七雄中学初二(上)数学周测试题(3)
- 格式:doc
- 大小:48.50 KB
- 文档页数:2
一、选择题(每题4分,共20分)1. 下列各数中,绝对值最小的是()A. -2B. -1.5C. 0D. 12. 如果a < b,那么下列不等式中正确的是()A. a + 2 < b + 2B. a - 2 > b - 2C. a + 2 > b + 2D. a - 2 < b - 23. 已知一次函数y = kx + b的图象经过点(1,3),则下列说法正确的是()A. k > 0,b > 0B. k < 0,b < 0C. k > 0,b < 0D. k < 0,b > 04. 在等腰三角形ABC中,AB = AC,且∠BAC = 60°,那么∠ABC的度数是()A. 30°B. 45°C. 60°D. 90°5. 一个长方形的长是8cm,宽是5cm,它的周长是()A. 18cmB. 26cmC. 30cmD. 40cm二、填空题(每题5分,共25分)6. 若|a| = 5,则a的值为______。
7. 若∠A = 45°,∠B = 90°,则∠C = ______。
8. 一个圆的半径为r,则它的周长为______。
9. 已知一次函数y = 2x - 3,当x = 2时,y的值为______。
10. 在直角三角形中,若直角边分别为3cm和4cm,则斜边的长度为______。
三、解答题(每题10分,共30分)11. (10分)已知a、b是方程x^2 - 4x + 3 = 0的两个实数根,求a + b的值。
12. (10分)已知一次函数y = kx + b的图象经过点(2,-1)和(-2,5),求该一次函数的解析式。
13. (10分)在△ABC中,AB = AC,∠BAC = 80°,求∠ABC的度数。
四、应用题(15分)14. (15分)某商店销售一种商品,已知每件商品的进价为80元,售价为100元。
一、选择题(每题3分,共30分)1. 下列数中,是负数的是:A. -5B. 0C. 5D. -5.52. 如果a < b,那么下列不等式中正确的是:A. a + 3 < b + 3B. a - 3 > b - 3C. a + 3 > b + 3D. a - 3 < b - 33. 下列方程中,解为x = 2的是:A. 2x + 1 = 5B. 3x - 2 = 5C. 4x + 3 = 7D. 5x - 4 = 94. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是:A. 20cmB. 22cmC. 24cmD. 26cm5. 下列函数中,y随x增大而减小的是:A. y = 2x + 3B. y = -x + 5C. y = 3x - 2D. y = -3x + 16. 一个长方形的长是10cm,宽是6cm,那么这个长方形的面积是:A. 60cm²B. 100cm²C. 120cm²D. 150cm²7. 下列数中,是质数的是:A. 18B. 19C. 20D. 218. 如果a² = 16,那么a的值是:A. 4B. -4C. 2D. -29. 下列图形中,是轴对称图形的是:A. 正方形B. 等腰三角形C. 平行四边形D. 梯形10. 下列分数中,是最简分数的是:A. 4/6B. 8/12C. 9/15D. 10/20二、填空题(每题3分,共30分)11. 5的平方根是__________,-3的立方根是__________。
12. 若a = 3,b = -2,则a - b的值是__________。
13. 下列数中,是偶数的是__________。
14. 一个直角三角形的两个锐角分别是30°和60°,那么这个三角形的斜边与直角边的比是__________。
15. 下列数中,是奇数的是__________。
一、选择题(每题4分,共20分)1. 下列各数中,不是有理数的是()A. 2.5B. -3C. $\sqrt{2}$D. $\frac{1}{3}$2. 下列各数中,绝对值最小的是()A. -2B. 2C. 0D. -13. 已知a、b是实数,若a + b = 0,则a、b互为()A. 相等B. 相补C. 相等或互补D. 相反4. 下列各等式中,正确的是()A. $3x + 2 = 2x + 5$B. $3x - 2 = 2x - 5$C. $3x + 2 = 2x + 3$D. $3x - 2 = 2x + 3$5. 已知x是实数,若x² + 2x - 3 = 0,则x的值为()A. 1 或 -3B. 1 或 3C. -1 或 3D. -1 或 -3二、填空题(每题4分,共16分)6. 若a、b是实数,且a - b = 5,a² - b² = 21,则a + b = ________。
7. 若|a| = 3,|b| = 4,则|a + b|的最大值为 ________。
8. 已知x + y = 7,xy = 10,则x² + y² = ________。
9. 若一个数的平方是25,则这个数是 ________。
10. 若一个数的立方是-27,则这个数是 ________。
三、解答题(每题10分,共30分)11. (10分)解方程:$2x - 3 = 5x + 1$。
12. (10分)已知a、b是实数,且a² + b² = 1,求a + b的最大值。
13. (10分)一个长方形的长是x厘米,宽是x - 3厘米,求这个长方形的面积。
四、应用题(每题10分,共20分)14. (10分)一辆汽车从甲地开往乙地,已知甲乙两地相距180千米,汽车以60千米/小时的速度行驶,求汽车从甲地开往乙地需要多少小时?15. (10分)某工厂生产一批零件,已知每天生产40个零件,用了5天完成了全部生产任务,求这批零件共有多少个?答案:一、选择题1. C2. C3. D4. B5. B二、填空题6. 47. 78. 599. ±510. -3三、解答题11. 解:$2x - 3 = 5x + 1$,移项得$-3x = 4$,解得$x = -\frac{4}{3}$。
20XX年11月7日初二上数学前三章综合测试卷一.选择题(共10小题)1.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm2.若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形3.如图,若△ABC≌△DEF,则∠E等于()A.30°B.50°C.60°D.100°4.平面直角坐标系内的点A(﹣1,2)与点B(﹣1,﹣2)关于()A.y轴对称B.x轴对称C.原点对称 D.直线y=x对称5.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或206.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF7.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°8.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°9.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA 于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于()A.1 B.2 C.4 D.810.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°二.选择题(共6小题)11.如图,镜子中号码的实际号码是.12.如图是汽车牌照在水中的倒影,则该车牌照上的数字是.13.如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.14.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于.15.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.16.我们知道:“两边及其中一边的对角分别相等的两个三角形不一定全等”.但是,小亮发现:当这两个三角形都是锐角三角形时,它们会全等,除小亮的发现之外,当这两个三角形都是时,它们也会全等;当这两个三角形其中一个三角形是锐角三角形,另一个是时,它们一定不全等.三.选择题(共6小题)17.如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.18.一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.19.如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE垂直平分AB于D,求证:BE+DE=AC.20.如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.21.如图,已知△ABC中,AB=ACBD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.22.如图,在边长为1个单位长度的小正方形组成的网格中,请分别在边AB,AC上找到点E,F,使四边形PEFQ的周长最小.四.选择题(共2小题)23.求证:等腰三角形的两个底角相等(请根据图用符号表示已知和求证,并写出证明过程)已知:求证:证明:24.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.25.如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.20XX年11月7日初二上数学前三章综合测试卷参考答案与试题解析一.选择题(共10小题)1.(2016•岳阳)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm【分析】依据三角形任意两边之和大于第三边求解即可.【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<6,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.【点评】本题主要考查的是三角形的三边关系,掌握三角形的三边关系是解题的关键.2.(2016•南通)若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【分析】根据多边形的内角和公式(n﹣2)•180°与多边形的外角和定理列式进行计算即可得解.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.故选B.【点评】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.3.(2004•南山区)如图,若△ABC≌△DEF,则∠E等于()A.30°B.50°C.60°D.100°【分析】由图形可知:∠E应该是个钝角,那么根据△ABC≌△DEF,∠E=∠B=180°﹣50°﹣30°=100°由此解出答案.【解答】解:∵△ABC≌△DEF,∴∠E=∠B=180°﹣50°﹣30°=100°.故选D.【点评】本题考查了全等三角形的性质及三角形内角和定理;要注意全等三角形中所对应的角分别是哪些,不要搞混淆,然后根据三角形内角和来求解.4.(2016•赤峰)平面直角坐标系内的点A(﹣1,2)与点B(﹣1,﹣2)关于()A.y轴对称B.x轴对称C.原点对称 D.直线y=x对称【分析】根据关于x轴对称点的坐标特点:纵坐标互为相反数,横坐标不变可得答案.【解答】解:平面直角坐标系内的点A(﹣1,2)与点B(﹣1,﹣2)关于x轴对称.故选:B.【点评】此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.5.(2016•贺州)一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.【点评】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.6.(2016•新疆)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.7.(2016•乐山)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°【分析】根据三角形角平分线的性质求出∠ACD,根据三角形外角性质求出∠A即可.【解答】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.【点评】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.8.(2016•德州)如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°【分析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【解答】解:由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠CAD=65°,故选A.【点评】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.9.(2016•铜仁市)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于()A.1 B.2 C.4 D.8【分析】作PE⊥OA于E,如图,先利用平行线的性质得∠ECP=∠AOB=30°,则PE=PC=2,然后根据角平分线的性质得到PD的长.【解答】解:作PE⊥OA于E,如图,∵CP∥OB,∴∠ECP=∠AOB=30°,在Rt△EPC中,PE=PC=×4=2,∵P是∠AOB平分线上一点,PE⊥OA,PD⊥OB,∴PD=PE=2.故选B.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.解决本题的关键是把求P点到OB的距离转化为点P到OA的距离.10.(2015•营口)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°【分析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=DM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.【点评】本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.二.选择题(共6小题)11.(2009•杭州)如图,镜子中号码的实际号码是3265.【分析】注意镜面反射与特点与实际问题的结合.【解答】解:根据镜面对称的性质,在镜子中的真实数字应该是:3265.故答案为:3265【点评】本题考查了图形的对称变换,学生在解题时可以再借用镜子看一下即可,也可以在卷子的反面看.12.(2010•玉溪)如图是汽车牌照在水中的倒影,则该车牌照上的数字是21678.【分析】关于倒影,相应的数字应看成是关于倒影上边某条水平的线对称.【解答】解:该车牌照上的数字是21678.【点评】本题主要考查镜面对称的知识点,比较简单.13.(2015•常德)如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=70°.【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2);最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=40°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)=110°(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=70°.故答案为:70°.【点评】此题主要考查了三角形内角和定理以及角平分线的性质,熟练应用角平分线的性质是解题关键.14.(2016•泰州)如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于20°.【分析】过点A作AD∥l1,如图,根据平行线的性质可得∠BAD=∠β.根据平行线的传递性可得AD∥l2,从而得到∠DAC=∠α=40°.再根据等边△ABC可得到∠BAC=60°,就可求出∠DAC,从而解决问题.【解答】解:过点A作AD∥l1,如图,则∠BAD=∠β.∵l1∥l2,∴AD∥l2,∵∠DAC=∠α=40°.∵△ABC是等边三角形,∴∠BAC=60°,∴∠β=∠BAD=∠BAC﹣∠DAC=60°﹣40°=20°.故答案为20°.【点评】本题主要考查了平行线的性质、平行线的传递性、等边三角形的性质等知识,当然也可延长BA与l2交于点E,运用平行线的性质及三角形外角的性质解决问题.15.(2014•随州)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为75度.【分析】根据三角形三内角之和等于180°求解.【解答】解:如图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.故答案为:75.【点评】考查三角形内角之和等于180°.16.(2016•六盘水)我们知道:“两边及其中一边的对角分别相等的两个三角形不一定全等”.但是,小亮发现:当这两个三角形都是锐角三角形时,它们会全等,除小亮的发现之外,当这两个三角形都是钝角三角形或直角三角形时,它们也会全等;当这两个三角形其中一个三角形是锐角三角形,另一个是钝角三角形时,它们一定不全等.【分析】过B作BD⊥AC于D,过B1作B1D1⊥B1C1于D1,得出∠BDA=∠B1D1A1=∠BDC=∠B1D1C1=90°,根据SAS证△BDC≌△B1D1C1,推出BD=B1D1,根据HL证Rt△BDA≌Rt△B1D1A1,推出∠A=∠A1,根据AAS 推出△ABC≌△A1B1C1即可.【解答】解:已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1C1,∠C=∠C1.求证:△ABC≌△A1B1C1.证明:过B作BD⊥AC于D,过B1作B1D1⊥A1C1于D1,则∠BDA=∠B1D1A1=∠BDC=∠B1D1C1=90°,在△BDC和△B1D1C1中,,∴△BDC≌△B1D1C1,∴BD=B1D1,在Rt△BDA和Rt△B1D1A1中,∴Rt△BDA≌Rt△B1D1A1(HL),∴∠A=∠A1,在△ABC和△A1B1C1中,∴△ABC≌△A1B1C1(AAS).同理可得:当这两个三角形都是钝角三角形或直角三角形时,它们也会全等,如图:△ACD与△ACB中,CD=CB,AC=AC,∠A=∠A,但:△ACD与△ACB不全等.,故当这两个三角形其中一个三角形是锐角三角形,另一个是钝角三角形时,它们一定不全等.故答案为:钝角三角形或直角三角形,钝角三角形.【点评】本题考查了全等三角形像的判定;SSA不能判定的原因是有锐角钝角三角形不能全等,把三角形分类后就能全等了.三.选择题(共6小题)17.(2016•泸州)如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.【分析】由CD∥BE,可证得∠ACD=∠B,然后由C是线段AB的中点,CD=BE,利用SAS即可证得△ACD≌△CBE,继而证得结论.【解答】证明:∵C是线段AB的中点,∴AC=CB,∵CD∥BE,∴∠ACD=∠B,在△ACD和△CBE中,,∴△ACD≌△CBE(SAS),∴∠D=∠E.【点评】此题考查了全等三角形的判定与性质以及平行线的性质.注意证得△ACD≌△CBE是关键.18.(2016春•高密市期末)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.【分析】多边形的内角和比外角和的4倍多180°,而多边形的外角和是360°,则内角和是1620度.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:根据题意,得(n﹣2)•180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.【点评】此题比较简单,只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.19.(2016•历下区一模)如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE垂直平分AB于D,求证:BE+DE=AC.【分析】根据角平分线性质得出CE=DE,根据线段垂直平分线性质得出AE=BE,代入AC=AE+CE求出即可.【解答】证明:∵∠ACB=90°,∴AC⊥BC,∵ED⊥AB,BE平分∠ABC,∴CE=DE,∵DE垂直平分AB,∴AE=BE,∵AC=AE+CE,∴BE+DE=AC.【点评】本题考查了角平分线性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.20.(2016•临夏州)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.【分析】(1)直接利用关于x轴对称点的性质得出各对应点位置进而得出答案;(2)直接利用平移的性质得出各对应点位置进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,点A2(﹣3,﹣1),B2(0,﹣2),C2(﹣2,﹣4).【点评】此题主要考查了轴对称变换和平移变换,根据题意得出对应点位置是解题关键.21.(2016•常州)如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.【分析】(1)首先根据等腰三角形的性质得到∠ABC=∠ACB,然后利用高线的定义得到∠ECB=∠DBC,从而得证;(2)首先求出∠A的度数,进而求出∠BOC的度数.【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE是△ABC的两条高线,∴∠DBC=∠ECB,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∴∠BOC=180°﹣80°=100°.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;关键是掌握等腰三角形等角对等边.22.(2016•景德镇校级二模)如图,在边长为1个单位长度的小正方形组成的网格中,请分别在边AB,AC上找到点E,F,使四边形PEFQ的周长最小.【分析】根据轴对称图形的作法得出对称点,进而解答即可.【解答】解:分别作P关于AB,Q关于AC的对称点P'Q',连接P'Q',交AB于E,交AC于F,则E,F即为所求.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.四.选择题\23.(2016•柳州)求证:等腰三角形的两个底角相等(请根据图用符号表示已知和求证,并写出证明过程)已知:求证:证明:【分析】充分理解题意,利用等腰三角形的性质,要根据题意画图,添加辅助线来证明结论.【解答】解:已知:△ABC中,AB=AC,求证:∠B=∠C;证明:如图,过D作BC⊥AD,垂足为点D,∵AB=AC,AD=AD,在Rt△ABD与Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL)∴∠B=∠C.【点评】本题考查了等腰的三角形的性质;添加辅助线利用三角形全等证明是正确解答本题的关键.24.(2016春•埇桥区期末)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.【分析】(1)由在△ABC中,AB=AC,∠A=40°,根据等腰三角形的性质,可求得∠ABC的度数,又由AB的垂直平分线交AB于点N,交BC的延长线于点M,即可求得答案;(2)由在△ABC中,AB=AC,∠A=70°,根据等腰三角形的性质,可求得∠ABC的度数,又由AB的垂直平分线交AB于点N,交BC的延长线于点M,即可求得答案;(3)由在△ABC中,AB=AC,根据等腰三角形的性质,即可用∠A表示出∠ABC,又由AB的垂直平分线交AB于点N,交BC的延长线于点M,即可求得答案.【解答】解:(1)∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB=70°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=20°;(2)∵在△ABC中,AB=AC,∠A=70°,∴∠ABC=∠ACB=55°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=35°;(3)∠NMB=∠A.理由:∵在△ABC中,AB=AC,∴∠ABC=∠ACB=,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=∠A.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.25.(2015•菏泽)如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.【分析】(1)利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,即可判断三角形的形状;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,利用SAS证明△AFD 和△BDC全等,再利用全等三角形的性质得出FD=DC,∠FDC=90°,即可得出∠FCD=∠APD=45°.【解答】解:(1)△CDF是等腰直角三角形,理由如下:∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,如图,∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形,∴∠FCD=45°,∵AF∥CE,且AF=CE,∴四边形AFCE是平行四边形,∴AE∥CF,∴∠APD=∠FCD=45°.【点评】此题考查了全等三角形的判定与性质的运用,平行四边形的判定及性质的运用,等腰直角三角形的判定及性质的运用.解答时证明三角形全等是关键.。
外国语中学八年级数学上册 第七周周练试题 新人教版A .a 的平方根是±aB .a 的算术平方根是aC .a 的算术立方根3aD .-a 的立方根是-3a .5.满足-2<x <3的整数x 一共有〔 〕A .4个B .3个C .2个D .1个6.假如a 、b 两数在数轴上的位置如下图,那么()2b a +的算术平方根是〔 〕;A .a+bB .a-bC .b-aD .-a-b 7.假如-()21x -有平方根,那么x 的值是〔 〕A .x ≥1B .x ≤1C .x=1D .x ≥0;8.假设a<0,那么a a 22等于〔 〕A .21B .21-C .±21D .0二、填空题的平方根是 ;125的立方根是 ;a . -1. 0b .. 1.10.计算:412= ;3833-= ;1.42-的绝对值等于 .11.假设x 的算术平方根是4,那么x=________;假设3x =1,那么x=________.12. 一个正数的平方根是3x-2 和 5x+6,那么这个数是 .13.假设(x+1)2-9=0,那么x=_________;假设27x 3+125=0,那么x=_________.14.当x________时,代数式2x+6的值没有平方根. 15.比拟大小:(1)3 (2) (3) (4)16.2x =3, 那么x= .17.7在整数 和整数 之间,5在整数 和整数 之间.18.通过计算不难知道:322322=,833833=,15441544=,那么按此规律,下一个式子是________.三、简答题19. 计算〔1〕40083321633⨯--- 〔2〕31328)1(332--+-+-〔3〕914420045243⨯⨯⨯ 〔4〕3328152)131)(951()321(+----++-〔1〕4(2x-1)2=25 〔2〕08)13(3=--x〔3〕0324)1(2=--x 〔4〕(2x+1)2 -16=021. 把以下各数分别填在相应的集合中:227,π, 23-3-整数集合 { …}分数集合{ … }无理数集合 { … } 负实数集合{ …}22.51|3a-b-7|+32-+b a =0求(b+a)a 的平方根。
初二上数学测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333B. √2C. 2/3D. 3.14答案:B2. 一个等腰三角形的两边长分别为3和5,那么第三边的长度是多少?A. 3B. 5C. 8D. 无法确定答案:B3. 以下哪个表达式等于x^2 - 4x + 4?A. (x - 2)^2B. (x + 2)^2C. (x - 4)^2D. (x + 4)^2答案:A4. 如果一个数的平方根是2,那么这个数是多少?A. 4B. -4C. 2D. -2答案:A5. 一个数的相反数是-3,那么这个数是多少?A. 3B. -3C. 0D. 6答案:A6. 以下哪个选项是正确的比例关系?A. 3:6 = 2:4B. 4:8 = 1:2C. 5:10 = 1:2D. 6:12 = 2:3答案:C7. 一个圆的半径是5cm,那么它的直径是多少?A. 5cmB. 10cmC. 15cmD. 20cm答案:B8. 下列哪个选项是正确的因式分解?A. x^2 - 4 = (x + 2)(x - 2)B. x^2 - 4 = (x + 4)(x - 4)C. x^2 - 4 = (x + 2)(x + 2)D. x^2 - 4 = (x - 2)(x - 2)答案:A9. 一个直角三角形的两个直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 7C. 9D. 12答案:A10. 以下哪个选项是正确的不等式?A. 2x + 3 > 5B. 3x - 2 < 7C. 4x + 1 ≤ 9D. 5x - 6 ≥ 14答案:C二、填空题(每题4分,共20分)11. 一个数的绝对值是5,那么这个数可能是______。
答案:±512. 如果一个角的补角是120°,那么这个角的度数是______。
答案:60°13. 一个数的立方根是2,那么这个数是______。
云阳八年级数学上学期第7周周末自测题时间是:90分钟满分是:100分一、选择题(每一小题3分,一共30分)1.以下说法中,正确的选项是 ( )AB.-a2一定没有平方根±0.3 D.a2-1一定有平方根2.以下各数:0,(-3)2,-(-2),5--,3.14-π,x2—1,其中有平方根的数有( )A.3个 B.4个 C.5个 D.6个3.以下各组数中,不能作为直角三角形三边长的是 ( )A. 9,12,15 B.7,24,25 C.6,8,10 D.3,5,74.如图,火柴盒的一个侧面ABCD倒下到.AB’C’D’的位置,连接CC’.设.AB=a,BC=b,AC=c,这样可以用来说明我们学习过的定理或者者公式是 ( ) A.勾股定理 B.平方差公式C.完全平方公式 D.以上3个答案都可以创作;朱本晓创作;朱本晓5.如图,等边△ABC 的高AH 3,那么该三角形的面积为 ( ) A 3 B .2 C .3.46.等腰三角形的底边长为10,腰长为13,那么一腰上的高为 ( ) A. 12 B .6013 C .12013 D .1357.以下说法中,不正确的选项是 ( )A .三个角的度数之比为1:3:4的三角形是直角三角形B .三个角的度数之比为3:4:5的三角形是直角三角形C .三边长度之比为3:4:5的三角形是直角三角形D .三边长度之比为5:12:13的三角形是直角三角形8.三角形的三边长分别为22a b +,2ab ,22a b -(a 、b 都是正整数,且a>b),那么这个三角形是 ( )A .直角三角形B .钝角三角形C .锐角三角形D .不能确定9.如图一直角三角形纸片,两直角边AC =6 cm ,BC =8 cm , 现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE重合,那么CD等于 ( )A.2 cm B.3 cm C.4 cm D.5 cm10.估算在27- 2的值 ( )A.在1到2之间 B.在2到3之间 C.在3到4之间 D.在4到5之间二、填空题(每小空2分,一共20分)11.平方根等于它本身的数是__________.12.2的平方根为__________.13.3x-2的平方根是±5,那么x-5的平方根是______.14. 在Rt△ABC中,BC=5,AC=12,那么AB= ,AB边上的高是 . 15.假如直角三角形的两条边长分别是3和5,那么第三边长为__________.16.如图,在Rt△ABC中,∠ABC=90°,BD⊥AC于D,点E为AC的中点,假设BC=7,AB=24,那么BE= __________,BD=__________.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中创作;朱本晓创作;朱本晓 最大的正方形的边长为7 cm ,那么图中所有正方形的面积之和为__________cm 2.18.如图,把长方形纸片ABCD 折叠,B 、C 两点恰好重合落在AD 边上的点P 处.∠MPN=90°,且PM=3,PN=4,那么长方形纸片ABCD 的面积为__________.三、解答题(一共40分) 19.(3分)1.求以下各式的值:〔1〕44.1; 〔2〕649 ; 〔3〕25241 ; 20.〔4分〕如下图,15只空油桶〔每只油桶底面直径均为60cm 〕堆在一起,要给它盖一个遮雨棚,遮雨棚起码要多高?21.(6分) 如图,在长方形ABCD 中,将△ABC 沿AC 对折至△AEC 位置,CE 与AD 交于点F . (1)试说明:AF=FC ;(2)假如AB=3,BC=4,求AF 的长.创作;朱本晓 ABCDO22. (6分)如图,△AOB 和△COD 均为等腰直角三角形,∠AOB =∠COD =90º,D 在AB 上.〔1〕求证:△AOC ≌△BOD ;〔2〕假设AD =1,BD =2,求CD 的长.23.(6分) 如图,在△ABC 中,AB=AC ,P 是边BC 上的任意一点.试说明AB 2-AP 2=PB ·PC .24.〔9分〕探究发散 〔1〕完成以下填空23=_____20.5=_____, 2(6)-=____,20=_____, 23()4-,⑥231⎪⎭⎫ ⎝⎛-=_____,创作;朱本晓□A1 11 1 11 1A A A A A AS S SSSSO〔2a 吗?你发现其中的规律了吗?请你用自己的语言描绘出来. 〔3〕利用你总结的规律,计算:①假设2x 〈= ; ②=_____25.〔8分〕细心观察图形,认真分析各式,然后解答问题:22122312,13,14,S S S +==+==+== (1)请用含有n 〔n 是正整数〕的等式表示上述变化规律;(2)推算出OA 10的长; (3)求出222212310S S S S ++++的值.26. (8分)如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD,ED ⊥BD,连接AC 、EC.AB=5,DE=1,BD=8,设CD=x. (1)用含x 的代数式表示AC +CE 的长; (2)请问点C 满足什么条件时,AC +CE 的值最小? (3)根据(2)中的规律和结论,请构图求出代数式9)12(422+-++x x的最小值.知者加速:1. 如下图是—个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,那么一条到达底部的直吸管在罐内局部a的长度〔罐壁厚度和小圆孔大小忽略不计〕范围是2. 观察以下各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…这到底是巧合,还是有什么规律蕴涵其中呢?请你结合有关知识进展研究.假设132=a+b,那么a,b的值可能是多少励志赠言经典语录精选句;挥动**,放飞梦想。
C B A第10题七雄中学八年级数学国庆假期作业(三)班级 姓名 成绩__________一.选择题1.下列交通标志中有几个是轴对称图形( )2. 在下列四组线段中,能组成直角三角形的是:( )A .a=1,b=2,c=3B .a=2,b=3,c=4C .a=5, b=12, c=13D .a=7,b=8,c=93. 如图,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A .在AC 、BC 两边高线的交点处B .在AC 、BC 两边垂直平分线的交点处C .在AC 、BC 两边中线的交点处D .在∠A 、∠B 两内角平分线的交点处4. 已知等腰三角形的一个外角等于100,则它的顶角是( )A.80°B.20°C.80°或20°D.不能确定5.如图11,△ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC ,交AB 、AC 于E 、F ,当∠A 的位置及大小变化时,线段EF 和BE+CF 的大小关系( )A.EF>BE+CFB.EF=BE+CFC.EF<BE+CFD.不能确定6. 如图,△ABC 中BD 是角平分线,∠A =∠CBD=360,则图中等腰三角形有( )A 、3个B 、2个C 、1个D 、0个二.填空7.小明从平面镜子中看到镜子对面电子钟示数的像如图所示 ,这时的时刻应是 .8. 等腰三角形的一边长为6,另一边长为3,则它的周长是__________9.如图,在△ABC 中,∠C=90°,AD 平分∠CAB,BC=8cm,BD=5cm.则点D 到AB 距离是 cm.10. 一颗大树在一次强烈的地震中于离树根B 处4米的C 处折断倒下(如图),树顶A 落在离树根B 处3米,则大树AB 的原长为 米 。
第7题C 图4DC BA A.1B.2C.3 D.4第5题 第6题 第9题三、解答题11.在长方形ABCD 中,将△ABC 沿AC 对折至△AEC 位置,CE 与AD 交于点F ,如图.试说明:EF=DF.12.如图,在△ABC 中,∠ACB=900,AB=10cm, BC=6cm, CD ⊥AB 与D,求:(1)AC 的长; (2)CD 的长13.如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD ),经测量,在四边形ABCD 中,AB=3m ,BC=4m ,CD=12m ,DA=13m ,∠B=900.小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?14.如图,四边形ABCD 是等腰梯形,BC ∥AD ,AB =DC ,BC =2AD =4 cm ,BD ⊥CD ,AC ⊥AB ,BC 边的中点为E . 求:(1)判断△ADE(2)求AB 的长.C D CB A。
一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -5B. 0C. 3.5D. -2.12. 如果a > b,那么以下不等式中正确的是()A. a - 2 > b - 2B. a + 2 > b + 2C. a - 2 < b - 2D. a + 2 < b + 23. 下列各式中,分式有意义的是()A. $$ \frac{1}{0} $$B. $$ \frac{1}{2} $$C. $$ \frac{0}{0} $$D. $$ \frac{2}{1} $$4. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)5. 下列各式中,能被3整除的是()A. 45B. 28C. 33D. 446. 下列各数中,最接近0的是()A. -2.5B. -2.3C. -2.4D. -2.27. 下列各图中,平行四边形是()A. 图①B. 图②C.图③D. 图④8. 一个长方形的长是8厘米,宽是5厘米,它的周长是()A. 15厘米B. 20厘米C. 23厘米D. 25厘米9. 下列各数中,有理数是()A. $$ \sqrt{2} $$B. $$ \pi $$C. 0.1010010001…D. -$$ \frac{1}{2} $$10. 在一次函数y=kx+b(k≠0)中,当k > 0时,函数图象()A. 从左到右上升B. 从左到右下降C. 一直上升D. 一直下降二、填空题(每题3分,共30分)11. -5的相反数是______。
12. 3和-5的和是______。
13. 分式$$ \frac{3}{4} $$的倒数是______。
14. 2.5的平方根是______。
15. 下列各数中,正数是______。
16. 在直角坐标系中,点B(-3,2)关于y轴的对称点是______。
17. 下列各数中,能被5整除的是______。
八年级数学上册周周练及答案全册一、简介八年级数学上册周周练及答案全册是为八年级学生编写的一套数学学习辅助材料。
本文档旨在为学生提供全册周周练习题及其答案,帮助学生巩固和提升数学知识和解题能力。
二、周周练习题第一周练习题1.求下列式子的值:a)$4 + 7 \\times 2 =$b)$\\frac{3}{4} \\times 2 + \\frac{2}{5} =$c)$\\frac{1}{3} + \\frac{1}{4} - \\frac{1}{6} =$2.简化下列代数表达式:a)x+2x+3x=b)2(x+x)−3x=c)$(2a + 3b) \\cdot 4 =$3.解下列方程:a)2x+5=15b)$\\frac{x}{4} = 6$c)3x+2=5x−3第二周练习题1.计算下列式子的值:a)$\\frac{3}{5} \\times \\frac{4}{9} +\\frac{2}{3} \\times \\frac{1}{2} =$b)$(\\frac{1}{2})^3 \\times (\\frac{1}{2})^{-2}=$c)$\\sqrt{16} + \\sqrt{25} =$2.求下列代数式的值:a)3x−2,当x=4时b)2x2+x−1,当x=−3时c)x3−3x2+2x,当x=1时3.解下列方程组:\\end{cases}$b)$\\begin{cases} 3x - 2y = 1 \\\\ x + y = 4\\end{cases}$c)$\\begin{cases} 2x - y = 3 \\\\ 3x + 4y = 8\\end{cases}$第三周练习题1.计算下列式子的值:a)$(\\frac{5}{8})^2 \\div (\\frac{7}{10})^3 =$b)$\\frac{3}{5} \\div (\\frac{2}{3} +\\frac{1}{4}) =$c)$\\sqrt{36} - \\sqrt{49} =$2.求下列代数式的值:a)2x2−3xx+5,当x=2,x=3时b)$\\frac{(a-b)^2}{a^2 - ab + b^2}$,当x=3,x=1时c)3x3+2x2−x,当x=−1时3.解下列方程组:\\end{cases}$b)$\\begin{cases} 2x - 3y = 1 \\\\ 4x + y = 5\\end{cases}$c)$\\begin{cases} x + 2y = -3 \\\\ 3x + 4y = 2\\end{cases}$三、答案第一周练习题答案1.求下列式子的值:a)$4 + 7 \\times 2 = 4 + 14 = 18$b)$\\frac{3}{4} \\times 2 + \\frac{2}{5} =\\frac{6}{4} + \\frac{2}{5} = \\frac{12}{8} +\\frac{2}{5} = \\frac{15}{10} + \\frac{4}{10} =\\frac{19}{10} = 1.9$c)$\\frac{1}{3} + \\frac{1}{4} - \\frac{1}{6} =\\frac{2}{6} + \\frac{3}{12} - \\frac{2}{12} =\\frac{4}{12} + \\frac{3}{12} - \\frac{2}{12} =\\frac{5}{12}$2.简化下列代数表达式:a)x+2x+3x=6xb)2(x+x)−3x=2x+2x−3x=2x−xc)$(2a + 3b) \\cdot 4 = 8a + 12b$3.解下列方程:a)2x+5=15解得x=5b)$\\frac{x}{4} = 6$解得x=24c)3x+2=5x−3解得 $x = \\frac{5}{2}$第二周练习题答案1.计算下列式子的值:a)$\\frac{3}{5} \\times \\frac{4}{9} +\\frac{2}{3} \\times \\frac{1}{2} = \\frac{12}{45} +\\frac{2}{6} = \\frac{12}{45} + \\frac{15}{45} =\\frac{27}{45} = \\frac{3}{5}$b)$(\\frac{1}{2})^3 \\times (\\frac{1}{2})^{-2}= \\frac{1}{8} \\times \\frac{1}{(\\frac{1}{2})^2} =\\frac{1}{8} \\times 4 = \\frac{4}{8} = \\frac{1}{2}$c)$\\sqrt{16} + \\sqrt{25} = 4 + 5 = 9$2.求下列代数式的值:a)3x−2,当x=4时解得 $3 \\times 4 - 2 = 12 - 2 = 10$b)2x2+x−1,当x=−3时解得 $2 \\times (-3)^2 + (-3) - 1 = 2 \\times 9 -3 - 1 = 18 - 3 - 1 = 14$c)x3−3x2+2x,当x=1时解得 $1^3 - 3 \\times 1^2 + 2 \\times 1 = 1 - 3 + 2 = 0$3.解下列方程组:a)$\\begin{cases} 2x + 3y = 7 \\\\ 4x - 5y = -2\\end{cases}$解得 $x = \\frac{19}{17}$, $y = \\frac{1}{17}$b)$\\begin{cases} 3x - 2y = 1 \\\\ x + y = 4\\end{cases}$解得 $x = \\frac{9}{5}$, $y = \\frac{11}{5}$c)$\\begin{cases} 2x - y = 3 \\\\ 3x + 4y = 8\\end{cases}$解得 $x = \\frac{20}{17}$, $y =\\frac{31}{17}$第三周练习题答案1.计算下列式子的值:a)$(\\frac{5}{8})^2 \\div (\\frac{7}{10})^3 =\\frac{25}{64} \\div \\frac{343}{1000} =\\frac{25}{64} \\times \\frac{1000}{343} =\\frac{25000}{21952}$b)$\\frac{3}{5} \\div (\\frac{2}{3} +\\frac{1}{4}) = \\frac{3}{5} \\div \\frac{8}{12} =\\frac{3}{5} \\times \\frac{12}{8} = \\frac{9}{10}$c)$\\sqrt{36} - \\sqrt{49} = 6 - 7 = -1$2.求下列代数式的值:a)2x2−3xx+5,当x=2,x=3时解得2(2)2−3(2)(3)+5=8−18+5=−5b)$\\frac{(a-b)^2}{a^2 - ab + b^2}$,当x=3,x=1时解得 $\\frac{(3-1)^2}{3^2 - 3(3)(1) + (1)^2} = \\frac{2^2}{9 - 9 + 1} = \\frac{4}{1} = 4$c)3x3+2x2−x,当x=−1时解得3(−1)3+2(−1)2−(−1)=−3+2+1= 03.解下列方程组:a)$\\begin{cases} 3x + 2y = 4 \\\\ 5x - 3y = 7\\end{cases}$解得 $x = \\frac{23}{19}$, $y = \\frac{2}{19}$b)$\\begin{cases} 2x - 3y = 1 \\\\ 4x + y = 5\\end{cases}$解得 $x = \\frac{17}{11}$, $y = \\frac{9}{11}$c)$\\begin{cases} x + 2y = -3 \\\\ 3x + 4y = 2\\end{cases}$解得 $x = -\\frac{14}{5}$, $y = \\frac{11}{5}$四、总结本文档提供了八年级数学上册周周练习题及其答案,涵盖了多个知识点和题型,并且给出了详细的解题步骤和答案,帮助学生巩固和提升数学知识和解题能力。
初二(上)数学周测试题
班级________ 姓名________ 评价________
一、选择题 (35)
1、对于等腰梯形,下列说法错误的是( ).
A 、只有一组相等的对边
B 、只有一对相等的角
C 、只有一条对称轴
D .两条对角线相等
2、一个等腰梯形的上底和腰的长都是1,下底的长为2,将这个梯形按下图的方式拼接在一起: …共有八个这样的梯形,则由它们拼接成的图形周长为( ).
A .14
B .26
C .32
D .36
3、如图,已知梯形ABCD ,AD ∥BC ,AB =CD ,E 是AD 的中点,则BE 与CE 的大小关系是( ).
A 、BE >CE
B .BE <CE
C .BE =CE
D .无法判断
4、如图,在等腰梯形ABCD 中,AD ∥BC ,AB :AD =DC ,∠B =60°,DE ∥AB ,梯形ABCD 的周长等于20cm ,则DE 等于( ).
A .3 cm
B .4 cm
C .5 cm
D .6 cm
5、如图,等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,∠B=60º,BC=3,
△ABE 的周长为6,则等腰梯形的周长是( )
A 、8
B 、10 C12 D 16
二、填空题 (32)
6、如图,在梯形ABCD 中,如果DC ∥AB ,AD =BC ,∠A =60°,DB ⊥AD ,那么∠DBC = °,∠C = °.
7、在等腰梯形中,有一个内角是72°,则其余三个角的度数分别为 .
8、等腰梯形的腰长为12cm ,上底长为15cm ,上底与腰的夹角为120°,则下底长为 cm .
9、如图,在梯形ABCD 中,AD ∥BC ,AB =CD ,∠A =120°,对角线BD 平分∠ABC ,则∠BDC 的度数是 ;又若AD =5,则BC = .
A E D C
B A D B
C E A
D C B A D C B A B D
E C
三、解答题 ( 8、8、8、9)
10、如图,在等腰梯形ABCD 中,AB ∥DC ,E 是DC 延长线上的一点,BE =BC ,试说明∠A 和∠E 的关系.
11、如图,在等腰梯形ABCD 中,AB ∥DC ,AB =AD =BC ,下底DC =BD .求梯形各内角度数.
12、如图,在梯形ABCD 中,AB ∥DC ,AD =DC =CB =3,DB ⊥AD ,求∠A 的度数及梯形的周长.
13如图,四边形ABCD 是等腰梯形,BC ∥AD ,AB =DC ,BC =2AD =4 cm , BD ⊥CD ,AC ⊥AB ,BC 边的中点为E .
求:(1)判断△ADE 的形状,并说明理由,并求其周长.
(2)求AB 的长.
D A B
E C A B C D D C A B
C。