极大值为;为极小值点,极小值为.⑵,令得驻点,为不可导点.当时,;当时,;当时,;故为极大值点,极大值为;为极小值点,极小值为.5.定义域为;,,令得驻点,令得;列表得:- - + + +- + + + -单增凸单减凸单减凹极小值点单增凹拐点6.证明:令,显然,;令得唯一驻点,且;故在上当时取得极小值;当时,,所以方程只有一个实根.。