5.2.2 直线平行的条件(1)--
- 格式:ppt
- 大小:1.10 MB
- 文档页数:16
5.2.2 平行线的判定第1课时一、教学目标【知识与技能】1.通过用直尺和三角尺画平行线的方法理解平行线的判定方法1。
2.能用平行线的判定方法1来推理判定方法2和判定方法3。
3.能够根据平行线的判定方法进行简单的推理。
【过程与方法】经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.【情感态度与价值观】经历探究直线平行的判定方法的过程,掌握直线平行的判定方法,领悟归纳和转化的数学思想方法.二、课型新授课三、课时第1课时共2课时四、教学重难点【教学重点】探索并掌握直线平行的判定方法.【教学难点】直线平行的判定方法的应用.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2-3)图1, 图2中的直线平行吗?你是怎么判断的?相交在同一平面内平行同一平面内,不相交的两直线叫做平行线.判定两条直线平行的方法有两种:定义:在同一平面内,不相交的两条直线叫平行线.平行公理的推论(平行线的传递性):如果两条直线平行于同一条直线,那么两条直线平行.同学们想一想:除应用以上两种方法以外,是否还有其它方法呢?(二)探索新知1.出示课件5-7,探究同位角相等两直线平行教师问:我们已经学习过用三角尺和直尺画平行线的方法.如何画平行线呢?学生答:一、放;二、靠;三、推;四、画.教师问:画图过程中,你发现什么角始终保持相等?学生答:同位角始终保持相等.教师问:直线a,b位置关系如何?学生答:直线a,b位置关系是平行.教师问:将其最初和最终的两种特殊位置抽象成几何图形,你能画出来吗?学生答:如下图所示:教师问:由上面的操作过程,你能发现判定两直线平行的方法吗?师生一起解答:同位角相等,两直线平行.总结点拨:(出示课件8)判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.教师问:你能利用几何语言描述一下平行线的判定方法1吗?学生答:∵∠1=∠2,∴l1∥l2.教师总结如下:几何语言:∵∠1=∠2 (已知),∴l1∥l2 (同位角相等,两直线平行).考点1:利用同位角相等判定两直线平行下图中,如果∠1=∠7,能得出AB∥CD吗?写出你的推理过程.(出示课件9)师生共同讨论解答如下:解:∵∠1=∠7(已知),∠1=∠3 (对顶角相等)∴∠7=∠3(等量代换)∴AB∥CD (同位角相等,两直线平行 .)总结点拨:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同位角(“F”型)相等,从而可以应用“同位角相等,两直线平行”.出示课件10,学生自主练习后口答,教师订正.2.出示课件11,探究内错角相等两直线平行教师问:两条直线被第三条直线所截,同时得到同位角、内错角和同旁内角.由同位角相等可以判定两直线平行,那么,能否利用内错角来判定两直线平行呢?学生答:猜想可以利用内错角来判断两直线平行.教师问:如图,由∠3=∠2,可推出a//b吗?如何推出?师生一起解答:解:∵∠2=∠3(已知),∠3=∠1(对顶角相等),∴∠1=∠2.(等量代换)∴ a//b(同位角相等,两直线平行).总结点拨:(出示课件12)判定方法2:两条直线被第三条直线所截 ,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.教师问:你能利用几何语言描述一下平行线的判定方法2吗?学生答:几何语言:∵∠3=∠2(已知),∴a∥b(内错角相等,两直线平行).考点2:利用内错角相等判定两直线平行完成下面证明:如图所示,CB平分∠ACD,∠1=∠3. 求证:AB∥CD. (出示课件13)学生独立思考后,师生共同解答.证明:∵CB平分∠ACD,∴∠1=∠2(角平分线的定义).∵∠1=∠3,∴∠2=∠3.∴AB∥CD(内错角相等,两直线平行).总结点拨:准确识别三种角是判断两条直线平行的前提条件,本题中易得到内错角(“Z”型)相等,从而可以应用“内错角相等,两直线平行”.出示课件14,学生自主练习后口答,教师订正.3.出示课件15,利用同旁内角互补判定两直线平行教师问:如图,如果∠1+∠2=180°,你能判定a//b吗?学生答:能判定a//b.教师问:请写出解答过程.学生答:证明:∵∠1+∠2=180°(已知),∠1+∠3=180°(邻补角的性质),∴∠2=∠3(同角的补角相等) .∴a//b(同位角相等,两直线平行) .总结点拨:(出示课件16)判定方法3:两条直线被第三条直线所截 ,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.教师问:你能利用几何语言描述一下平行线的判定方法2吗?学生答:几何语言:∵∠1+∠2=180°(已知),∴a∥b(同旁内角互补,两直线平行).考点3:利用同旁内角互补判定两直线平行如图:直线AB、CD都和AE相交,且∠1+∠A=180º .求证:AB//CD .(出示课件17)学生独立思考后,师生共同解答.证明:∵∠1+∠A=180º(已知),∠1=∠2 (对顶角相等),∴∠2+∠A=180º(等量代换)∴AB∥CD.(同旁内角互补,两直线平行).师生共同归纳:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同旁内角(“U”型)相等,从而可以应用“同旁内角互补,两直线平行”.出示课件18,学生自主练习,教师给出答案.教师:学了前面的知识,接下来做几道练习题看看你掌握的怎么样吧.(三)课堂练习(出示课件19-26)练习课件第19-26页题目,约用时20分钟.(四)课堂小结(出示课件27) ),),(五)课前预习预习下节课(5.2.2第2课时)的相关内容.知道判定平行线的方法,会灵活应用平行线的判定方法解决问题.七、课后作业1、教材第14页练习第1,2题.2、七彩课堂第18-19页第5、6、9题.八、板书设计:1.知识梳理平行线的判定⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫同位角相等内错角相等同旁内角互补两直线平行2.考点讲解考点1 考点2 考点3教学反思:成功之处:1.本节课从学生所熟悉的知识----平行线的画法入手,引入平行线的判定方法1,在此基础上提出:两条直线被第三条直线所截形成的内错角相等时,是否两直线也平行?同旁内角之间又分别有怎样的关系时两直线平行呢?由此激发学生求知的欲望,也给学生提供了探索所学内容的平台,鼓励学生大胆猜想、积极思考,培养学生主动参与的热情。
5.2.2 直线平行的条件(一)在平面几何中,两条直线是否平行一直是一个重要的问题。
直线平行的条件有多种,其中一种条件是通过直线的斜率来判断。
本文将介绍通过斜率判断直线是否平行的方法。
1. 斜率的定义在谈论直线的斜率之前,我们需要先了解斜率的定义。
在直角坐标系中,给定一条直线上的两个点P(x1, y1)和Q(x2, y2),我们可以计算出这两个点之间的斜率。
斜率的计算公式为:斜率 k = (y2 - y1) / (x2 - x1)其中,斜率k表示直线的倾斜程度。
当斜率为正时,直线向上倾斜;当斜率为负时,直线向下倾斜;当斜率为0时,直线水平;当斜率为无穷大时,直线竖直。
2. 求解斜率的步骤根据上述斜率的定义,我们可以通过以下步骤来求解直线的斜率:1.给定两个点P(x1, y1)和Q(x2, y2);2.计算斜率k = (y2 - y1) / (x2 - x1)。
例如,假设给定直线L1上的两个点P1(1, 2)和Q1(3, 4),以及直线L2上的两个点P2(1, 4)和Q2(3, 6)。
我们可以按照上述步骤求解出直线L1和直线L2的斜率:斜率 k1 = (4 - 2) / (3 - 1) = 2 / 2 = 1斜率 k2 = (6 - 4) / (3 - 1) = 2 / 2 = 1根据上述计算结果可以看出,直线L1和直线L2的斜率相等,即斜率为1。
根据平行线的定义,如果两条直线的斜率相等,则这两条直线是平行的。
3. 直线平行的条件根据斜率的定义和计算方法,我们可以得出直线平行的条件:如果两条直线L1和L2的斜率相等,则直线L1和L2是平行的。
根据这个条件,我们可以快速判断两条直线是否平行。
只需要计算两条直线的斜率,然后判断斜率是否相等即可。
4. 举例说明为了更好地理解和应用直线平行的条件,我们来举例说明。
假设有直线L1过点P(1, 2)和Q(3, 4),以及直线L2过点A(2, 3)和B(4, 5)。
第1课时平行线的判定教学目标1、通过操作、观察、想象、推理、交流等活动推演出平行线的判定方法;2、会运用转化的思想将新问题转化为已知或者已解决的问题,体会数学的转化思维;3、会运用数学语言描述并证明平行线的判定方法,认识证明的必要性和证明过程的严密性,深刻理解直线平行的判定方法;4、灵活应用判定方法进行直线是否平行或者其它结论的推理判断。
重点:理解直线平行的判定方法,并会根据判定方法进行简单的推理应用。
难点:平行线判定方法的灵活运用和其推导过程中的转化思想的认识。
教学过程一、创设情境,引入课题一个长方形工件,如果需要检验它是否符合设计要求,除了度量它的长和宽的尺寸外,还要检查各面的长宽是否分别平行,而这些实际问题如果根据平行线的定义去判断是不可能的,但又如何判断它们是否平行呢?二、目标导学,探索新知目标导学1:平行的判定方法活动1:如图,三根木条相交成∠1,∠2,固定木条b、c,转动木条a , 观察∠1,∠2满足什么条件时直线a与b平行。
直线a和b不平行直线a∥b得出结论:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.【教学备注】【教师提示】引导学生去发现,两直线之所以平行,是因为同位角相等,进而引导学生用文字述叙概括出判定两直线平行的方法。
活动2图中,如果∠1=∠7,能得出AB∥CD吗?写出你的推理过程。
由此你又得出怎样的平行判定?结论:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.活动3下图中,如果∠4+∠7=180°,能得出AB∥CD?结论:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行学习目标2:平行判定方法的灵活应用活动4 学生讨论完成下面题目。
如图,∠A= 55 °,∠B=125 °,AD与BC平行吗?AB与CD平行吗?为什么?学习目标3:平行判定方法在生活中的应用应用1:在如图所示的图中,甲从A处沿东偏南55°方向行走,乙从B处沿东偏南35°方向行走,(1)他们所行道路可能相交吗?(2)当乙从B处沿什么方向行走,他们所行道路不相交?请说明其中的理由.应用2 如图,有一座山,想从山中开凿一条隧道直通甲、乙两地;在甲地侧得乙为北偏东41.5º方向,如果甲、乙两地同时开工,那么从乙地出发应按北偏西【教师提示】引导学生利用判定1:同位角相等,两直线平行和对顶角相等得出结论。
5.2.2直线平行的条件数学教案标题:5.2.2 直线平行的条件数学教案一、教学目标:1. 知识与技能:学生能够掌握直线平行的条件,理解并运用公理和定理进行几何证明。
2. 过程与方法:通过观察、操作、推理等活动,培养学生的空间观念和逻辑思维能力。
3. 情感态度与价值观:让学生体验数学的严谨性和美学价值,增强学习数学的兴趣。
二、教学重点与难点:重点:理解和掌握直线平行的条件,能运用这些条件解决实际问题。
难点:理解和应用公理和定理进行几何证明。
三、教学过程:(一)引入新课教师首先提问:“同学们,你们知道什么是平行线吗?”引导学生回忆以前学过的平行线的概念。
然后教师展示一些生活中的平行线的例子,如马路的两条边、桌子的四条腿等,激发学生的兴趣。
(二)讲解新知1. 教师讲解直线平行的条件:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行。
这就是“直线平行的条件”。
2. 教师用图形和例子来解释这个条件,使学生更直观地理解。
(三)课堂练习教师设计一些练习题,让学生在课堂上完成,以检验他们对直线平行的条件的理解和掌握情况。
(四)总结提升教师带领学生回顾本节课的内容,强调直线平行的条件的重要性,并鼓励学生在生活中寻找更多的平行线的例子。
(五)作业布置布置一些习题,让学生回家完成,进一步巩固所学知识。
四、教学反思:在教学过程中,教师要关注学生的反应,及时调整教学策略。
对于学生难以理解的部分,应多加解释和举例。
同时,也要注意培养学生的自主学习能力和合作精神,让他们在解决问题的过程中学会独立思考和团队协作。
五、拓展阅读:推荐学生阅读一些关于欧几里得几何和非欧几里得几何的书籍,以拓宽他们的视野,提高他们的数学素养。
六、教学评估:通过对学生的课堂表现、作业和考试成绩的评估,了解他们的学习进度和存在的问题,以便及时调整教学计划和方法。