七下第三章整式的乘除易错题
- 格式:doc
- 大小:117.00 KB
- 文档页数:4
浙江七年级数学下第三章《整式的乘除》常考题一、单选题(共30分)1.(本题3分)(2018·浙江嘉兴·七年级期末)计算a 2•a 3,结果正确的是( ) A .a 5 B .a 6 C .a 8 D .a 9【答案】A 【解析】 【分析】此题目考查的知识点是同底数幂相乘.把握同底数幂相乘,底数不变,指数相加的规律就可以解答. .【详解】同底数幂相乘,底数不变,指数相加. m n m n a a a +⋅=所以23235.a a a a +⋅== 故选A. 【点睛】此题重点考察学生对于同底数幂相乘的计算,熟悉计算法则是解本题的关键. 2.(本题3分)(2021·浙江浙江·七年级期末)若a 为正整数,且x 2a =5,则(2x 3a )2÷4x 4a 的值为( ) A .5 B .2.5C .25D .10【答案】A 【解析】 【分析】根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘计算;再根据单项式除以单项式的法则计算,然后将x 2a =5代入即可求出原代数式的值. 【详解】(2x 3a )2÷4x 4a =4644a a x x ÷=2a x , ∵x 2a =5,∵原式= x 2a =5. 故选A. 【点睛】3.(本题3分)(2021·浙江浙江·七年级期中)已知3,5a b x x ==,则32a b x -=( ) A .2725B .910 C .35D .52【答案】A 【解析】 【分析】直接利用同底数幂的除法和幂的乘方运算法则将原式变形得出答案. 【详解】 ∵x a =3,x b =5,∵x 3a-2b =(x a )3÷(x b )2 =33÷52 =2725. 故选A. 【点睛】考查了同底数幂的乘除运算和幂的乘方运算,正确将原式变形是解题关键. 4.(本题3分)(2020·浙江杭州·七年级期末)下列各式不能用平方差公式计算的是( ) A .(52)(52)x ab x ab -+ B .()()ax y ax y --- C .)()(ab c ab c --- D .()()m n m n +--【答案】D 【解析】 【分析】根据平方差公式对各选项进行逐一分析即可. 【详解】解:A 、(52)(52)x ab x ab -+=222254x a b -,故能用平方差公式计算,不合题意; B 、()()ax y ax y ---=222a x y -+,故能用平方差公式计算,不合题意; C 、)()(ab c ab c ---=222c a b -,故能用平方差公式计算,不合题意; D 、()()m n m n +--=2()m n -+,故不能用平方差公式计算,符合题意; 故选D . 【点睛】5.(本题3分)(2021·浙江浙江·七年级期末)若(x﹣2)(x+3)=x2+ax+b,则a,b的值分别为()A.a=5,b=﹣6B.a=5,b=6C.a=1,b=6D.a=1,b=﹣6【答案】D【解析】【分析】等式左边利用多项式乘多项式法则计算,再利用多项式相等的条件求出a与b的值即可.【详解】解:∵(x﹣2)(x+3)=x2+x﹣6=x2+ax+b,∵a=1,b=﹣6,故选:D.【点睛】此题考查了多项式乘多项式以及多项式相等的条件,熟练掌握运算法则是解本题的关键.6.(本题3分)(2021·浙江浙江·七年级期中)如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a﹣1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是()A.2cm2B.2acm2 C.4acm2D.(a2﹣1)cm2【答案】C【解析】【详解】根据题意得出矩形的面积是(a+1)2﹣(a﹣1)2,求出即可:矩形的面积是(a+1)2﹣(a﹣1)2=a2+2a+1﹣(a2﹣2a+1)=4a(cm2).故选C.7.(本题3分)(2018·浙江·七年级阶段练习)已知x2+mx+25是完全平方式,则m的值为()【解析】 【分析】根据完全平方式的特点求解:a 2±2ab +b 2. 【详解】∵x 2+mx +25是完全平方式, ∵m =±10, 故选B . 【点睛】本题考查了完全平方公式:a 2±2ab +b 2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x 和1的平方,那么中间项为加上或减去x 和1的乘积的2倍.8.(本题3分)(2021·浙江吴兴·七年级期末)如图1,将边长为x 的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释下列哪个等式( )A .2221(1)x x x -+=-B .21(1)(1)x x x -=+-C .2221(1)x x x ++=+D .2(1)x x x x -=-【答案】B 【解析】 【分析】利用大正方形的面积减去小正方形的面积得到空白部分的面积,然后根据面积相等列出等式即可. 【详解】第一个图形空白部分的面积是x 2-1, 第二个图形的面积是(x+1)(x-1). 则x 2-1=(x+1)(x-1).本题考查了平方差公式的几何背景,正确用两种方法表示空白部分的面积是解决问题的关键.9.(本题3分)(2021·浙江浙江·七年级期末)已知x2+4y2=13,xy=3,求x+2y的值,这个问题我们可以用边长分别为x和y的两种正方形组成一个图形来解决,其中x>y,能较为简单地解决这个问题的图形是()A.B.C.D.【答案】B【解析】【详解】∵222x y x y xy+=++,(2)44>), 则这个图∵若用边长分别为x和y的两种正方形组成一个图形来解决(其中x y形应选A,其中图形A中,中间的正方形的边长是x,四个角上的小正方形边长是y,四周带虚线的每个矩形的面积是xy.故选B.10.(本题3分)(2019·浙江瑞安·七年级期中)已知18n++是一个有理数的平方,则221n不能为()-B.10C.34D.36A.20【答案】D【解析】【分析】分多项式的三项分别是乘积二倍项时,利用完全平方公式分别求出n的值,然后选择答案即可.【详解】2n是乘积二倍项时,2n+218+1=218+2•29+1=(29+1)2,此时n=9+1=10,218是乘积二倍项时,2n+218+1=2n+2•217+1=(217+1)2,此时n=2×17=34,1是乘积二倍项时,2n+218+1=(29)2+2•29•2-10+(2-10)2=(29+2-10)2,综上所述,n可以取到的数是10、34、-20,不能取到的数是36.故选D.【点睛】本题考查了完全平方式,难点在于要分情况讨论,熟记完全平方公式结构是解题的关键.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(共21分)11.(本题3分)(2020·浙江杭州·七年级期末)若2y=+,则用含x的代数式表=mx,34m示y=______.【答案】3+x2【解析】【分析】直接利用幂的乘方运算法则表示出y与x之间的关系即可.【详解】解:∵x=2m,∵y=3+4m=3+22m=3+(2m)2=3+x2.故答案为:3+x2.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.12.(本题3分)(2021·浙江浙江·七年级期中)计算:(3)2-⋅=_______.a ab【答案】-6a2b【解析】【分析】根据单项式乘单项式法则计算求解即可.【详解】解:-3a•2ab=(-3×2)•(a•a)•b故答案为:-6a 2b . 【点睛】此题考查了单项式乘单项式,熟记单项式乘单项式法则是解题的关键.13.(本题3分)(2018·浙江义乌·七年级期末)某班墙上布置的“学习园地”是一个长方形区域,它的面积为3a 2+9ab ﹣6a ,已知这个长方形“学习园地”的长为3a ,则宽为__ 【答案】a +3b ﹣2. 【解析】 【分析】根据题意列出算式,在利用多项式除以单项式的法则计算可得. 【详解】根据题意,长方形的宽为(3a 2+9ab ﹣6a )÷3a =a +3b ﹣2, 故答案为a +3b ﹣2. 【点睛】本题主要考查整式的除法,解题的关键是掌握多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.14.(本题3分)(2018·浙江仙居·七年级期末)如果代数式8a b +的值为5-,那么代数式()()3252a b a b --+的值为________.【答案】10 【解析】 【分析】原式去括号合并整理后,将a+8b 的值代入计算即可求值. 【详解】原式=3a-6b-5a-10b=-2a-16b=-2(a+8b ), 当a+8b=-5时,原式=10. 故答案为10 【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.15.(本题3分)(2021·浙江杭州·七年级期中)多项式(8)(23)mx x +-展开后不含x 一次项,则m =________. 【答案】12【分析】乘积含x 项包括两部分,∵mx×2,∵8×(-3x ),再由展开后不含x 的一次项可得出关于m 的方程,解出即可. 【详解】解:(mx+8)(2-3x ) =2mx-3mx 2+16-24x =-3mx 2+(2m-24)x+16,∵多项式(mx+8)(2-3x )展开后不含x 项, ∵2m-24=0, 解得:m=12, 故答案为:12. 【点睛】此题考查了多项式乘多项式的知识,属于基础题,注意观察哪些项相乘所得的结果含一次项,难度一般.16.(本题3分)(2018·浙江·余姚市兰江中学七年级期中)已知130x x+-=,则221x x +=________. 【答案】7 【解析】 【分析】利用完全平方和公式()2222a b a ab b +=++解答; 【详解】 解:130x x+-= ∵13,x x+= ∵22211()2927x x x x ,+=+-=-= 即2217.x x += 故答案为7. 【点睛】考查完全平方公式,熟记公式是解题的关键,属于易错题.22(2016)(2019)n n -+-=________.【答案】7 【解析】 【分析】先设2016n a ,2019n b ,则(2016)(2019)1n n --=可化为1ab =,22(2016)(2019)n n 22a b =+22abab ,再将2016n a ,2019n b 代入,然后求出结果【详解】解:设:2016n a ,2019n b , 则(2016)(2019)1n n --=可化为:1ab = ∵22(2016)(2019)n n22(2016)(2019)n n22a b =+()22a b ab =--将2016n a ,2019n b ,1ab =代入上式, 则22(2016)(2019)n n22016201921nn2327=【点睛】本题考查了对完全平方公式的应用,能熟记公式,并能设2016n a ,2019n b ,然后将原代数式化简再求值是解此题的关键,注意:完全平方公式为∵ 222()2a b a ab b +=++,∵222()2a b a ab b -=-+.三、解答题(共49分)18.(本题9分)(2020·浙江义乌·七年级期末)计算:(1)()23210-⨯;(2)()232()2⋅-+-a a a ;(3)()2321(23)(5)x x x x x ++-+-【答案】(1)6410⨯;(2)43a ;(3)32341015x x x +++ 【解析】 【分析】(2)先算乘方,再算乘法,最后算加法; (3)先算乘法,再算加减法. 【详解】解:(1)()23210-⨯,=()()223210-⨯,=6410⨯;(2)()232()2⋅-+-a a a , =34()4a a a ⋅-+, =444a a -+, =43a ;(3)()2321(23)(5)x x x x x ++-+- =()3223632715x x x x x ++---,=3223632715x x x x x ++-++, =32341015x x x +++ 【点睛】本题考查了整式的混合运算,整式混合运算的顺序是先乘方,后乘除,再加减.如果有括号,先算括号内.19.(本题6分)(2021·浙江浙江·七年级期末)(1)已知m +n =4,mn =2,求m 2+n 2的值;(2)已知am =3,an =5,求a 3m ﹣2n 的值. 【答案】(1)12;(2)2725【解析】 【分析】(1)先根据完全平方公式得出m 2+n 2=(m +n )2﹣2mn ,再求出答案即可;(2)先根据同底数幂的除法进行变形,再根据幂的乘方进行变形,最后求出答案即可. 【详解】解:(1)∵m +n =4,mn =2, ∵m 2+n 2=42﹣2×2=12;(2)∵am =3,an =5,∵a 3m ﹣2n=a 3m ÷a 2n=(am )3÷(an )2=33÷52 =2725. 【点睛】本题考查了同底数幂的除法,幂的乘方,完全平方公式等知识点,能灵活运用知识点进行计算是解此题的关键,注意:(a +b )2=a 2+2ab +b 2.20.(本题8分)(2021·浙江·七年级专题练习)若关于x 的多项式()2(3)x x m mx +-⋅-的展开式中不含2x 项,求4(1)(2)(25)(3)m m m m +--+-的值.【答案】16【解析】【分析】将多项式展开,合并同类项,根据不含2x 项得到m 值,再代入计算.【详解】解:原式()2(3)x x m mx =+-⋅-3222333mx x mx x m x m =-+--+()322(3)33mx m x m x m =+--++由题意得30m -=,∵3m =,∵原式4(31)(32)(235)(33)16=⨯+⨯--⨯+⨯-=.【点睛】本题考查了整式的混合运算和求值,多项式的应用,解此题的关键是能根据整式的运算法则进行化简,难度不是很大.21.(本题8分)(2019·浙江桐乡·七年级期中)王老师家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x 元,木地板的价格为每平方米3x 元,那么王老师需要花多少钱?【答案】(1)木地板需要4ab m 2,地砖需要11ab m 2;(2)王老师需要花23abx 元.【解析】【详解】试题分析:(1)根据长方形面积公式计算出卧室面积即为木地板的面积,客厅的面积+卫生间的面积+厨房的面积就是需要铺的地砖面积;(2)利用总面积×单价=总钱数求解即可.试题解析:(1)卧室的面积是2b (4a -2a )=4ab (平方米),厨房、卫生间、客厅的面积和是b ·(4a -2a -a )+a ·(4b -2b )+2a ·4b =ab +2ab +8ab =11ab (平方米),即木地板需要4ab 平方米,地砖需要11ab 平方米;(2)11ab ·x +4ab ·3x =11abx +12abx =23abx (元),即王老师需要花23abx 元.22.(本题8分)(2021·浙江浙江·七年级期末)从边长为 a 的正方形剪掉一个边长为b 的正方形(如图 1),然后将剩余部分拼成一个长方形(如图 2).(1)上述操作能验证的等式是 (请选择正确的一个)A .a 2﹣2ab +b 2=(a ﹣b )2B .a 2﹣b 2=(a +b )(a ﹣b )C .a 2+ab =a (a +b )(2)若 x 2﹣9y 2=12,x +3y =4,求 x ﹣3y 的值;(3)计算:2222211111(1)(1)(1)(1)(1)23420192020-----.【答案】(1)B (2)3 (3)20214040【解析】【分析】 (1)分别根据图1和图2表示阴影部分的面积,即可得解;(2)利用(1)的结论求解即可;(3)利用(1)的结论进行化简计算即可.【详解】(1)根据阴影部分的面积可得()()22a b a b a b -=+-故上述操作能验证的等式是B ;(2)∵22912x y -=∵()()3312x y x y +-=∵34x y +=∵()4312x y -=∵33x y -=;(3)2222211111(1)(1)(1)(1)(1)23420192020-⨯-⨯-⨯⨯-⨯- 111111111111111111112233442019201920202020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+⨯-⨯+⨯-⨯+⨯-⨯+⨯-⨯+⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭31425320202018202120192233442019201920202020=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 1202122020=⨯ 20214040=. 【点睛】本题考查了平方差公式的证明以及应用,掌握平方差公式的证明以及应用是解题的关键.23.(本题10分)(2021·浙江浙江·七年级期末)若x 满足(7)(4)2x x --=,求22(7)(4)x x -+-的值:解:设7,4x a x b -=-=,则(7)(4)2(7)(4)3x x ab a b x x --==+=-+-=,所以22222222(7)(4)(7)(4)()23225x x x x a b a b ab -+-=-+-=+=+-=-⨯=请仿照上面的方法求解下面的问题(1)若x 满足(8)(3)3x x --=,求22(8)(3)x x -+-的值;(2)已知正方形ABCD 的边长为x E F ,,分别是AD DC ,上的点,且25AE CF ==,,长方形EMFD 的面积是28,分别以MF DF 、为边作正方形,求阴影部分的面积.【答案】(1)19;(2)33.【解析】【分析】(1)设8,3x a x b -=-=,从而可得3,5ab a b =+=,再利用完全平方公式进行变形运算即可得;(2)先根据线段的和差、长方形的面积公式可得(2)(5)28x x --=,再利用正方形MFRN 的面积减去正方形DFGH 的面积可得阴影部分的面积,然后仿照(1)的方法思路、结合平方差公式进行变形求解即可得.【详解】(1)设8,3x a x b -=-=,则3,5ab a b =+=,所以2222(8)(3)x x a b -+-+=,2()2a b ab =+-,2523=-⨯,19=;(2)由题意得:2,5MF DE x DF x ==-=-,(2)(5)28DE DF x x ⋅=--=, 因为阴影部分的面积等于正方形MFRN 的面积减去正方形DFGH 的面积, 所以阴影部分的面积为2222(2)(5)MF DF x x -=---,设2,5x m x n -=-=,则28,3mn m n =-=,所以222()()43428121m n m n mn +=-+=+⨯=,由平方根的性质得:11+=m n 或110m n +=-<(不符题意,舍去),所以2222(2)(5)x x m n ---=-,=+-,m n m n()()=⨯,113=,33故阴影部分的面积为33.【点睛】本题考查了乘法公式与图形面积,熟练掌握并灵活运用乘法公式是解题关键.。
浙江七年级数学下第三章《整式的乘除》易错题一、单选题(共30分)1.(本题3分)计算a 6•a 2的结果是( ) A .a 12 B .a 8 C .a 4 D .a 3【答案】B 【解析】 【分析】根据同底数幂的乘法的运算法则:a m •a n ="a"m+n (m,n 是正整数)求解即可求得答案. 【详解】 a 6•a 2=a 8. 故选B .2.(本题3分)计算3(2)4(2)x y x y --+-的结果是( ) A .2x y - B .2x y + C .2x y -- D .2x y -+【答案】A 【解析】 【详解】原式去括号合并即可得到结果. 解:原式=﹣3x+6y+4x ﹣8y=x ﹣2y, 故选A .3.(本题3分)一个三角形的面积为(x 3y )2,它的一条边长为(2xy )2,那么这条边上的高为( ) A .12x 4 B .14x 4C .12x 4yD .12x 2【答案】A 【解析】 【分析】由三角形面积的求法,根据整式的运算法则计算即可. 【详解】解:设这条边上的高为h由三角形的面积公式可知:2621(2)2h xy x y ⨯⨯=,6226222412(2)22==4h x y xy x y x y x ÷=÷∴,本题考查了整式的运算,解题的关键是运用整式的除法运算法则,本题属于基础题型. 4.(本题3分)若ax =6,ay =4,则a 2x ﹣y 的值为( ) A .8 B .9C .32D .40【答案】B 【解析】 【详解】因为a 2x-y =a 2x ÷a y =(a x )2÷a y =62÷4=9,故答案为B.5.(本题3分)如图,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为()3a b +,宽为()2a b +的大长方形,则需要A 类、B 类和C 类卡片的张数分别为( )A .2,5,3B .3,7,2C .2,3,7D .2,5,7【答案】C 【解析】 【分析】根据长方形的面积=长×宽,求出长为a+3b,宽为2a+b 的大长方形的面积是多少,判断出需要A 类、B 类、C 类卡片各多少张即可. 【详解】解:长为a+3b,宽为2a+b 的长方形的面积为: (a+3b )(2a+b )=2a 2+7ab+3b 2,∵A 类卡片的面积为a 2,B 类卡片的面积为b 2,C 类卡片的面积为ab, ∵需要A 类卡片2张,B 类卡片3张,C 类卡片7张. 故选C . 【点睛】此题主要考查了多项式乘多项式的运算方法,熟练掌握运算法则是解题的关键. 6.(本题3分)若30m n +-=,则222426m mn n ++-的值为( ) A .12 B .2C .3D .0【分析】先根据30m n +-=得出3m n +=,然后利用提公因式法和完全平方公式2()a ab b a b ++=+对222426m mn n ++-进行变形,然后整体代入即可求值.【详解】 ∵30m n +-=, ∵3m n +=,∵222224262()623612m mn n m n ++-=+-=⨯-=. 故选:A . 【点睛】本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代入法是解题的关键.7.(本题3分)图(1)是一个长为2m,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .2mnB .(m+n )2C .(m-n )2D .m 2-n 2【答案】C 【解析】 【详解】解:由题意可得,正方形的边长为(m+n ),故正方形的面积为(m+n )2. 又∵原矩形的面积为4mn,∵中间空的部分的面积=(m+n )2-4mn=(m-n )2. 故选C .8.(本题3分)小明总结了以下结论:∵a(b+c)=ab+ac ;∵a(b ﹣c)=ab ﹣ac ;∵(b ﹣c)÷a =b÷a ﹣c÷a(a≠0);∵a÷(b+c)=a÷b+a÷c(a≠0);其中一定成立的个数是( ) A .1 B .2C .3D .4【答案】C 【解析】根据乘法分配律,除法分配律和去括号解题即可. 【详解】解:∵a(b+c)=ab+ac,正确; ∵a(b ﹣c)=ab ﹣ac,正确; ∵(b ﹣c)÷a =b÷a ﹣c÷a(a≠0),正确;∵a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算. 故选C . 【点睛】本题考查的是去括号,熟练掌握乘法分配律,除法分配律是解题的关键. 9.(本题3分)若25a 2+(k ﹣3)a +9是一个完全平方式,则k 的值是( ) A .±30 B .31或﹣29 C .32或﹣28 D .33或﹣27【答案】D 【解析】 【详解】∵25a 2+(k ﹣3)a +9是一个完全平方式,∵k ﹣3=±30,解得:k =33或﹣27,故选D . 10.(本题3分)已知在216()()x mx x a x b +-=++中,a 、b 为整数,能使这个因式分解过程成立的m 的值共有( )个 A .4 B .5 C .8 D .10【答案】B 【解析】 【分析】先根据整式的乘法可得,16m a b ab =+=-,再根据“,a b 为整数”进行分析即可得. 【详解】2()()()x a x b x a b x ab ++=+++, 2216()x mx x a b x ab ∴+-=+++, ,16m a b ab ∴=+=-,根据,a b 为整数,有以下10种情况:(1)当1,16a b ==-时,()11615m =+-=-; (2)当2,8a b ==-时,()286m =+-=-;(4)当8,2a b ==-时,()826m =+-=; (5)当16,1a b ==-时,()16115m =+-=; (6)当1,16a b =-=时,11615m =-+=; (7)当2,8a b =-=时,286m =-+=; (8)当4,4a b =-=时,440m =-+=; (9)当8,2a b =-=时,826m =-+=-; (10)当16,1a b =-=时,16115m =-+=-; 综上,符合条件的m 的值为15,6,0,6,15--,共有5个, 故选:B . 【点睛】本题考查了整式的乘法,依据题意,正确分情况讨论是解题关键.第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题(共21分)11.(本题3分)计算:(﹣2ab 2)3÷4a 2b 2=_____. 【答案】﹣2ab 4 【解析】 【分析】原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式除以单项式法则计算即可得到结果. 【详解】解:原式=-8 a 3b 6÷4a 2b 2=﹣2ab 4, 故答案为﹣2ab 4. 【点睛】本题考查此题考查了整式的除法,以及幂的乘方与积的乘方,解题的关键是熟练运用整式的运算法则,属于基础题型.12.(本题3分)计算:2220202019-=__________. 【答案】4039 【解析】 【分析】【详解】解:2220202019(20202019)(20202019)403914039-=+⨯-=⨯=. 故答案为:4039 【点睛】本题考查了平方差公式,熟练利用平方差简化计算是解题的关键.13.(本题3分)若关于x 、y 的代数式32323(2)mx nxy x xy xy ---+中不含三次项,则m-6n 的值为_______. 【答案】0 【解析】 【分析】先将代数式降次排序,再得出式子解出即可. 【详解】32323(2)mx nxy x xy xy ---+=()()32213m x n xy xy -+-+∵代数式关于x 、y 不含三次项 ∵m -2=0,1-3n =0 ∵m =2,n =13∵162603m n -=-⨯=故答案为:0 【点睛】本题考查代数式次数概念及代入求值,关键在于对代数式概念的掌握. 14.(本题3分)已知m ﹣n=2,mn=﹣1,则(1+2m )(1﹣2n )的值为__. 【答案】9 【解析】 【详解】 ∵m −n =2,mn =−1,∵(1+2m )(1−2n )=1−2n +2m −4mn =1+2(m −n )−4mn =1+4+4=9. 故答案为9.点睛: 本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相15.(本题3分)定义a b c d为二阶行列式,规定它的运算法则为a b c d=ad -bc.则二阶行列式3423x x x x ----的值为___.【答案】1 【解析】 【详解】 由题意可得:34 23x x x x ---- =(3)(3)(4)(2)x x x x ----- =2269(68)x x x x -+--+ =1. 故答案为1.16.(本题3分)已知120182019a =+,120192019b =+,120202019c =+,则代数式222a b c ab bc ac ++---的值为______.【答案】3 【解析】 【分析】把已知的式子化成2221[()()()]2a b a c b c -+-+-的形式,然后代入求解. 【详解】 解:120182019a =+,120192019b =+,120202019c =+, 1a b ∴-=-,2a c -=-,1b c -=-,则原式2221(222222)2a b c ab ac bc =++---2222221[(2)(2)(2)]2a ab b a ac c b bc c =-++-++-+ 2221[()()()]2a b a c b c =-+-+- 1[141]2=⨯++ 3=,【点睛】本题考查了代数式的求值,正确利用完全平方公式把所求的式子进行变形是关键. 17.(本题3分)如图所示,长方形ABCD 中放置两个边长都为4cm 的正方形AEFG 与正方形CHIJ ,若如图阴影部分的面积之和记为S 1,长方形ABCD 的面积记为S 2,已知:3S 2-S 1=96,则长方形ABCD 的周长为__________.【答案】24 【解析】 【分析】设KF=a,FL=b,利用a,b 表示出图中的阴影部分面积S 1与长方形面积S 2,然后根据3S 2-S 1=96可得a,b 的关系式,然后可求周长. 【详解】 设KF=a,FL=b,由图可得,EK=BH=LJ=GD=4-a,KH=EB=GL=DJ==4-b, ∵S 1=()()24432883--+=--+a b ab a b ab S 2=()()44446488+-+-=--+b a a b ab ∵3S 2-S 1=96∵()()364883288396--+---+=a b ab a b ab 整理得:4a b +=∵长方形ABCD 的周长=()()()224444216424+=+-++-=⨯-=AB BC b a 故答案为:24. 【点睛】本题考查列代数式表示图形面积以及代数式求值,利用长方形KFLI 的长和宽表示出图形面积是解题的关键. 三、解答题(共49分)18.(本题6分)计算:(1) 2(1)(1)x x x +-- (2) 32532(2)3x x x x --÷【答案】(1)3x+1;(2)6x . 【解析】 【分析】(1)先算括号里面的,再去括号,最后合并同类项即可得出答案; (2)先算括号和除法,再合并同类项即可得出答案. 【详解】解:(1)原式=()22x 2x 1x x ++--=22x 2x 1x x ++-+ =3x+1(2)原式=6664x 3x x -= 【点睛】本题考查的是代数式的化简,属于基础知识点.19.(本题8分)先化简,再求值:3(ab 2﹣2a 2b )﹣2(ab 2﹣a 2b ),其中a=﹣1,b=2. 【答案】-12 【解析】 【分析】根据整式的运算法则先化简,再将a=﹣1,b=2代入计算即可. 【详解】3(ab 2﹣2a 2b )﹣2(ab 2﹣a 2b ) =3ab 2﹣6a 2b ﹣2ab 2+2a 2b=ab 2﹣4a 2b 当a=﹣1,b=2时,原式=﹣1×22﹣4×(﹣1)2×2 =﹣12. 【点睛】考查学生的运算能力,解题的关键是熟练运用整式的运算法则. 20.(本题8分)先化简,再求值.222222124224233xy y xy y x y y ⎛⎫⎛⎫--+-- ⎪ ⎪⎝⎭⎝⎭,其中32x =,13y =-.【答案】1312- 【解析】先把222222124224233xy y xy y x y y ⎛⎫⎛⎫--+-- ⎪ ⎪⎝⎭⎝⎭化简,然后把32x =,13y =-代入计算即可.【详解】解:原式222222222444333xy y xy y x y y y x y =---+-=-+. 当32x =,13y =-时, 原式221313()()323⎛⎫=-⨯-+⨯- ⎪⎝⎭1334=--1312=-. 【点睛】本题考查了整式的化简求值,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.21.(本题8分)阅读材料:若2222440m mn n n -+-+=,求m ,n 的值.解:∵2222440m mn n n -+-+=,∵()()2222440m mn n n n -++-+=,∵()()2220m n n -+-=,∵()20m n -=,()220n -=,∵2n =,2m =. 根据你的观察,探究下面的问题:(1)2262100a b a b ++-+=,则=a __________,b =__________. (2)已知22228160x y xy y +-++=,求xy 的值.(3)已知ABC 的三边长a 、b 、c 都是正整数,且满足22248180a b a b +--+=,求ABC 的周长.【答案】(1)a=-3,b=1;(2)16(3)9 【解析】 【详解】(1)∵2262100a b a b ++-+=,∵()()2269210a a b b ++-+=+,∵()()22310a b ++-=, ∵()230a +≥,()210b -≥, ∵30a +=,3a =-,10b -=,1b =; (2)∵22228160x y xy y +-++=,∵()()22228160x xy y y y -++++=,∵()()2240x y y -++=,∵()20x y -≥,()240y +≥,∵0x y -=,x y =,40y +=,4y =-,∵4x =-,∵16xy =;(3)∵22248180a b a b +--+=,∵222428160a a b b -++-+=,∵()()222140a b -+-=,∵()210a -≥,()240b -≥,∵10a -=,1a =,40b -=,4b =,∵a b c +>,∵5c <,∵b a c -<,∵3c >,∵a 、b 、c 为正整数,∵4c =,∵ABC 周长=1449++=.22.(本题9分)如图,某中学校园内有一块长为(3a +b )米,宽为(2a +b )米的长方形地块,学校计划在中间留一块边长为(a +b )米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a 、b 的代数式表示)(2)当a =2,b =4时,求绿化的面积.【答案】(1)(5a2+3ab)平方米;(2)绿化面积是44平方米.【解析】【分析】(1)先找到绿化面积=矩形面积-正方形面积的等量关系,然后再利用多项式乘多项式法则以及完全平方公式化简即可解答;(2)将a与b的值代入(1)计算求值即可.【详解】解:(1)依题意得:(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=(5a2+3ab)平方米.答:绿化面积是(5a2+3ab)平方米;(2)当a=2,b=4时,原式=20+24=44(平方米).答:绿化面积是44平方米.【点睛】本题考查了多项式乘多项式以及整式的混合运算、化简求值,弄清题意列出代数式并进行化简是解答本题的关键.23.(本题10分)学习整式的乘法时可以发现:用两种不同的方法表示同一个图形的面积,可以得到一个等式,进而可以利用得到的等式解决问题.图1图2(1)如图1是由边长分别为a,b的正方形和长为a、宽为b的长方形拼成的大长方形,由图1,可得等式:(a+2b)(a+b)=;(2)∵如图2是由几个小正方形和小长方形拼成的一个边长为a+b+c的大正方形,用不同的方法表示这个大正方形的面积,得到的等式为;∵已知a+b+c=11,ab+bc+ac=38,利用∵中所得到的等式,求代数式a2+b2+c2的值.【答案】(1)a2+3ab+2b2;(2)∵ (a+b+c)2=a2+b2+c2+2ab+2bc+2ac;∵45【解析】【详解】试题分析:(1)图1是由一个边长为a的正方形、一个边长为b的正方形和三个长为a,宽为b的长方形组成,所以面积为a2+3ab+2b2;(2)∵试题解析:图2是由三个边长分别为a、b、c的正方形、两个边长分别为a、b的长方形,两个边长分别为a、c的长方形,两个边长分别为b、c的长方形组成,所以等式为(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;∵将∵的等式变形为(a+b+c)2=a2+b2+c2+2(ab+bc+ac),代入数值即可.(1)a2+3ab+2b2;(2)∵ (a+b+c)2=a2+b2+c2+2ab+2bc+2ac;∵解:由∵,得(a+b+c)2=a2+b2+c2+2(ab+bc+ac).因为a+b+c=11,ab+bc+ac=38.所以112=a2+b2+c2+2×38.所以a2+b2+c2=45.故答案为(1)a2+3ab+2b2;(2)∵ (a+b+c)2=a2+b2+c2+2ab+2bc+2ac;∵45.。
专题03 整式的乘除 易错题之解答题(35题)Part1 与 同底数幂的乘方 有关的易错题1.(2020·兴化市七年级月考)我们知道,根据乘方的意义:2a a a =⋅,3a a a a =⋅⋅.(1)计算:23a a ⋅=________,34a a ⋅=________;(2)通过以上计算你能否发现规律,得到n m a a ⋅的结果;(3)计算:23410a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅.2.(2020·广东河源市月考)已知4m a =,4n a =,求 m n a +的值.3.(2020·上海市七年级月考)计算:2533a a a a a ⋅+⋅⋅4.(2020·上海浦东新区·七年级月考)23()().()a b b a b a -⋅--(结果用幂的形式表示)5.(2020·射阳县七年级月考)(1)已知2m a =,3n a =,求:①m n a +的值;②32m n a -的值;(2)已知2328162x ⨯⨯=,求x 的值Part2 与 幂的乘方和积的乘方 有关的易错题6.(2020·浙江杭州市·七年级月考)已知:2x =a ,2y =b ,用a ,b 分别表示:(1)2x y +的值;(2)322x y +的值.7.(2020·浙江金华市·七年级期末)计算:(1)()23210-⨯;(2)()232()2⋅-+-a a a ;(3)()2321(23)(5)x x x x x ++-+- 8.(2020·浙江杭州市·七年级期末)阅读下列各式:222333444(),(),()a b a b a b a b a b a b ⋅=⋅=⋅=回答下列三个问题: ①验证:100122⎛⎫⨯= ⎪⎝⎭_________,100100122⎛⎫⨯= ⎪⎝⎭___________;②通过上述验证,归纳得出:()n a b ⋅=_________;()n a b c ⋅⋅=________;③请应用上述性质计算:201920182017(0.125)24-⨯⨯9.(2020·余姚市七年级月考)用简便方法计算下列各题:(1)201820194( 1.25)5⎛⎫⨯- ⎪⎝⎭(2)1010112512562⎛⎫⎛⎫⎛⎫⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭10.(2020·浙江嘉兴市七年级月考)用简便运算进行计算:(1)()111--24263⎛⎫+⨯ ⎪⎝⎭; (2)()20192020-0.254 ⨯;Part3 与 同底数幂的除法 有关的易错题11.(2020·浙江湖州市·七年级月考)若(0,1,m n a a a a m n =>≠、都是正整数),则m n =,利用上面结论解决下面的问题:(1)如果32232x ⋅=,求x 的值;(2)如果528162x x ÷⋅=,求x 的值;(3)若52,325m m x y =-=-,用含x 的代数式表示y .12.(2020·苏州市七年级月考)(1)若()222,3,n n n x y x y求==的值;(2)若36,92,a b ==求2413a b -+的值;13.(2020·江苏扬州市·七年级月考)已知x a =2,x b =3.(1)求x 3a+2b 的值.(2)求x 2a -3b 的值.14.(2020·江苏盐城市七年级月考)已知5a =3,5b =8,5c =72.(1)求5c -b +a 的值;(2)直接写出字母a ,b ,c 之间的关系.15.(2020·江阴市七年级月考)求值(1)已知:1639273m m ⨯÷=,求m ;(2)若24n x =,求3222(3)4()n n x x -的值. Part4 与 整式的乘法 有关的易错题16.(2020·浙江杭州市·七年级月考)如图,某市有一块长为()3a b +米,宽为()2a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当3,2a b ==时的绿化面积?17.(2020·浙江七年级期末)(1)试证明代数式(23)(32)6(3)516x x x x x ++-+++的值与x 的值无关,(2)若()()2233x nx x x m ++-+的展开式中不含2x 和3x 的项,求m ,n 的值.18.(2020·浙江杭州市·七年级期末)若()22133x px x x q ⎛⎫+--+ ⎪⎝⎭的积中不含x 项与3x 项.(1)求p 、q 的值;(2)求代数式()0222(3)35p q pq q --++-的值.19.(2020·浙江金华市·七年级期末)观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-;()324(1)11x x x x x -+++=-;请根据这一规律计算:(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++;(2)1514132222221+++⋅⋅⋅+++.20.(2020·菏泽市七年级月考)化简:(1)y 5(2y 5)2﹣3(y 5)3(2)3x 2(2y ﹣x )﹣3y (2x 2﹣y )Part5与 平方差公式 有关的易错题21.(2020·浙江杭州市·七年级期末)如图1所示,边长为a 的正方形中有一个边长为b 的小正方形,图2是由图1中阴影部分拼成的一个长方形,设图1中阴影部A 面积为1S ,图2中阴影部分面积为2S .(1)请直接用含a 和b 的代数式表示1S =______,2S =______;写出利用图形的面积关系所得到的公式:______(用式子表达).(2)应用公式计算:222222111111111111234520182019⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫------ ⎪⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. (3)应用公式计算:()()()()24832(21)212121211++++⋯++.22.(2020·浙江七年级期末)先化简,再求值(23)(23)4(1)16x x x x +--++,其中12x =. 23.(2020·温州市七年级月考)如图,一个长方形运动场被分隔成,,,,A B A B C 共5个区,A 区是边长为m a 的正方形,C 区是边长为m b 的正方形.(1)列式表示整个长方形运动场的面积,并将式子化简(2)如果50,30a b ==,求整个长方形运动场的面积.24.(2020·浙江七年级期末)探索代数式22a b -与代数式()()a b a b +-的关系.(1)当5,2a b ==时,分别计算两个代数式的值;(2)当7,13a b ==-时,分别计算两个代数式的值;(3)请观察(1)与(2)的结果,简便计算:22889111-.25.(2020·保定市七年级期末)仔细观察下列等式:第1个:52﹣12=8×3第2个:92﹣52=8×7第3个:132﹣92=8×11第4个:172﹣132=8×15…(1)请你写出第6个等式: ;(2)请写出第n 个等式,并加以验证;(3)运用上述规律,计算:8×7+8×11+…+8×399+8×403.Part6 与 完全平方公式 有关的易错题26.(2020·浙江杭州市·七年级期末)(1)已知x 2+y 2=34,x ﹣y =2,求(x +y )2的值.(2)设y =kx (x ≠0),是否存在实数k ,使得(3x ﹣y )2﹣(x ﹣2y )(x +2y )+6xy 化简为28x 2?若能,请求出满足条件的k 的值;若不能,请说明理由.27.(2020·浙江杭州市·七年级期末)(1)己知102m =,103n =,求210m n +的值;(2)化简:()()()()211121m m m m m +-+-+-.28.(2020·南阳市七年级月考)如图是用两个正方形(边长如图所示)和一个直角三角形拼成的五边形, (1)用含a 的代数式表示阴影部分的面积.(结果要化简)(2)求当a=2时,阴影部分的面积.29.(2020·浙江七年级期末)已知m 、n 是系数,且22mx xy y -+与2323x nxy y ++的差中不含二次项,求222m mn n ++的值.30.(2020·广东惠州市·八年级期末)已知实数a ,b 满足32,4a b ab +==,求()4222()()()a a a a b a b -÷--+-的值. Part7 与 整式的除法 有关的易错题31.(2020·浙江杭州市·七年级期末)定义运算(1)a b a b ⊗=-,请判断下列四个结论是否正确,并说明理由 ①2(2)6⊗-=;②a b b a ⊗=⊗;③若0a b +=,则2()()2a a b b a ⊗+⊗=-④若0a b ⊗=,则0a =32.(2021·河南省八年级期末)计算:(6a 3b -8a 4)÷(-2a 2)- 12(2a -b )2 33.(2020·浙江七年级期末)如图,长为(cm)y ,宽为(cm)x 的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短的边长为5cm ,(1)从图可知,每个小长方形的较长边的长是_______cm (用含y 的代数式表示)(2)求阴影A 和阴影B 的周长和(可以用含x 的代数式表示)(3)当30y =时,用含x 的代数式分别表示阴影A ,B 的面积,并比较A ,B 面积的大小.34.(2021·云南红河哈尼族彝族自治州·八年级期末)计算()32212633(21)a a a a a -+÷--35.(2021·山东济南市·七年级期末)化简求值:2()()()2x y x y x y x ⎡⎤+-+-÷⎣⎦,其中 21|3|02x y ⎛⎫-++= ⎪⎝⎭.。
专题02 整式的乘除 易错题之填空题(50题)Part1 与 同底数幂的乘方 有关的易错题1.(2020哈尔滨市期末)若220x y +-=,则255x y ⋅=________.2.(2019·南阳市月考)已知82x =,85y =,则8x y +=______.3.(2020洛阳市期末)若2x =3,4y =5,则22x+2y =_____4.(2020·浙江湖州市月考)结果用幂的形式表示:23()()x y x y -⋅-=________.5.(2019·浙江温州市·月考)已知8,2m n x x ==,则m n x +=__________.6.(2020·天津市期末)计算:7322⨯=______________(结果用幂的形式表示).7.(2020·菏泽市期末)333⨯=_________Part2 与 幂的乘方和积的乘方 有关的易错题8.(2020·浙江嘉兴市期末)计算:﹣82017×0.1252017=___________9.(2020·浙江期末)已知2m a =,3n a =,则23m n a +=____.10.(2019·浙江宁波市·月考)(-2)2018×(- 12)2019 =____________。
11.(2020·酒泉市期末)已知102m =,103n =,则32210m n ++=_______.12.(2020·临汾市月考)若x +2y -3=0,则2x ·4y 的值为______________13.(2020·浙江杭州市·期末)若2=m x ,34m y =+,则用含x 的代数式表示y =______.14.(2020·大连市期末)计算:910092(0.5)⨯-=_________.15.(2018·浙江宁波市·期末)若x m =3,x n =-2,则x m+2n =_____.16.(2020·乐山市期末)若x ,y 均为正整数,124128x y +⋅=,则2x y +的值为_______.Part3 与 同底数幂的除法 有关的易错题17.(2019洛阳市月考)已知:23x =,45y =,则22x y -=__________.18.(2019·浙江温州市·期末)已知23,9n m n a a -==,则m a =___________.19.(2020·浙江杭州市·期末)已知262555a b ⋅=,444b c ÷=,则代数式23a ab c ++值是______.20.(2019·浙江杭州市·期末)若6m a =,2n a =,则2m n a -的值等于________.21.(2019·三门峡市月考)已知2x =3,4y =5,则2x -2y -3=_________.22.(2018·浙江湖州市·月考)计算623410(10)10⨯÷, 正确的结果是________.Part4 与 整式的乘法 有关的易错题23.(2020·滁州市月考)若多项式223368x kxy y xy --+-不含xy 项,则k =______.24.(2020·浙江金华市·期末)已知2m n +=,2mn =-,则(1)(1)m n --=________.25.(2020·浙江杭州市·期末)多项式(8)(23)mx x +-展开后不含x 一次项,则m =________.26.(2020·浙江杭州市·月考)计算()()a b c d ++的结果等于________.27.(2020·宿迁市期末)若()2(1)x px q x ++-展开后不含x 的二次项,则p 的值是____________. 28.(2020·南通市期末)若(x ﹣2)(x+3)=x 2+ax ﹣6,则a =_____. 29.(2020·保定市月考)若()()221x x x ax b -+=++,则a b +=______.30.(2020·绍兴市期末)如图,边长为25a +的正方形纸片,剪出一个边长为2a 的正方形之后,剩余部分可剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为5,则另一边长可表示__________.Part5 与 平方差公式 有关的易错题31.(2020·浙江杭州市·月考)若5a b +=,3a b -=,则22a b -=_____.32.(2020·浙江杭州市·期末)用简便方法计算:2567856805679⨯-=__________=__________.33.(2020·绍兴市期末)计算:()()22m m -+= ________.34.(2020·浙江省义乌市月考)设22(27)(27)a b A a b -+=+,则A =_____________.35.(2020·重庆市月考)计算:(12x+y )(12x ﹣y )=_____. Part6 与 完全平方公式 有关的易错题36.(2020·济南市期末)若22(3)25x m x +-+可以用完全平方式来分解因式,则m 的值为________.37.(2020·德州市期末)已知3a b +=,4ab =,则22a b +=__________.38.(2020·余姚市月考)我们知道下面的结论:若a m =a n (a >0,且a ≠1),则m =n .利用这个结论解决下列问题:设2m =3,2n =6,2p =12.现给出m ,n ,p 三者之间的三个关系式:①m +p =2n ,②m +n =2p ﹣3,③n 2﹣mp =1.其中正确的是___.(填编号)39.(2020·浙江杭州市·期末)若多项式29x mx -+是完全平方式,则m =_________.40.(2020·衡水市月考)已知()()123a a ++=,则()()2212a a +++=___________. 41.(2020·浙江期末)已知实数a ,b 满足3a b -=,2ab =,则+a b 的值为_________. 42.(2020·包头市月考)已知()()22201920205a a -+-=,则()()20192020a a --= _________. 43.(2020·浙江嘉兴市·期末)设23P x xy =-,239Q xy y =-,若P Q =,则x y的值为__________. 44.(2020·昆明市期末)已知()3327(),m n mn a a a a a =÷=,则32m n -=________;32m n +=_________. 45.(2020·蓟州区月考)计算:()22b=a b a ÷________.Part7 与 整式的除法 有关的易错题46.(2020·庆阳市期末)化简计算:(1)2(32)x y -=_______,(2)32()a a ⋅-=_______.47.(2020·浙江杭州市·期末)如图,记图①中阴影部分面积为S 甲,图②中阴影部分面积为S 乙,且(0)S k a b S =>>甲乙. (1)k =______(用含a ,b 代数式表示). (2)若34k =,则a b值为______.48.(2020·恩施市期末)312a b ⎛⎫-- ⎪⎝⎭的化简结果为________. 49.(2020·浙江杭州市·期末)已知多项式()()221734x x ax bx c +-++-能被5x 整除,且商式为21x +,则a b c -+等于________.50.(2020·浙江金华市月考)有两个正方形A ,B ,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为4和30,则正方形A ,B 的面积之差为___________.。
第3章整式的乘除1.计算:(1)(-2)×(-2)2×(-2)3;(2)(-x)9·x5·(-x)5·(-x)3;(3)a n+4·a2n-1·a;(4)4m-3·45-m·4.解:(1)26(2)-x22(3)a3n+4(4)432.如果x m-3·x n=x2,则n等于(D) A.m-1B.m+5C.4-m D.5-m【解析】x m-3·x n=x m+n-3=x2,∴m+n-3=2,∴n=5-m.选D.3.(1)已知x3·x a·x2a+1=x31,求a的值;(2)已知x3=m,x5=n,试用含m,n的代数式表示x11.解:(1)x3a+4=x31,3a+4=31,a=9.(2)x11=x6·x5=x3·x3·x5=m·m·n=m2n.4.计算-(-3a)2的结果是(B) A.-6a2B.-9a2C.6a2D.9a25.计算:(1)-p2·(-p)4·[(-p)3]5;(2)(m-n)2·[(n-m)3]5;(3)25×84×162.解:(1)原式=-p2·p4·(-p)15=p21;(2)原式=(m-n)2·(n-m)15=-(m-n)17;(3)原式=25×(23)4×(24)2=25×212×28=225.6.已知10m=2,10n=3,求103m+2n的值.解:103m+2n=(10m)3·(10n)2=23×32=8×9=72. 7.计算:(1)(-ab2)2(-a4b3)3(-3a2b);(2)(-x n)2(-y n)3-(x2y3)n;(3)[(a+b)3]4·[(a+b)2]3;(4)(a4)5-(-a2·a3)4+(-a2)10-a·(-a2)5·(-a3)3. 解:(1)原式=a2b4(-a12b9)(-3a2b)=3a16b14;(2)原式=-x2n y3n-x2n y3n=-2x2n y3n;(3)原式=(a+b)12·(a+b)6=(a+b)18;(4)原式=a20-a20+a20-a20=0.8.求值:(1)已知2×8n×16n=222,求n的值;(2)若q m=4,q n=16,求q2m+2n的值;(3)已知x3n=2,求x6n+x4n·x5n的值.解:(1)21×23n×24n=222,27n+1=222,∴7n=21,n=3.(2)q2m+2n=(q m)2×(q n)2=42×162=16×256=4096.(3)x6n+x4n·x5n=x6n+x9n=22+23=4+8=12. 9.计算:(1)4y·(-2xy2);(2)(3x2y)3·(-4x);(3)(-2a)3·(-3a)2;(4)(-3×106)×(4×104)(结果用科学记数法表示).解:(1)原式=-8xy3;(2)原式=27x6y3·(-4x)=-108x7y3;(3)原式=-8a 3·9a 2=-72a 5;(4)原式=-12×1010=-1.2×1011.10.计算:(1)(-4x 2)·(3x +1);(2)⎝ ⎛⎭⎪⎫23ab 2-2ab ·12ab ; (3)a (3+a )-3(a +2).解:(1)原式=(-4x 2)·(3x )+(-4x 2)·1=-12x 3-4x 2;(2)原式=23ab 2·12ab +(-2ab )·12ab =13a 2b 3-a 2b 2; (3)原式=3a +a 2-3a -6=a 2-6.11.[2012·杭州]化简:2[(m -1)m +m (m +1)]·[(m -1)m -m (m +1)].若m 是任意整数,请观察化简后的结果,你发现原式表示一个什么数?解:2[(m -1)m +m (m +1)][(m -1)m -m (m +1)]=2(m 2-m +m 2+m )(m 2-m -m 2-m )=2·2m 2·(-2m )=-8m 3,即原式=(-2m )3,表示任意一个偶数的立方.12.计算:(1)[2012·安徽](a +3)(a -1)+a (a -2);(2)(a 2+3)(a -2)-a (a 2-2a -2).解:(1)(a +3)(a -1)+a (a -2)=a 2+2a -3+a 2-2a =2a 2-3;(2)原式=a 3-2a 2+3a -6-a 3+2a 2+2a=5a -6.13.已知a +b =m ,ab =-4,则计算(a -1)(b -1)的结果是( D ) A .3B.mC.3-mD.-3-m【解析】(a-1)(b-1)=ab-(a+b)+1=-4-m+1=-3-m.选D.14.若M=(a+3)(a-4),N=(a+2)(2a-5),其中a为有理数,则M,N的大小关系是(B) A.M>NB.M<NC.M=ND.无法确定【解析】M-N=(a+3)(a-4)-(a+2)(2a-5)=(a2-a-12)-(2a2-a-10)=a2-a-12-2a2+a+10=-a2-2<0,∴M<N.选B.15.[2012·吉林改编]先化简,再求值:(a+b)(a-b)+2a2,其中a=1,b=2. 解:原式=a2-b2+2a2=3a2-b2.当a=1,b=2时,3a2-b2=3×1-22=-1.16.已知x2-2x=1,求(x-1)(3x+1)-(x+1)2的值.解:原式=3x2+x-3x-1-x2-2x-1=2x2-4x-2.当x2-2x=1时,原式=2(x2-2x)-2=2×1-2=0.16.解方程:(x-2)2-(x+3)(x-3)=4x-1.解:(x-2)2-(x+3)(x-3)=4x-1,去括号,得x2-4x+4-x2+9=4x-1,合并同类项,得8x=14,系数化为1,得x=74.17.李老师刚买了一套2室2厅的新房,其结构如图3-3-5所示(单位:米).施工方已经把卫生间和厨房根据合同约定铺上了地板砖,李老师打算把卧室1铺上地毯,其余铺地板砖.问:(1)他至少需要多少平方米的地板砖?(2)如果这种地砖板每平方米m元,那么李老师至少要花多少钱?图3-3-5解:(1)用总面积减去厨房和卫生间的面积,再减去卧室1的面积即是所铺地板砖的面积.列式为:5b·5a-(5b-3b)·(5a-3a)-(5a-3a)·2b,化简得17ab,即他至少需要17ab平方米的地板砖.(2)所花钱数:17ab×m=17abm(元).18.运用平方差公式计算:(1)31×29;(2)498×502.解:(1)31×29=(30+1)×(30-1)=900-1=899;(2)498×502=(500-2)×(500+2)=5002-22=249996.19.[2012·无锡]计算:3(x2+2)-3(x+1)(x-1).解:原式=3x2+6-3(x2—1) =3x2+6-3x2+3=9.20.(1)[2012·遵义]已知x + y =-5 ,xy =6,则x 2 +y 2=__13__.(2)若x +y =3,xy =1,则x 2+y 2=__7__,x 2-xy +y 2=__6__.(3)[2012·江西]已知(m -n )2=8,(m +n )2=2,则m 2+n 2=__5__.(4)已知ab =-1,a +b =2,则代数式b a +a b 的值为__-6__.(5)已知x +1x =3,则代数式x 2+1x 2的值为__7__.(6)已知a -b =1,ab =6,则a 2+b 2=__13__.21.有两个正方形的边长的和为20 cm ,面积的差为40 cm 2.求这两个正方形的面积分别是多少?解:设这两个正方形的边长分别为x cm ,y cm(x >y ),则⎩⎪⎨⎪⎧x +y =20, ①x 2-y 2=40, ②由②得(x +y )(x -y )=40,∴x -y =2. ③由①③得方程组⎩⎪⎨⎪⎧x +y =20,x -y =2,解得⎩⎪⎨⎪⎧x =11,y =9,故这两个正方形的面积分别为121 cm 2,81 cm 2.22.[2012·泉州]先化简,再求值:(x +3)2+(2+x )(2-x ),其中x =-2. 解:原式=x 2+6x +9+4-x 2 = 6x +13.当x =-2时,原式=6×(-2)+13=1.23.[2011·衡阳]先化简,再求值:(x +1)2+x (x -2),其中x =-12.解:原式=x 2+2x +1+x 2-2x =2x 2+1,当x =-12时,原式=2×⎝ ⎛⎭⎪⎫-122+1=12+1=32.24.[2011·绍兴]先化简,再求值:a (a -2b )+2(a +b )(a -b )+(a +b )2,其中a =-12,b =1.解:a (a -2b )+2(a +b )(a -b )+(a +b )2=4a 2-b 2,当a =-12,b =1时,原式=0.25.如果a -b =5,ab =32,求a 2+b 2和(a +b )2的值.解:a 2+b 2=(a -b )2+2ab =52+2×32=25+3=28;(a +b )2=(a -b )2+4ab=52+4×32=25+6=31. 26.如果a (a -1)+(b -a 2)=-7,求a 2+b 22-ab 的值.解:∵a (a -1)+(b -a 2)=-7,∴a 2-a +b -a 2=-7,∴b -a =-7,∴a -b =7,∴a 2+b 22-ab =(a -b )22=722=492. 27.计算:(1)(x 2y )5÷(x 2y )2;(2)(a 10÷a 2)÷a 3;(3)a 2·a 5÷a 5.解:(1)原式=(x 2y )3=x 6y 3;(2)原式=a 8÷a 3=a 5;(3)原式=a 7÷a 5=a 2.28.求值:(1)已知5m =6,5n =3,求5m -n 的值;(2)若2x =3,4y =5,求2x -2y 的值;(3)若10m =20,10n =15,求9m ÷32n 的值.解:(1)5m -n =5m ÷5n =6÷3=2;(2)2x -2y =2x ÷22y =2x ÷4y=35;(3)∵10m ÷10n =10m -n =20÷15=100, ∴m -n =2.∴9m ÷32n =32(m -n )=34=81.29.[2012·威海]计算:(2-3)0-⎝ ⎛⎭⎪⎫12-1-⎝ ⎛⎭⎪⎫13-12=__-56__. 30.用科学记数法表示下列各数:0.00001;0.00002;0.000000567;0.000000301.解:0.00001=10-5;0.00002=2×10-5;0.000000567=5.67×10-7;0.000000301=3.01×10-7.31.计算:(1)⎪⎪⎪⎪⎪⎪-12+2-1-20130; (2)[2012·义乌]|-2|+(-1)2012-(π-4)0;(3)||-2+(-1)2012×(π-3)0-⎝ ⎛⎭⎪⎫12-1+(-2)-2. 解:(1)原式=12+12-1=0.(2)原式=2+1-1=2.(3)原式=2+1×1-2+14 =54.32.已知x 2-7x +1=0,求x 2+x -2的值.解:因为x 2-7x +1=0,所以x ≠0,则等式两边都除以x ,得x -7+x -1=0,即x +x -1=7,所以(x +x -1)2=x 2+2+x -2=49,所以x 2+x -2=47.33.计算:(1)(-24x 2y 3)÷(-8y 3);(2)⎝ ⎛⎭⎪⎫3x 2y -xy 2+12xy ÷⎝ ⎛⎭⎪⎫-12xy . 解:(1)原式=3x 2;(2)原式=-6x +2y -1.34.计算:(1)16x 3y 3÷12x 2y 3·⎝ ⎛⎭⎪⎫-12xy 3; (2)(-ab )·⎝ ⎛⎭⎪⎫0.25a 2b -12a 3b 2-16a 4b 3÷(-0.5a 2b ); (3)[(x 2+y 2)-(x -y )2+2y (x -y )]÷4y .解:(1)原式=32x ·⎝ ⎛⎭⎪⎫-12xy 3 =-16x 2y 3.(2)原式=⎝ ⎛⎭⎪⎫-0.25a 3b 2+12a 4b 3+16a 5b 4 ÷(-0.5a 2b )=12ab -a 2b 2-13a 3b 3.(3)原式=(x 2+y 2-x 2+2xy -y 2+2xy -2y 2)÷4y=(4xy -2y 2)÷4y=x -12y .35.先化简,再求值:[(x +3y )(x -3y )-(x +3y )2]÷4y ,其中x =6,y =2.解:[(x +3y )(x -3y )-(x +3y )2]÷4y=(x 2-9y 2-x 2-6xy -9y 2)÷4y=(-6xy -18y 2)÷4y=-32x -92y .当x =6,y =2时,原式=-32×6-92×2=-9-9=-18.36.先化简,再求值:(a 2b 2-2ab 3-b 4)÷b 2-(a +b )(a -b ),其中a =12,b =-1.解:原式=a 2-2ab -b 2-(a 2-b 2)=a 2-2ab -b 2-a 2+b 2=-2ab ,当a =12,b =-1时,原式=-2×12×(-1)=1.37.计算:⎝ ⎛⎭⎪⎫12-1-2-2-()π-20130+||-1.解:原式=2-14-1+1=74.38.[2012·南宁]芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约重0.00000201千克,用科学记数法表示为( A ) A .2.01×10-6千克B .0.201×10-5千克C .20.1×10-7千克D .2.01×10-7千克39.已知x +1x =4,求:(1)x 2+1x 2;(2)⎝ ⎛⎭⎪⎫x -1x 2.解:(1)⎝ ⎛⎭⎪⎫x +1x 2=16, 即x 2+1x 2+2·x ·1x =16, ∴x 2+1x 2=14. (2)⎝ ⎛⎭⎪⎫x -1x 2=x 2+1x 2-2=12.。
完整版)整式乘除与因式分解经典易错题集锦整式乘除与因式分解经典易错题一、填空题1.已知 $\frac{a+1}{11}=3a^2+\frac{2a}{a}$ 的值是$\frac{5}{4}$,则 $a$ 的值是 $\frac{1}{2}$。
2.分解因式:$a-1+b-2ab=(a-b)(1-2ab)$。
3.若 $x+2(m-3)x+16$ 是完全平方式,则 $m$ 的值等于$7$。
4.$x^2+6x+9=(x+3)^2$,$x^2-6x+9=(x-3)^2$。
5.若 $9x+k+y$ 是完全平方式,则 $k=6$。
6.若 $x+y=4$,$x-y=6$,则 $xy=-5$。
二、选择题1.把 $a^3b^2-\frac{1}{2}a^2b^3-\frac{1}{3}a^4b^4+2ab$,$ab+ab^2-ab$,$ab-ab^2$ 的公因式是 $\textbf{(B)}\ a^2b^2$。
2.把 $16-x$ 分解因式,其结果是 $\textbf{(B)}\ (4+x)(4-x)$。
3.若 $9a+6(k-3)a+1$ 是完全平方式,则 $k$ 的值是$\textbf{(A)}\ -4$。
4.把 $x-y-2y-1$ 分解因式结果正确的是 $\textbf{(B)}\(x+y-1)(x-y-1)$。
5.分解因式:$x-2xy+y+x-y$ 的结果是 $\textbf{(A)}\ (x-y)(x-y+1)$。
6.若 $mx+kx+9=2x-3$,则 $m$,$k$ 的值分别是$\textbf{(D)}\ m=4$,$k=-12$。
7.下列名式:$x-y$,$-x+y$,$-x-y$,$(-x)+(-y)$,$x-y$ 中能用平方差公式分解因式的有 $\textbf{(C)}\ 3$ 个。
三、解答题1.$x^2(x-y)+(y-x)=x^2(x-y)-(x-y)=(x-y)(x^2-1)$。
3.$x^3+4x^2+4x=x(x^2+4x+4)=x(x+2)^2$。
浙教新版七年级下册数学第3章《整式的乘除》40道常考练习题一.选择题(共23小题)1.已知a m=3,a n=2,那么a m+n+2的值为()A.8B.7C.6a2D.6+a22.当a<0,n为正整数时,(﹣a)5•(﹣a)2n的值为()A.正数B.负数C.非正数D.非负数3.(﹣0.125)2018×82019等于()A.﹣8B.8C.0.125D.﹣0.1254.计算(﹣3a2b)4的结果正确的是()A.﹣12a8b4B.12a8b4C.81a8b4D.81a6b85.某工厂生产A,B两种型号的螺丝,在2016年12月底时,该工厂统计了2016年下半年生产的两种型号螺丝的总量,据统计2016年下半年生产的A型号螺丝的总量为a12个,A型号螺丝的总量是B型号的a4倍,则2016年下半年该工厂生产的B型号螺丝的总量为()A.a4个B.a8个C.a3个D.a48个6.若(x+1)2=(x+2)0,则x的值可取()A.0B.﹣2C.0或﹣2D.无解7.如果a=(﹣99)0,b=(﹣0.1)﹣1,c=,那么a、b、c的大小关系为()A.a>b>c B.c>a>b C.a>c>b D.c>b>a8.某商场四月份售出某品牌衬衣b件,每件c元,营业额a元.五月份采取促销活动,售出该品牌衬衣3b件,每件打八折,则五月份该品牌衬衣的营业额比四月份增加()A.1.4a元B.2.4a元C.3.4a元D.4.4a元9.下列说法正确的是()A.多项式乘以单项式,积可以是多项式也可以是单项式B.多项式乘以单项式,积的次数等于多项式的次数与单项式次数的积C.多项式乘以单项式,积的系数是多项式系数与单项式系数的和D.多项式乘以单项式,积的项数与多项式的项数相等10.已知(x﹣m)(x+n)=x2﹣3x﹣4,则m﹣n的值为()A.1B.﹣3C.﹣2D.311.若|x+y﹣5|+(x﹣y﹣3)2=0,则x2﹣y2的结果是()A.2B.8C.15D.1612.在下列计算中,不能用平方差公式计算的是()A.(m﹣n)(﹣m+n)B.(x3﹣y3)(x3+y3)C.(﹣a﹣b)(a﹣b)D.(c2﹣d2)(d2+c2)13.如图1,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下部分沿图1中的虚线剪开后重新拼成一个梯形(如图2),利用这两幅图形面积,可以验证的乘法公式是()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a(a+b)=a2+ab D.(a+b)(a﹣b)=a2﹣b214.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,再将剩下的阴影部分剪开,拼成右边的长方形.根据图形的变化过程可以验证下列哪一个等式成立()A.(a﹣b)2=a2﹣2ab+b2B.a(a+b)=a2+abC.(a+b)2=a2+2ab+b2D.(a﹣b)(a+b)=a2﹣b215.下列各式中,能用完全平方公式计算的是()A.(a﹣b)(﹣b﹣a)B.(﹣n2﹣m2)(m2+n2)C.D.(2x﹣3y)(2x+3y)16.如果,则=()A.4B.2C.0D.617.已知(a﹣b)2=7,(a+b)2=13,则a2+b2与ab的值分别是()A.10,B.10,3C.20,D.20,318.如图是用4个相同的小长方形与1个小正方形密铺而成的正方形图案,已知大正方形的面积为64,小正方形的面积为9,若用x,y(其中x>y)分别表示小长方形的长与宽,请观察图案,指出以下关系式中不正确的是()A.x+y=8B.x﹣y=3C.x2﹣y2=16D.4xy+9=64 19.如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=(a+b)2﹣4ab D.a2+ab=a(a+b)20.若x2+kx+4是一个完全平方式,则k的值是()A.k=2B.k=±2C.k=4D.k=±421.若a2+2a+b2﹣6b+10=0,则()A.a=1,b=3B.a=﹣1,b=﹣3C.a=1,b=﹣3D.a=﹣1,b=3 22.计算:(8x5﹣6x3﹣4x2)÷(﹣2x)=()A.﹣4x4﹣3x2+2x B.﹣4x4+3x2+2xC.4x4+3x2﹣2x D.4x4﹣3x2﹣2x23.(a4﹣16b4)÷(a2+4b2)÷(2b﹣a)等于()A.a﹣2b B.a+2b C.﹣a﹣2b D.﹣a+2b二.解答题(共17小题)24.(1)已知10m=4,10n=5,求10m+n的值.(2)如果a+3b=4,求3a×27b的值.25.已知10x=a,5x=b,求:(1)50x的值;(2)2x的值;(3)20x的值.(结果用含a、b的代数式表示)26.已知a x•a y=a5,a x÷a y=a,求x2﹣y2的值.27.计算:(﹣2)2﹣(3.14﹣π)0﹣|﹣|﹣(﹣1)2016.28.当x取何值时,式子3(2x﹣3)﹣1与(x﹣1)﹣1的值相等.29.(1)如果(x+3)(x+a)=x2﹣2x﹣15,则a=(2)是否存在m,k的值使(x+m)(2x2﹣kx﹣3)=2x3﹣3x2﹣5x+6成立,若存在,求出m,k的值;若不存在,请说明理由.30.已知:a2﹣b2=(a﹣b)(a+b);a3﹣b3=(a﹣b)(a2+ab+b2);a4﹣b4=(a﹣b)(a3+a2b+ab2+b3);按此规律,则:(1)a5﹣b5=(a﹣b)();(2)若a﹣=2,你能根据上述规律求出代数式a3﹣的值吗?31.如图①,在边长为a的大正方形右下方剪去一个边长为b的小正方形(a>b),所得到的图形的面积可以表示为,把它沿虚线剪下一个长方形,如图②拼成一个大长方形,这个大长方形的图形的面积可以表示为,由此可以得到一个等式.运用得到的等式计算:12.52﹣7.52.32.已知(x+y)2=16,(x﹣y)2=4,求x2+y2和3xy的值.33.请认真观察图形,解答下列问题:(1)根据图1中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:.方法2:.(2)从中你能发现什么结论?请用等式表示出来:.(3)利用(2)中结论解决下面的问题:如图2,两个正方形边长分别为a、b,如果a+b =10,ab=21,求阴影部分的面积.34.已知二次三项式9x2﹣(m+6)x+m﹣2是一个完全平方式,试求m的值.35.计算:(1)x2y3(﹣2xy3)2(2)(3m2+15m3n﹣m4)÷(﹣3m2)36.计算:(1)(x+y﹣3)(x﹣y+3);(2)7m(2m2p)2÷7m2.37.先化简,再求值:(m﹣n)(m+n)+(m+n)2﹣2m2,其中m=1,n=﹣1.38.(1)计算:(a+3)(a﹣1)+a(a﹣2);(2)先化简,再求值:[(xy+1)(xy﹣2)﹣2x2y2+2]÷(﹣xy),其中x=,y=﹣.39.化简求值:已知|a﹣1|+(2+b)2=0,化简求值:(a﹣b)2+(2a﹣b)(a﹣2b)﹣a(3a﹣b).40.计算:(1)(﹣5)+30+(﹣26)+(﹣6)(2)﹣2.5÷×(﹣)(3)[﹣13+(﹣3)2]÷[(﹣2)3﹣2×(﹣5)](4)40÷[(﹣2)2+3×(﹣2)]以下两题简便运算:(5)(﹣199)×5(6)10×(﹣)﹣2×+(﹣3)×(﹣)参考答案与试题解析一.选择题(共23小题)1.已知a m=3,a n=2,那么a m+n+2的值为()A.8B.7C.6a2D.6+a2【分析】根据同底数幂相乘,底数不变指数相加的性质的逆用解答即可.【解答】解:a m+n+2=a m•a n•a2=3×2×a2=6a2.故选:C.2.当a<0,n为正整数时,(﹣a)5•(﹣a)2n的值为()A.正数B.负数C.非正数D.非负数【分析】本题首先运用同底数的幂的乘法法则计算,然后判断所得幂的底数的符号,进而得出结果.【解答】解:∵(﹣a)5•(﹣a)2n=(﹣a)2n+5,又∵a<0,n为正整数,∴﹣a>0,∴(﹣a)5•(﹣a)2n=(﹣a)2n+5>0,是正数.故选:A.3.(﹣0.125)2018×82019等于()A.﹣8B.8C.0.125D.﹣0.125【分析】先将原式变形为(﹣0.125)2018×82018×8,再根据积的乘方法则进行计算即可.【解答】解:(﹣0.125)2018×82019=(﹣0.125)2018×82018×8=(﹣0.125×8)2018×8=1×8=8,故选:B.4.计算(﹣3a2b)4的结果正确的是()A.﹣12a8b4B.12a8b4C.81a8b4D.81a6b8【分析】根据积的乘方与幂的乘方计算.【解答】解:(﹣3a2b)4=(﹣3)4•(a2)4•b4=81a8b4.故选:C.5.某工厂生产A,B两种型号的螺丝,在2016年12月底时,该工厂统计了2016年下半年生产的两种型号螺丝的总量,据统计2016年下半年生产的A型号螺丝的总量为a12个,A型号螺丝的总量是B型号的a4倍,则2016年下半年该工厂生产的B型号螺丝的总量为()A.a4个B.a8个C.a3个D.a48个【分析】2016年下半年生产的A型号螺丝的总量为a12个,A型号螺丝的总量是B型号的a4倍,据此可得2016年下半年该工厂生产的B型号螺丝的总量.【解答】解:由题可得,2016年下半年该工厂生产的B型号螺丝的总量为:a12÷a4=a8个,故选:B.6.若(x+1)2=(x+2)0,则x的值可取()A.0B.﹣2C.0或﹣2D.无解【分析】根据零指数的性质(x+2)0=1,x+2≠0,即x≠﹣2,确定x的范围即可求解.【解答】解:(x+2)0=1,x+2≠0,即x≠﹣2,(x+1)2=(x+2)0可取=1,解得:x=0,x=﹣2(舍去),故选:A.7.如果a=(﹣99)0,b=(﹣0.1)﹣1,c=,那么a、b、c的大小关系为()A.a>b>c B.c>a>b C.a>c>b D.c>b>a【分析】根据负整数指数次幂等于正整数指数次幂的倒数,任何非零数的零指数次幂等于1求出a、b、c,然后按照从大到小的顺序排列即可.【解答】解:a=(﹣99)0=1,b=(﹣0.1)﹣1=﹣10,c=(﹣)﹣2=9,所以c>a>b.故选:B.8.某商场四月份售出某品牌衬衣b件,每件c元,营业额a元.五月份采取促销活动,售出该品牌衬衣3b件,每件打八折,则五月份该品牌衬衣的营业额比四月份增加()A.1.4a元B.2.4a元C.3.4a元D.4.4a元【分析】分别计算4、5月的营业额,相减得出结果.【解答】解:5月份营业额为3b×c=,4月份营业额为bc=a,∴a﹣a=1.4a.故选:A.9.下列说法正确的是()A.多项式乘以单项式,积可以是多项式也可以是单项式B.多项式乘以单项式,积的次数等于多项式的次数与单项式次数的积C.多项式乘以单项式,积的系数是多项式系数与单项式系数的和D.多项式乘以单项式,积的项数与多项式的项数相等【分析】根据单项式乘以多项式的有关知识作答.【解答】解:A、多项式乘以单项式,单项式不为0,积一定是多项式,单项式为0,积是单项式,故本选项正确;B、多项式乘以单项式,积的次数等于多项式的次数与单项式次数的和,故本选项错误;C、多项式乘以单项式,积的系数是多项式系数与单项式系数的积,故本选项错误;D、由选项A知错误.故选:A.10.已知(x﹣m)(x+n)=x2﹣3x﹣4,则m﹣n的值为()A.1B.﹣3C.﹣2D.3【分析】把原式的左边利用多项式乘多项式展开,合并后与右边对照即可得到m﹣n的值.【解答】解:(x﹣m)(x+n)=x2+nx﹣mx﹣mn=x2+(n﹣m)x﹣mn,∵(x﹣m)(x+n)=x2﹣3x﹣4,∴n﹣m=﹣3,则m﹣n=3,故选:D.11.若|x+y﹣5|+(x﹣y﹣3)2=0,则x2﹣y2的结果是()A.2B.8C.15D.16【分析】根据题意绝对值与平方的性质可求出x与y的值.【解答】解:由题意可知:x+y﹣5=0,x﹣y﹣3=0,∴∴原式=(x+y)(x﹣y)=3×5=15故选:C.12.在下列计算中,不能用平方差公式计算的是()A.(m﹣n)(﹣m+n)B.(x3﹣y3)(x3+y3)C.(﹣a﹣b)(a﹣b)D.(c2﹣d2)(d2+c2)【分析】关键平方差公式逐个判断即可.【解答】解:A、不能用平方差公式进行计算,故本选项符合题意;B、能用平方差公式进行计算,故本选项不符合题意;C、能用平方差公式进行计算,故本选项不符合题意;D、能用平方差公式进行计算,故本选项不符合题意;故选:A.13.如图1,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下部分沿图1中的虚线剪开后重新拼成一个梯形(如图2),利用这两幅图形面积,可以验证的乘法公式是()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a(a+b)=a2+ab D.(a+b)(a﹣b)=a2﹣b2【分析】图1中阴影部分面积等于大正方形面积减去小正方形面积;图2中面积等于上底为2b,下底为2a,高为(a﹣b)的梯形的面积,二者相等,据此可解.【解答】解:图1阴影部分的面积等于a2﹣b2,图2梯形的面积是(2a+2b)(a﹣b)=(a+b)(a﹣b)根据两者阴影部分面积相等,可知(a+b)(a﹣b)=a2﹣b2比较各选项,只有D符合题意故选:D.14.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,再将剩下的阴影部分剪开,拼成右边的长方形.根据图形的变化过程可以验证下列哪一个等式成立()A.(a﹣b)2=a2﹣2ab+b2B.a(a+b)=a2+abC.(a+b)2=a2+2ab+b2D.(a﹣b)(a+b)=a2﹣b2【分析】根据面积相等,列出关系式即可.【解答】解:由题意这两个图形的面积相等,∴a2﹣b2=(a+b)(a﹣b),故选:D.15.下列各式中,能用完全平方公式计算的是()A.(a﹣b)(﹣b﹣a)B.(﹣n2﹣m2)(m2+n2)C.D.(2x﹣3y)(2x+3y)【分析】A、原式利用平方差公式化简得到结果,不合题意;B、原式第一个因式提取﹣1变形后利用完全平方公式计算得到结果,符合题意;C、原式利用平方差公式化简得到结果,不合题意;D、原式利用平方差公式化简得到结果,不合题意.【解答】解:A、原式=b2﹣a2,本选项不合题意;B、原式=﹣(m2+n2)2,本选项符合题意;C、原式=q2﹣p2,本选项不合题意;D、原式=4x2﹣9y2,本选项不合题意,故选:B.16.如果,则=()A.4B.2C.0D.6【分析】将原式转化为+2x﹣2x,整理成(x+)2﹣2,再将整体代入即可.【解答】解:=+2x﹣2x=(x+)2﹣2x=(x+)2﹣2=22﹣2=2,故选:B.17.已知(a﹣b)2=7,(a+b)2=13,则a2+b2与ab的值分别是()A.10,B.10,3C.20,D.20,3【分析】完全平方公式:(a±b)2=a2±2ab+b2,根据公式先把条件上的式子展开后,可发现两式只有乘积项的符号不同,利用加减法消元即可求解,加法消去乘积项,减法消去平方项.【解答】解:∵(a﹣b)2=7,(a+b)2=13,∴a2+b2﹣2ab=7①,a2+b2+2ab=13②,①+②得a2+b2=10,①﹣②得ab=.故选:A.18.如图是用4个相同的小长方形与1个小正方形密铺而成的正方形图案,已知大正方形的面积为64,小正方形的面积为9,若用x,y(其中x>y)分别表示小长方形的长与宽,请观察图案,指出以下关系式中不正确的是()A.x+y=8B.x﹣y=3C.x2﹣y2=16D.4xy+9=64【分析】分别根据大正方形边长、小正方形边长的不同表示可判断A、B,由A、B结论利用平方差公式可判断C,根据大正方形面积的整体与组合的不同表示可判断D.【解答】解:A、因为正方形图案的边长8,同时还可用(x+y)来表示,故此选项正确;B、中间小正方形的边长为3,同时根据长方形长宽也可表示为x﹣y,故此选项正确;C、根据A、B可知x+y=8,x﹣y=3,则x2﹣y2=(x+y)(x﹣y)=24,故此选项错误;D、因为正方形图案面积从整体看是64,从组合来看,可以是(x+y)2,还可以是(4xy+4),即4xy+4=64,故此选项正确;故选:C.19.如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=(a+b)2﹣4ab D.a2+ab=a(a+b)【分析】用两种方法正确的表示出阴影部分的面积,再根据图形阴影部分面积的关系,即可直观地得到一个关于a、b的恒等式.【解答】解:方法一阴影部分的面积为:(a﹣b)2,方法二阴影部分的面积为:(a+b)2﹣4ab,所以根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为(a﹣b)2=(a+b)2﹣4ab.故选:C.20.若x2+kx+4是一个完全平方式,则k的值是()A.k=2B.k=±2C.k=4D.k=±4【分析】利用完全平方公式的特征判断即可得到结果.【解答】解:∵x2+kx+4是一个完全平方式,∴k=±2×2=±4,故选:D.21.若a2+2a+b2﹣6b+10=0,则()A.a=1,b=3B.a=﹣1,b=﹣3C.a=1,b=﹣3D.a=﹣1,b=3【分析】本题考查完全平方公式及平方的非负性,根据题意列出方程,求出a、b的值即可.【解答】解:∵a2+2a+b2﹣6b+10=0,∴(a2+2a+1)+(b2﹣6b+9)=0,即(a+1)2+(b﹣3)2=0,∴a=﹣1,b=3.故选:D.22.计算:(8x5﹣6x3﹣4x2)÷(﹣2x)=()A.﹣4x4﹣3x2+2x B.﹣4x4+3x2+2xC.4x4+3x2﹣2x D.4x4﹣3x2﹣2x【分析】多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加.根据这个法则即可求出结果.【解答】解:(8x5﹣6x3﹣4x2)÷(﹣2x),=8x5÷(﹣2x)﹣6x3÷(﹣2x)﹣4x2÷(﹣2x),=﹣4x4+3x2+2x.故选:B.23.(a4﹣16b4)÷(a2+4b2)÷(2b﹣a)等于()A.a﹣2b B.a+2b C.﹣a﹣2b D.﹣a+2b【分析】此题首先把第一个多项式分解因式,然后再和后面的多项式做除法即可得到结果.【解答】解:(a4﹣16b4)÷(a2+4b2)÷(2b﹣a),=(a2﹣4b2)(a2+4b2)÷(a2+4b2)÷(2b﹣a),=(a2﹣4b2)÷(2b﹣a),=(a﹣2b)(a+2b)÷(2b﹣a),=﹣a﹣2b.故选:C.二.解答题(共17小题)24.(1)已知10m=4,10n=5,求10m+n的值.(2)如果a+3b=4,求3a×27b的值.【分析】根据同底数幂的乘法,可得答案.【解答】解:(1)10m+n=10m•10n=5×4=20;(2)3a×27b=3a×33b=3a+3b=34=81.25.已知10x=a,5x=b,求:(1)50x的值;(2)2x的值;(3)20x的值.(结果用含a、b的代数式表示)【分析】(1)根据积的乘方的法则计算;(2)根据积的乘方(商的乘方)的法则计算;(3)根据积的乘方的法则计算.【解答】解:(1)50x=10x×5x=ab;(2)2x===;(3)20x=(==.26.已知a x•a y=a5,a x÷a y=a,求x2﹣y2的值.【分析】根据幂的运算法则即可求出答案.【解答】解:由题意可知:a x+y=a5;a x﹣y=a,∴x﹣y=1,x+y=5∴x2﹣y2=(x+y)(x﹣y)=5;27.计算:(﹣2)2﹣(3.14﹣π)0﹣|﹣|﹣(﹣1)2016.【分析】首先计算乘方、零次幂、绝对值,然后再计算有理数的加减即可.【解答】解:原式=4﹣1﹣﹣1=1.28.当x取何值时,式子3(2x﹣3)﹣1与(x﹣1)﹣1的值相等.【分析】直接利用已知将原式变形进而解分式方程得出答案.【解答】解:∵式子3(2x﹣3)﹣1与(x﹣1)﹣1的值相等,∴=,解得:x=,经检验得:x=是原方程的根,故x=时,式子3(2x﹣3)﹣1与(x﹣1)﹣1的值相等.29.(1)如果(x+3)(x+a)=x2﹣2x﹣15,则a=﹣5(2)是否存在m,k的值使(x+m)(2x2﹣kx﹣3)=2x3﹣3x2﹣5x+6成立,若存在,求出m,k的值;若不存在,请说明理由.【分析】(1)已知等式左边利用多项式乘多项式法则计算,合并后利用多项式相等的条件即可求出a的值;(2)先将等式左边写按x的降幂排列,然后用待定系数法求出m,k的值.【解答】解:(1)(x+3)(x+a)=x2+(a+3)x+3a=x2﹣2x﹣15,可得a+3=﹣2,解得:a=﹣5.故答案为:﹣5.(2)(x+m)(2x2﹣kx﹣3)=2x3+(﹣k+2m)x2+(﹣3﹣mk)x﹣3m=2x3﹣3x2﹣5x+6,﹣3m=6,﹣k+2m=﹣3m=﹣2,k=﹣1.30.已知:a2﹣b2=(a﹣b)(a+b);a3﹣b3=(a﹣b)(a2+ab+b2);a4﹣b4=(a﹣b)(a3+a2b+ab2+b3);按此规律,则:(1)a5﹣b5=(a﹣b)(a4+a3b+a2b2+ab3+b4);(2)若a﹣=2,你能根据上述规律求出代数式a3﹣的值吗?【分析】(1)根据题意,按同一个字母的降幂排列直至不含这个字母为止;(2)根据规律,先把代数式a3﹣分解因式,再代入计算即可.【解答】解:(1)a4+a3b+a2b2+ab3+b4;(2)a3﹣=(a﹣)(a2+1+),=(a﹣)(a2﹣2++3),=(a﹣)[(a﹣)2+3],=2×(4+3),=2×7,=14.31.如图①,在边长为a的大正方形右下方剪去一个边长为b的小正方形(a>b),所得到的图形的面积可以表示为a2﹣b2,把它沿虚线剪下一个长方形,如图②拼成一个大长方形,这个大长方形的图形的面积可以表示为(a+b)(a﹣b),由此可以得到一个等式a2﹣b2=(a+b)(a﹣b).运用得到的等式计算:12.52﹣7.52.【分析】利用正方形的面积公式和长方形的面积公式分别表示出剪拼前后图形的面积,然后根据面积相等列出等式即可,再运用得到的等式计算:12.52﹣7.52.【解答】解:剪去一个边长为b的小正方形的图形的面积是a2﹣b2,拼图后的图形的面积是(a+b)(a﹣b).∴a2﹣b2=(a+b)(a﹣b).∴12.52﹣7.52=(12.5+7.5)(12.5﹣7.5)=20×5=100.故答案为:a2﹣b2,(a+b)(a﹣b),a2﹣b2=(a+b)(a﹣b).32.已知(x+y)2=16,(x﹣y)2=4,求x2+y2和3xy的值.【分析】已知等式利用完全平方公式化简,相加减即可求出所求.【解答】解:由题意可知x2+2xy+y2=16①,x2﹣2xy+y2=4②,①+②得:2x2+2y2=20,∴x2+y2=10,①﹣②得:4xy=12,∴xy=3,∴3xy=9.33.请认真观察图形,解答下列问题:(1)根据图1中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:a2+b2.方法2:(a+b)2﹣2ab.(2)从中你能发现什么结论?请用等式表示出来:a2+b2=(a+b)2﹣2ab.(3)利用(2)中结论解决下面的问题:如图2,两个正方形边长分别为a、b,如果a+b =10,ab=21,求阴影部分的面积.【分析】(1)图中阴影面积和可以直接求出,即a2+b2;也可以间接求出,即(a+b)2﹣2ab.(2)根据两种方法所求面积相等,可以建立等式;(3)阴影部分面积可以用大小正方形面积和,减去白色三角形部分的面积,列出代数式后再利用(2)终结论求出结果即可.【解答】解:(1)由题意可得:方法1:a2+b2方法2:(a+b)2﹣2ab故答案为:a2+b2;(a+b)2﹣2ab.(2)两种办法所求面积相等,即a2+b2=(a+b)2﹣2ab故答案为:a2+b2=(a+b)2﹣2ab(3)∵阴影部分的面积=S正方形ABCD+S正方形CGFE﹣S△ABD﹣S△BGF=a2+b2﹣a2﹣(a+b)b∴阴影部分的面积=a2+b2﹣ab=[(a+b)2﹣2ab]﹣ab=答:阴影部分的面积是.34.已知二次三项式9x2﹣(m+6)x+m﹣2是一个完全平方式,试求m的值.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【解答】解:∵9x2﹣(m+6)x+m﹣2=(3x)2﹣(m+6)x+()2,∴﹣(m+6)=2•3•,两边平方并整理得,m2﹣24m+108=0,解得m1=6,m2=18,所以m的值为6或18.35.计算:(1)x2y3(﹣2xy3)2(2)(3m2+15m3n﹣m4)÷(﹣3m2)【分析】(1)直接利用积的乘方运算法则以及结合单项式乘以单项式运算法则计算得出答案;(2)直接利用整式的除法运算法则计算得出答案.【解答】解:(1)x2y3(﹣2xy3)2=x2y3•(4x2y6)=4x4y9;(2)(3m2+15m3n﹣m4)÷(﹣3m2)=﹣1﹣5mn+m2.36.计算:(1)(x+y﹣3)(x﹣y+3);(2)7m(2m2p)2÷7m2.【分析】(1)直接利用乘法公式计算得出答案;(2)直接利用积的乘方运算法则以及整式的除法运算法则计算得出答案.【解答】解:(1)原式=[x+(y﹣3)][x﹣(y﹣3)]=x2﹣(y﹣3)2=x2﹣y2+6y﹣9;(2)原式=7m•4m4p2÷7m2=28m5p2÷7m2=4m3p2.37.先化简,再求值:(m﹣n)(m+n)+(m+n)2﹣2m2,其中m=1,n=﹣1.【分析】直接利用乘法公式化简进而合并同类项,再把已知数据代入求出答案.【解答】解:原式=m2﹣n2+(m+n)2﹣2m2=﹣m2﹣n2+m2+2mn+n2=2mn,当m=1,n=﹣1时,原式=2×1×(﹣1)=﹣2.38.(1)计算:(a+3)(a﹣1)+a(a﹣2);(2)先化简,再求值:[(xy+1)(xy﹣2)﹣2x2y2+2]÷(﹣xy),其中x=,y=﹣.【分析】(1)根据整式的混合运算顺序和运算法则计算可得;(2)先根据整式的混合运算顺序和运算法则化简原式,再将x、y的值代入计算可得.【解答】解:(1)原式=a2﹣a+3a﹣3+a2﹣2a=2a2﹣3;(2)原式=(x2y2﹣xy﹣2﹣2x2y2+2)÷(﹣xy)=(﹣x2y2﹣xy)÷(﹣xy)=xy+1,当x=,y=﹣时,原式=×(﹣)+1=﹣2+1=﹣1.39.化简求值:已知|a﹣1|+(2+b)2=0,化简求值:(a﹣b)2+(2a﹣b)(a﹣2b)﹣a(3a﹣b).【分析】首先利用完全平方公式和整式的乘法计算,然后再去括号合并同类项,化简后,再利用非负数的性质确定a、b的值,代入即可.【解答】解:原式=(a﹣b)2+(2a﹣b)(a﹣2b)﹣a(3a﹣b)=a2﹣2ab+b2+2a2﹣4ab﹣ab+2b2﹣3a2+ab=3b2﹣6ab.∵|a﹣1|+(2+b)2=0,∴|a﹣1|=0,(2+b)2=0,即a=1,b=﹣2.当a=1,b=﹣2时,原式=3×(﹣2)2﹣6×1×(﹣2)=12+12=24.40.计算:(1)(﹣5)+30+(﹣26)+(﹣6)(2)﹣2.5÷×(﹣)(3)[﹣13+(﹣3)2]÷[(﹣2)3﹣2×(﹣5)](4)40÷[(﹣2)2+3×(﹣2)]以下两题简便运算:(5)(﹣199)×5(6)10×(﹣)﹣2×+(﹣3)×(﹣)【分析】(1)先求出所有负数的和;(2)把小数化成分数,把除法转化为乘法;(3)先乘方,再算括号里面的;(4)先算括号里面的,再做除法运算;(5)把﹣199变形为(﹣200),再利用乘法对加法的分配律;(6)逆运用乘法对加法的分配律,把(﹣)提出来计算比较简便.【解答】解:(1)(﹣5)+30+(﹣26)+(﹣6)=[(﹣5)+(﹣26)+(﹣6)]+30=﹣37+30=﹣7;(2)﹣2.5÷×(﹣)=××=1;(3)[﹣13+(﹣3)2]÷[(﹣2)3﹣2×(﹣5)]=(﹣1+9)÷(﹣8+10)=8÷2=4;(4)40÷[(﹣2)2+3×(﹣2)]=40÷(4﹣6)=40÷(﹣2)=﹣20;(5)(﹣199)×5=(﹣200)×5=﹣1000=﹣999;(6)10×(﹣)﹣2×+(﹣3)×(﹣)=10×(﹣)+2×(﹣)+(﹣3)×(﹣)=(﹣)×(10+2﹣3)=(﹣)×9=﹣.。
《整式的乘除因式分解》易错题分析整式的乘除例1、(﹣a)3(﹣a)2(﹣a5)=()A、a10B、﹣a10C、a30D、﹣a30考点:同底数幂的乘法。
分析:根据同底数幂相乘,底数不变,指数相加求解即可.解答:解:(﹣a)3(﹣a)2(﹣a5)=(﹣a3)•a2(﹣a5)=a3+2+5=a10.故选A.点评:本题主要利用同底数幂的乘法的性质求解,符号的运算是容易出错的地方.例2、已知a=8131,b=2741,c=961,则a,b,c的大小关系是()A、a>b>cB、a>c>bC、a<b<cD、b>c>a考点:幂的乘方与积的乘方。
分析:先把81,27,9转化为底数为3的幂,再根据幂的的乘方,底数不变,指数相乘化简.然后根据指数的大小即可比较大小.解答:解:∵a=813=(34)31=3124b=2741=(33)41=3123;c=961=(32)61=3122.则a>b>c.故选A.点评:变形为同底数幂的形式,再比较大小,可使计算简便.例3、下列四个算式中正确的算式有()①(a4)4=a4+4=a8;②[(b2)2]2=b2×2×2=b8;③[(﹣x)3]2=(﹣x)6=x6;④(﹣y2)3=y6.A、0个B、1个C、2个D、3个考点:幂的乘方与积的乘方。
分析:根据幂的乘方,底数不变指数相乘的性质计算即可.(a m)n=a mn.解答:解:①应为(a4)4=a4×4=a16,故不对;②[(b2)2]2=b2×2×2=b8,正确;③[(﹣x)3]2=(﹣x)6=x6,正确;④应为(﹣y2)3=﹣y6,故不对.所以②③两项正确.故选C.点评:本题考查了幂的乘方的运算法则.应注意运算过程中的符号.例4、(2004•宿迁)下列计算正确的是()A、x2+2x2=3x4B、a3•(﹣2a2)=﹣2a5C、(﹣2x2)3=﹣6x6D、3a•(﹣b)2=﹣3ab2考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方。
专题01 整式的乘除【易错题型专项训练】易错点一:同底数幂的乘法1.若2x =3,2y =4,2z =12,求x ,y ,z 之间的关系.【解析】解:∵ 3×4=12,即2x ·2y =2z ,∴ 2x+y =2z ,∴ x+y =z.故答案为:x +y =z2.已知a m =2,a n =3,求下列各式的值:(1) a m+1;(2)a 3+n ;(3)am+n+2. 【解析】解:∵a m =2,a n =3 ,∴(1)a m+1=a m ×a=2a(2)a 3+n =a 3×a n =3a 3(3)a m+n+2=a m ×a n ×a 2=2×3×a 2=6a2故答案为:(1)2a;(2)3a 3; (3)6a 2易错点二:幂的乘方与积的乘方1.计算:[(a -b)3]2-[-(b -a)2]3.【解析】[(a -b)3]2-[-(b -a)2]3=(a -b)6-[-(b -a)6]= (a -b)6+(b -a)6 =(a-b)6+(a-b)6 =2(a-b)62.若m 为正整数,且(a 2)m+1=a 12,则m 的值为______.【答案】5.【解析】解:∵(a 2)m+1=a 12,∴a 2m+2=a 12, ∴2m+2=12,∴m=5.故答案为5.3.若(a m b ⋅ab n )5=a 10b 15,则3m(n 2+1)的值是( ).A.8B.10C.12D.15【答案】D.【解答】解:(a m b ⋅ab n )5=(a m b)5(ab n )5=a 5m b 5a 5b 5n = a 5m a 5 b 5b 5n = a 5m+5 b 5+5n =a 10b 15 ∴5m+5=10,5+5n=15,∴m=1,n=2,∴3m(n 2+1)=3×5=15故选D. 4.计算:[(x-y)n ]m .(y-x)2=_______.【答案】(x-y)mn+2 【解答】解:原式=(x-y)mn .(x-y)2=(x-y)mn+2.故答案为:(x-y)mn+2易错点三:同底数幂的除法1.已知:5a =4,5b =6,5c =9,(1)求52a+c-b 的值;(2)试说明:2b=a+c .【解析】解:(1)52a+b =52a ×5c ÷5b =(5a )2×5c ÷5b =42×9÷6=24; (2)∵5a+c =5a ×5c =4×9=3652b =62=36,∴5a+c =52b ,∴a+c=2b .易错点四:整式的乘法1.若(8×106)(5×102)(2×10)=M ×10a ,则M 、a 的值可为( )A.M =8,a =8B.M =2,a =9C.M =8,a =10D.M =5,a =10【答案】C.【解析】解:(8×106)(5×102)(2×10)= (8×5×2)×(106×102×10)=80×109=8×1010=M ×10a ∴M =8,a =10故选C.2.若(-5a m+1b 2n −1)(2a n b m )=-10a b ,则m -n 等于( )A.-3B.-1C.1D.3【答案】B.【解析】(-5a m+1b 2n −1)(2a n b m )=(-5×2)( a m+1a n )( b 2n −1b m )=-10 a m+n+1 b 2n+m −1∴-10 a m+n+1 b 2n+m −1=-10a 4b 4 ∴∴m=1,n=2∴m -n=-1.故选B.3.已知M 和N 表示单项式,且满足2x (M+3x )=6x 2y 2+N ,则M=_____,N=______.【答案】3xy 2,6x 2.【解析】解:∵2x (M+3x )=6x 2y 2+N ,∴2xM+6x 2=6x 2y 2+N ,则N=6x 2,M=6x 2y 2÷2x=3xy 2,故答案为:3xy 2,6x 2.4.要使−5x 3×(x 2+ax +5)的结果中不含x 4项,则a 等于______. 【答案】0.【解析】解:-5x3×x2+(-5x3)×ax+(-5x3)×5=-5x5-5ax4-25x3,∵展开式中不含x4项,则-5a=0,∴a=0.故答案为:a=0.5.若多项式(x 2+mx+n)(x2-3x+4)的展开式不含x3项和x2项,试求m、n的值.【解析】解:原式=x4-3x3+4x2+mx3-3mx2+4mx+nx2-3nx+4n,=x4+(m-3)x3+(4-3m+n)x2+(4m-3n)x+4n.由题意得m-3=0,4-3m+n=0,解得m=3,n=5故答案为:m=3,n=56.若(3x3+M)(2x2-1)是一个五次多项式,则下列说法中正确的是()A.M是一个三次单项式B.M是一个三次多项式C.M的次数不高于三D.M不可能是一个常数【答案】C.【解析】解:(3x3+M)(2x2-1)=6x5-3x3+2Mx2-M因为结果是一个五次多项式,所以M的次数不高于三故选C.易错点五:平方差公式1.计算:(a-2b+3c)(a-2b-3c)【解析】解:(a-2b+3c)(a-2b-3c)= [(a-2b)+3c][(a-2b)-3c]=(a-2b)2-(3c)2=a2-4ab+4b2-9c2.故答案为:a2-4ab+4b2-9c2.2.计算:(2a-b)(4a2+b2)(2a+b)=________.【答案】16a4-b4.【解析】解:(2a-b)(4a2+b2)(2a+b)=(2a-b)(2a+b)(4a2+b2)=(4a2-b2)(4a2+b2)=16a4-b4故答案为:16a4-b4易错点六:完全平方公式1.下列计算正确的是()A. B.C. D.【答案】C【解析】A.,故本选项错误;B.,故本选项错误;C.,故本选项正确;D.,故本选项错误.故选D.2.计算:(2a+3b−c)2【解析】解:原式=[(2a+3b)−c]2=(2a+3b)2-2c(2a+3b)+c2=4a2+12ab+9b2-4ac-6bc+c23.若多项式x2-(k-1)x+16是完全平方公式,则k=______.【答案】9或-7.【解析】解:∵多项式x2-(k-1)x+16是完全平方公式,∴(k-1)x是x和4的2倍,∴k-1=±8,解得k=9或-7,故答案为:9或-7.4.如果二次三项式x2-2(m-1)x+16是一个完全平方式,那么m的值是()A.3B.-5C.3或-5D.5或-3【答案】D.【解析】解:∵多项式x2-2(m-1)x+16是完全平方公式,∴2(m-1)是x和4的2倍,∴m-1=±4,解得m=-3或5,故选D .5.若x 2+y 2-4x +2y +5=0,求x +y 的值.【解析】解:将x 2+y 2-4x+2y+5=0变形得:x 2-4x+4+y 2+2y+1=0,即(x-2)2+(y+1)2=0, ∴x-2=0且y+1=0,解得:x=2,y=-1,则x+y=2+(-1)=1.6.已知a 、b 满足等式a 2+b 2-4(2b-a )+20=0,求a+b 值.【解析】解:∵a 2+b 2-4(2b-a )+20=0,∴a 2+b 2-8b+4a+20=0a 2+4a+4+b 2-8b+16=0,∴(a+2)2+(b-4)2=0, ∴, ∴, ∴a+b=-2+4=2.易错点七:整式除法1.计算(5m 2+15m 3n-20m 4)÷(-5m 2)结果正确的是( )A1-3mn+4m 2 B-1-3m+4m 2 C4m 2-3mn-1 D4m 2-3mn 【答案】C .【解析】解:原式=5m 2(1+3mn-4m 2)÷(-5m 2)=4m 2-3mn-1.故选:C .2.若一个三角形的面积为6x 2+13x+5,底边长为2x+1,则底边上的高为______.【答案】6x+10.【解析】解:底边上的高是:2(6x 2+13x+5)÷(2x+1)=2(2x+1)(3x+5)÷(2x+1)=2(3x+5)=6x+10.故答案是:6x+10.易错点八:化简求值1.先化简,再求值:22232[()()]2a a b ab b a a b a b ---÷,其中12a =-,13b =. 【解析】22232[()()]2a a b ab b a a b a b ---÷ 3222322()2a b a b a b a b a b =--+÷3222(22)2a b a b a b =-÷1ab =-,当12a =-,13b =时,原式116=-. 2.先化简,再求值:(2a+b )2-(2a-b )(a+b )-2(a-2b )(a+2b ),其中a=12,b=-2. 【解析】(2a+b )2-(2a-b )(a+b )-2(a-2b )(a+2b )=(4a 2+4ab+b 2)–(2a 2+2ab –ab –b 2)–2(a 2–4b 2)=4a 2+4ab+b 2-2a 2-ab+b 2-2a 2+8b 2=3ab+10b 2,当a=,b=-2时,原式=3××(-2)+10×(-2)2=-3+40=37.3.已知a+b=5,ab=6,则a 2+b 2=_____,a-b=____.【答案】13,±1.【解析】解:∵a+b=5,∴(a+b )2=25,即a 2+2ab+b 2=25,∵ab=6,∴a 2+b 2=25-2×6=25-12=13;∵(a-b )2=a 2-2ab+b 2=13-2×6=13-12=1,∴a-b=±1.故答案为:13,±1. 4.通过对代数式进行适当变形,求出代数式的值:若m 2+m -1=0,求m 3+2m 2+200的值.【解析】解:m 2+m-1=0即得到:m 2+m=1m 3+2m 2+2008=m 3+m 2+m 2+2008=m(m 2+m)+m 2+2008=m+m 2+2008=1+2008=2009。
杭州育才中学七年级下册第三章整式的乘除易错题整理
班级姓名
一、选择题
1.下列计算正确的是().
A.2x2·3x3=6x6B.2x2+3x3=5x5
C.(-3x2)·(-3x2)=9x4D.5
4
x n·
2
5
x m=
1
2
x mn
2.一个多项式加上3y2-2y-5得到多项式5y3-4y-6,则原来的多项式为().A.5y3+3y2+2y-1 B.5y3-3y2-2y-6
C.5y3+3y2-2y-1 D.5y3-3y2-2y-1
3.下列运算正确的是().
A.a2·a3=a5B.(a2)3=a5C.a6÷a2=a3D.a6-a2=a4
4.下列运算中正确的是().
A.1
2
a+
1
3
a=
1
5
a B.3a2+2a3=5a5C.3x2y+4yx2=7 D.-mn+mn=0
5.下列说法中正确的是().
A.-1
3
xy2是单项式B.xy2没有系数
C.x-1是单项式D.0不是单项式6.若(x-2y)2=(x+2y)2+m,则m等于().
A.4xy B.-4xy C.8xy D.-8xy 7.(a-b+c)(-a+b-c)等于().
A.-(a-b+c)2B.c2-(a-b)2
C.(a-b)2-c2D.c2-a+b2
8.计算(3x2y)·(-4
3
x4y)的结果是().
A.x6y2B.-4x6y C.-4x6y2D.x8y
9.等式(x+4)0=1成立的条件是().
A.x为有理数B.x≠0 C.x≠4 D.x≠-4
10.下列多项式乘法算式中,可以用平方差公式计算的是().
A.(m-n)(n-m)B.(a+b)(-a-b)
C.(-a-b)(a-b)D.(a+b)(a+b)
11.下列等式恒成立的是().
A.(m+n)2=m2+n2B.(2a-b)2=4a2-2ab+b2
C.(4x+1)2=16x2+8x+1 D.(x-3)2=x2-9
12.若A=(2+1)(22+1)(24+1)(28+1),则A-2003的末位数字是().A.0 B.2 C.4 D.6
二、填空题
13.x·_______=x n+1;(m+n)(______)=n2-m2;(a2)3·(a3)2=______.
14.月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时,若坐飞机飞行这么远的距离需_________小时.
15.a 2+b 2+________=(a+b )2 ; a 2+b 2+_______=(a -b )2 ;(a -b )2+______=(a+b )2
16.若x 2-3x+a 是完全平方式,则a=_______.
17.用科学记数法表示-0.000000059=________.
18.若-3x m y 与0.4x 3y 2n+1是同类项,则m+n=______.
19.如果(2a+2b+1)(2a+2b -1)=63,那么a+b 的值是________.
20.若x 2+kx+
14=(x -12)2,则k=_______;若x 2-kx+1是完全平方式,则k=______. 21.(-1615
)-2=______;(x -k )2=_______. 22.22005×(0.125)668=________.
23.有三个连续的自然数,中间一个是x ,则它们的积是_______.
24. 2 )(81104=y x ;(2a-b )2-(2a+b)2= ;(x-y-z)2=
(2×104)(6×103)·107 = ;(2y-x-3z )(-x-2y-3z)=
三、计算题
25. (—1)2004+(—21)—2—(3.14—π)0 26. [(—a 2)3—a 2(—a 2)]÷(—a)2
27. (3x+2y —4)(4+2y —3x ) 28. (x 2-2x+1-y 2)÷(x+y-1)
29.(2x 2y -3xy 2)-(6x 2y -3xy 2) 30.(-
32ax 4y 3)÷(-65ax 2y 2)·8a 2y
31. (45a 3-
16a 2b+3a )÷(-13a ) 32. (23x 2y -6xy )·(12xy )
33. (x -2)(x+2)-(x+1)(x -3) 34. (1-3y )(1+3y )(1+9y 2)
35. 2222221061054321-++-+- 36. 311)2(2
1)21()2(----+⨯---
37.(5+1)(52+1)(54+1)(58+1)+2 38.(ab+1)2-(ab -1)2
四、先化简,再求值
34. (x+4)(x -2)(x -4),其中x=-1.
35. [(xy+2)(xy -2)-2x 2y 2+4],其中x=10,y=-
125
.
36. [(x+y)2(x-y)2-(x+y)(x-y)(x 2+y 2)]÷2y 2
,其中x=21,y=2
五、解答题
7、已知20052x ,01232++=-+x x x 求。
37.已知x 2-4x+1=0,求x 2+x -2,x 4+x
—4的值。
38.已知a +b=3 ab=0.5 求:
(1)a 2+b 2 (2)a 4+b 4 (3)a 2+ab +b 2 (4)a ÷b+b ÷a
39.(1)请用科学计数法(1)-0.0000501= ;(2)x 4n +1÷x 2n -1·x 2n +
1=
(3)已知a x =2 a y =3 则a x -y = ;(4)已知a m =4 a n =5 求a 3m -2n 的值。
(5)若10a =20 10b =1/5,试求9a ÷32b 的值; (6)已知2x -5y -4=0,求4x ÷32y 的值。
40.请说明无论x,y 为何值,多项式的15642
2+-++y x y x 的值始终为正数。
41.已知[(x-y+2)2+|x+2y-5|]0无意义,请求x,y 的值。
42.已知m 、n 是系数,且y xy mx +-22与y nxy x 3232
++的差中不含二次项,求222n mn m ++的值。
43.一位同学做一道题:“已知两个多项式A ,B ,计算2A+B ”。
他误将“2A+B ”看成“A+2B ”,求得的结果为7292+-x x 。
已知B=232
-+x x ,求原题的正确答案。
44.小星和小月玩猜数游戏,小星说:“你随便选定三个一位数,按这样的步骤去算:①把第一个数乘以2;②加上5;③乘以5;④加上第二个数;⑤乘以10;⑥加上第三个数。
只要你告诉我最后的得数,我就能知道你所想的三个一位数。
”小月不相信。
但试了几次,小星都猜对了,你知道小星是怎样猜的吗?如果小月告诉小星的数是484,你知道小月所想的三个一位数是什么吗?
45.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“●”的个数为 .
46.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有________个小圆; 第n 个图形有_____ __个小圆。
第1个图形 第2个图形 第3个图形 第4个图形 …
(1) (2) (3) ……
……。