2017-2018学年人教A版必修一 基本初等函数 单元测试18
- 格式:doc
- 大小:744.00 KB
- 文档页数:10
3) + (-—a 2 b33)计算结果正确的人教A 版本必修一基本初等函数检测题一.选择题21.(2015春.高台县校级期末)设a>0,将/七一-表示成分数指数羸其结果是( )j_ 2 A. K B.云 6 C. / D. K <1 <1 <1 <1【分析】巾根式与分数指数幕的互化规则所给的根式化简即可将其表示成分数指数慕,求得 其结果选出正确选项.22~—1【解答】解:由题意,七一二a 23= a 6故选c.【点评】本题考查根式与分数指数卷的互化及其化筒运算,解题的关键是掌握并能熟练运用 根式与分数指数昴互化的规则.22. (2013秋•隆化县校级月考)把列式(3a 是( )A. -aB. 9aC. - a 2D. - 9a【分析】利用指数慕的运算性质即可得出. 【解答】解:原式=3+(-§)•#§=-9a.□ 故选D.【点评】熟练掌握指数慕的运算性质是解题的关键.J_ 2_ J_ _J__J_ _2_3. (2011秋•孝南区校级期中)化简4X T y T ( - 6 x ^y 歹):(-3工2~y 另)(其中 x>0,y>0))的结果是( )A. 8xyB. 4xy3C. 2xyD. / y【分析】根据指数运算法则化筒分数指数唇即可得解1,1 2 _ 1 1 1-24JV"J -2疽•盘 专中(H )【解答】解:原式= ------- 二 -------------- 二'・y J J =8xy故选A【点评】木题考查分数指数昴的运算,同底数的指数昴相乘底数不变指数相加,相除时底数不变指数相减.属简单题]] ________________ 4.(2012秋•海曙区校级期中)已知a>0, b>0,则■( - 3 / b3 ) 4-3的化简结果为( )A. - 9aB. -9C. 9D. - 9a2【分析】将根式转化为分式指数昴,利用有理数指数昴的运算性质计算即可.【解答】解:..・a>0, b>0,]J_ ____汇司膜,(- 3 / b' ) : (y^/a7b5)oL^L-L L^L-L=(-3) X3/ 2 6.b2 3 6n o , o=-9a *b=-9.故选B・【点评】木题考查rr理数指数昴的化简求值,将根式转化为分式指数昴是关键,考查运算能力,属于中档题.5.(2013秋•庐山区校级月考)设x+x-i=3,则x3+x'3的值为( )A. 18B. ±6C. 12D. 6【分析】由x+x「i=3,两边平方M得X2+X'2+2=32, nJ得x'x%?.再利用立方和公式x’+x-3= (x+x'1) (x2+x-2 - 1)即可得出.【解答】解:,「x+x 1=3, .・.X2+X-2+2=32,解得X2+X '2=7.Ax3+x'3= (x+x1) (x2+x-2- 1) =3X (7 - 1) =18.故选:A.【点评】本题考查了完全平方公式、立方和公式的应用,属于基础题.6.若3a=5, 3°=6,则理二( )36a — $ +1A. —B. 33a-2pC. /'一时D. 325a-6p2 〕【分析】利用指数幕的运算性质即可得出.[解答]解:..誓二5, 3P=6, A33CX=53=125, 32W=36.-3 a. 125 3 f3a •邓故选B.【点评】熟练掌握指数慕的运算性质是解题的关键.A. 2f (x)B. 2[f (x) +g (x) ]C. 2g (x)D. 2f (x),g (x)7. (2015秋•贵阳校级月考)若f (x)二巳g(X)X . X e +e 则f (2x)等于2x - _2x / x _ 一x/j 一x、[分析]f (2x) =- --------- ?——二挫——-~8 "—,即可得出.2 2[解答]解:f (2x)=- ---------- ------ 二史——-~8 ~ =2f (x) g (x).2 2故选:D.【点评】木题考杏了指数运算性质、乘法公式,考杏了推理能力与计算能力,属于中档题.8.(2015秋•水富县校级期中)函数y= (a2-5a+5) a*是指数函数,贝U a的值为( )A. 1B. - 1C. 4D. 1 和4【分析】根据指数函数的定义,列出不等式组,求出a的值.【解答】解:函数y=(a2-5a+5) a*是指数函数,a2 - 5a+5二1' a>0 ,*尹1解得a=4,即a的值为4.故选:C.【点评】本题考查了指数函数的定义与应用问题,是基础题n.9.(2015秋•济南校级期中)若指数函数过点(2, 4),则它的解析式为( )A. y=2xB. y= ( - 2) xC. y= (—) xD. y= ( - —) x2 匕【分析】根据指数函数y=a'的图象过点(2, 4),把点的坐标代入解析式,求出a的值即可. 【解答】解:..•指数函数y=ax的图象经过点(2, 4),a2=4,解得定2.故选:A.【点评】本题考查了指数函数y=a'的图象与性质的应用问题,是容易题.10.(2015秋•唐山校级期末)如图,设a, b, c, d>0,且不等于1, y=a x, y=b x, y=c x,y=d'在同一坐标系中的图象如图,则a, b, c, d的大小顺序( )A. a<b<c<dB. a<b<d<cC. b<a<d<cD. b<a<c<d【分析】要比较a、b、c、d的大小,根据函数结构的特征,作直线x=l,y=b x, y=c x, y=d'交点的纵坐标就是a、b、c、d,观察图形即可得到结论.【解答】解:作辅助直线x=l,当x=l时,y=a x, y=b x, y=c x, y=d'的函数值正好是底数a、b> c^ d直线乂=1与疙2、,y=b x, y=c x, y=d'交点的纵坐标就是a、b、c、d观察图形即可判定大小:b<a<d<c故选:C.【点评】本题主要考食了指数函数的图象与性质,同时考查了数形结合的数学思想,分析问题解决问题的能力,属于基础题.11.(2014秋•平鲁区校级期中)已知f(x)=4+a'T的图象恒过定点P,则点P的坐标是( )A. (1, 5)B. (1, 4)C. (0, 4)D. (4, 0)【分析】由x-l=0得x=l,代入解析式求出对应的函数值,就是此点的坐标.【解答】解:令x - 1=0,解得x=l,代入f (x) =4+a x'1得,f (1) =5,则函数f (x)过定点(1, 5).故选A.【点评】木题考杏了指数函数过定点((),1),即令指数为零求出对应的x和y的值,即所求的定点坐标.12.(2014秋•红岗区校级月考)已知a=0.707, b=0.709, c=l.l08,则a, b, c的大小关系是( )A. c>a>bB. c>b>aC. a>b>cD. b>a>c【分析】利用指数函数的单调性及特殊点的函数值即可比较a, b, c的大小关系.【解答】解:*=0.7、为减函数,.・. 1=0.7°>0.7°,7>0.7°・9>0,即1> a>b>0;同理即c>l,.*.c>a>b.故选A.【点评】本题考查指数函数的单调性及特殊点的函数值,考查不等关系与不等式,属于中档题.2_ J_ 2_13.(2015秋•澧县校级月考)设*(号)3, b=(§)3, c=(§)3,则a, b, c的大小关系是(【分析】先利用指数函数尸=x+y=lo g 23+lo gA. a>b>cB. b>a>cC. b>c>aD. c>b>a(_|)、为R 上的单调减函数,比较a 、b 的大小,再利用羸函数y»3在R 上为增函数,比较b 、c 的大小,即可得正确选项x L 1 【解答】解:考察函数y=(§)为R 上的单调减函数,.・・(§)3<(|_)3,即a 〈b,考察界函数yr ,在R 上为增函数,.・・a >c, 综合b>a>c 故选B【点评】本题主要考查了指数函数、养函数的图象和性质,利用函数的单调性比较大小的方 法和技巧,属基础题14. (2015秋•张家界期末)设函数f (x )定义在R 上,它的图象关于直线x=l 对称,旦当 x 》l 时,f (X )=3、- 1,则有( )A. f4)<f (4)<f (4)B. f 4)<f (|)<f (l )c. f (4)<f (|)<f (4) D . f (|)<f (i )<f (i ) 0 。
阶段质量检测(二)(A 卷 学业水平达标) (时间120分钟,满分150分)一、选择题(本大题共10小题,每小题6分,共60分) 1.221+log 512等于( )A .2+5B .2 5C .2+52D .1+52解析:选B 221+log 512=2×22log 512=2×2log 2 5.2.函数y =1log 0.5(4x -3)的定义域为( )A.⎝⎛⎭⎫34,1B.⎝⎛⎭⎫34,+∞ C .(1,+∞)D.⎝⎛⎭⎫34,1∪(1,+∞)解析:选A 由题意得⎩⎪⎨⎪⎧log 0.5(4x -3)>0,4x -3>0,解得34<x <1.3.函数y =2-|x |的单调递增区间是( )A .(-∞,+∞)B .(-∞,0)C .(0,+∞)D .不存在解析:选B 函数y =2-|x |=⎝⎛⎭⎫12|x |,当x <0时为y =2x ,函数递增;当x >0时为y =⎝⎛⎭⎫12x,函数递减.故y =2-|x |的单调递增区间为(-∞,0).4.若0<a <1,且log b a <1,则( ) A .0<b <a B .0<a <b C .0<a <b <1D .0<b <a 或b >1解析:选D 当b >1时,log b a <1=log b B. ∴a <b ,即b >1成立.当0<b <1时,log b a <1=log b b,0<b <a <1, 即0<b <a .5.(福建高考)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是( )解析:选B 因为函数y =log a x 过点(3,1),所以1=log a 3, 解得a =3,所以y =3-x不可能过点(1,3),排除A ;y =(-x )3=-x 3不可能过点(1,1),排除C ; y =log 3(-x )不可能过点(-3,-1),排除D.故选B.6.已知函数f (x )=⎩⎪⎨⎪⎧3x +1,x ≤0,log 2x ,x >0,若f (x 0)>3,则x 0的取值范围是( )A.(8,+∞) B .(-∞,0)∪(8,+∞) C .(0,8)D .(-∞,0)∪(0,8)解析:选A 依题意,得⎩⎪⎨⎪⎧ x 0≤0,3x 0+1>3或⎩⎪⎨⎪⎧x 0>0,log 2x 0>3, 即⎩⎪⎨⎪⎧x 0≤0,x 0+1>1或⎩⎪⎨⎪⎧x 0>0,log 2x 0>log 28.所以x 0∈∅,或x 0>8,故选A.7.对于函数f (x )=lg x 定义域内任意x 1,x 2(x 1≠x 2),有如下结论: ①f (x 1+x 2)=f (x 1)+f (x 2); ②f (x 1·x 2)=f (x 1)+f (x 2); ③f (x 1)-f (x 2)x 1-x 2>0;④f ⎝⎛⎭⎫x 1+x 22<f (x 1)+f (x 2)2.上述结论正确的是( ) A .②③④ B .①②③ C .②③D .①③④解析:选C 由对数的运算性质可得f (x 1)+f (x 2)=lg x 1+lg x 2=lg(x 1x 2)=f (x 1x 2),所以①错误,②正确;因为f (x )是定义域内的增函数,所以③正确; f ⎝⎛⎭⎫x 1+x 22=lg x 1+x 22,f (x 1)+f (x 2)2=lg x 1+lg x 22=lg x 1x 2, 因为x 1+x 22>x 1x 2(x 1≠x 2),所以lg x 1+x 22>lg x 1x 2,即f ⎝⎛⎭⎫x 1+x 22>f (x 1)+f (x 2)2,所以④错误.8.若当x ∈R 时,函数f (x )=a |x |始终满足0<|f (x )|≤1,则函数y =log a ⎪⎪⎪⎪1x 的图象大致为 ( )解析:选B 由函数f (x )=a |x |满足0<|f (x )|≤1,得0<a <1,当x >0时,y =log a ⎪⎪⎪⎪1x =-log a x .又因为y =log a ⎪⎪⎪⎪1x 为偶函数,图象关于y 轴对称,所以选B.9.若f (x ),g (x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=e x ,则有( ) A .f (2)<f (3)<g (0) B .g (0)<f (3)<f (2) C .f (2)<g (0)<f (3) D .g (0)<f (2)<f (3)解析:选D 用-x 代x ,则有f (-x )-g (-x )=e -x ,即-f (x )-g (x )=e -x ,结合f (x )-g (x )=e x ,可得f (x )=e x -e -x 2,g (x )=-e -x +e x2.所以f (x )在R 上为增函数,且f (0)=0,g (0)=-1,所以f (3)>f (2)>f (0)>g (0),故选D. 10.已知偶函数f (x )=log a |x -b |在(-∞,0)上单调递增,则f (a +1)与f (b +2)的大小关系是( )A .f (a +1)≥f (b +2)B .f (a +1)<f (b +2)C .f (a +1)≤f (b +2)D .f (a +1)>f (b +2)解析:选D 因为函数f (x )=log a |x -b |为偶函数, 则f (-x )=f (x ),而f (-x )=log a |-x -b |=log a |x +b |,所以log a |x -b |=log a |x +b |,即|x -b |=|x +b |, 所以b =0,故f (x )=log a |x |.因为当x ∈(-∞,0)时,f (x )=log a |x |=log a (-x ), 其中y =-x 为减函数,而已知f (x )在(-∞,0)上单调递增, 所以0<a <1,故1<a +1<2, 而b +2=2,故1<a +1<b +2.又因为偶函数f (x )在(-∞,0)上单调递增,所以在(0,+∞)上单调递减,故f (a +1)>f (b +2),选D.二、填空题(本大题共4小题,每小题5分,共20分)11.计算:⎝⎛⎭⎫lg 14-lg 25÷100-12=________. 解析:⎝⎛⎭⎫lg 14-lg 25÷100-12=lg 1100÷100-12 =-2÷110=-20.答案:-2012.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(2x-1),x ≥2,则f (f (2))=________. 解析:∵f (2)=log 3(22-1)=1, ∴f (f (2))=f (1)=2e 1-1=2.答案:213.下列说法中,正确的是________(填序号). ①任取x >0,均有3x >2x ; ②当a >0,且a ≠1时,有a 3>a 2; ③y =(3)-x是增函数;④y =2|x |的最小值为1;⑤在同一坐标系中,y =2x 与y =2-x的图象关于y 轴对称.解析:对于②,当0<a <1时,a 3<a 2,故②不正确. 对于③,y =(3)-x =⎝⎛⎭⎫33x ,因为0<33<1,故y =(3)-x 是减函数,故③不正确.易知①④⑤正确.答案:①④⑤ 14.已知函数f (x )=e |x-a |(a 为常数).若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是______________.解析:∵f (x )=e |x -a |=⎩⎪⎨⎪⎧e x -a ,x ≥a ,e -x +a ,x <a , ∴f (x )在[a ,+∞)上为增函数,则[1,+∞)⊆[a ,+∞), ∴a ≤1. 答案:(-∞,1]三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.) 15.(10分)计算:(1)lg 52+23lg 8+lg 5lg 20+(lg 2)2;(2)312-2716+1634-2×(8-23)-1+52×(4-25)-1.解:(1)原式=2lg 5+2lg 2+lg 5(1+lg 2)+(lg 2)2 =2(lg 2+lg 5)+lg 5+lg 2×lg 5+(lg 2)2 =2+lg 5+lg 2(lg 5+lg 2) =2+lg 5+lg 2=3.(2)原式=312-(33)16+(24)34-2×(23)23+215×(22)25=312-312+23-2×22+215×245=8-8+2+1455=2.16.(12分)已知函数f (x )=4x -2·2x +1-6,其中x ∈[0,3]. (1)求函数f (x )的最大值和最小值;(2)若实数a 满足f (x )-a ≥0恒成立,求a 的取值范围. 解:(1)f (x )=(2x )2-4·2x -6(0≤x ≤3). 令t =2x ,∵0≤x ≤3,∴1≤t ≤8. 则h (t )=t 2-4t -6=(t -2)2-10(1≤t ≤8).当t ∈[1,2]时,h (t )是减函数;当t ∈(2,8]时,h (t )是增函数. ∴f (x )min =h (2)=-10,f (x )max =h (8)=26. (2)∵f (x )-a ≥0恒成立,即a ≤f (x )恒成立, ∴a ≤f (x )min 恒成立.由(1)知f (x )min =-10,∴a ≤-10. 故a 的取值范围为(-∞,-10].17.(12分)若函数f (x )=a ·3x -1-a 3x -1为奇函数.(1)求a 的值;(2)求函数的定义域; (3)求函数的值域.解:函数y =f (x )=a ·3x -1-a 3x-1=a -13x -1. (1)由奇函数的定义,可得f (-x )+f (x )=0,即2a -13x-1-13-x -1=0,∴a =-12.(2)∵y =-12-13x -1,∴3x -1≠0,即x ≠0.∴函数y =-12-13x -1的定义域为{x |x ≠0}.(3)∵x ≠0,∴3x -1≠0,∴0>3x -1>-1或3x -1>0. ∴-12-13x -1>12或-12-13x -1<-12.即函数的值域为⎩⎨⎧⎭⎬⎫y|y >12或y <-12.18.(12分)已知f (x )是定义在R 上的偶函数,且x ≤0时,f (x )=log 12(-x +1).(1)求f (0),f (1); (2)求函数f (x )的解析式;(3)若f (a -1)<-1,求实数a 的取值范围. 解:(1)因为当x ≤0时,f (x )=log 12(-x +1),所以f (0)=0.又因为函数f (x )是定义在R 上的偶函数,所以f (1)=f (-1)=log 12[-(-1)+1]=log 122=-1,即f (1)=-1.(2)令x >0,则-x <0,从而f (-x )=log 12(x +1)=f (x ),∴x >0时,f (x )=log 12(x +1).∴函数f (x )的解析式为f (x )=(3)设x 1,x 2是任意两个值,且x 1<x 2≤0, 则-x 1>-x 2≥0, ∴1-x 1>1-x 2>0.∵f (x 2)-f (x 1)=log 12(-x 2+1)-log 12(-x 1+1)=log 121-x 21-x 1>log 121=0,∴f (x 2)>f (x 1),∴f (x )=log 12(-x +1)在(-∞,0]上为增函数.又∵f (x )是定义在R 上的偶函数, ∴f (x )在(0,+∞)上为减函数. ∵f (a -1)<-1=f (1), ∴|a -1|>1,解得a >2或a <0.故实数a 的取值范围为(-∞,0)∪(2,+∞). 19.(12分)已知函数f (x )=a -22x+1(a ∈R). (1) 判断函数f (x )的单调性并给出证明; (2) 若存在实数a 使函数f (x )是奇函数,求a ;(3)对于(2)中的a ,若f (x )≥m2x ,当x ∈[2,3]时恒成立,求m 的最大值.解:(1)不论a 为何实数,f (x )在定义域上单调递增. 证明:设x 1,x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫a -22x 1+1-⎝⎛⎭⎫a -22x 2+1=2(2x 1-2x 2)(2x 1+1)(2x 2+1). 由x 1<x 2可知0<2x 1<2x 2,所以2x 1-2x 2<0,2x 1+1>0,2x 2+1>0, 所以f (x 1)-f (x 2)<0,f (x 1)<f (x 2).所以由定义可知,不论a 为何数,f (x )在定义域上单调递增. (2)由f (0)=a -1=0得a =1,经验证,当a =1时,f (x )是奇函数.(3)由条件可得: m ≤2x ⎝⎛⎭⎫1-22x +1=(2x +1)+22x +1-3恒成立.m ≤(2x +1)+22x +1-3的最小值,x ∈[2,3].设t =2x +1,则t ∈[5,9],函数g (t )=t +2t -3在[5,9]上单调递增, 所以g (t )的最小值是g (5)=125, 所以m ≤125,即m 的最大值是125. 20.(12分)已知函数f (x )=a -22x+1. (1)求f (0);(2)探究f (x )的单调性,并证明你的结论;(3)若f (x )为奇函数,求满足f (ax )<f (2)的x 的取值范围. 解:(1)f (0)=a -220+1=a -1.(2)∵f (x )的定义域为R , ∴任取x 1,x 2∈R ,且x 1<x 2, 则f (x 1)-f (x 2)=a -22x 1+1-a +22x 2+1=2×(2x 1-2x 2)(1+2x 1)(1+2x 2).∵y =2x 在R 上单调递增,且x 1<x 2, ∴0<2x 1<2x 2,∴2x 1-2x 2<0,2x 1+1>0,2x 2+1>0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )在R 上单调递增. (3)∵f (x )是奇函数, ∴f (-x )=-f (x ),即a -22-x +1=-a +22x +1,解得a =1.[或用f (0)=0求解] ∴f (ax )<f (2)即为f (x )<f (2). 又∵f (x )在R 上单调递增, ∴x <2.(或代入化简亦可) 故x 的取值范围为(-∞,2).(B 卷 能力素养提升) (时间120分钟,满分150分)一、选择题(本大题共10小题,每小题6分,共60分) 1.幂函数的图象过点(3,9),则它的单调递增区间是 ( ) A .(-∞,1) B .(-∞,0) C .(0,+∞)D .(-∞,+∞)解析:选C 由f (x )=x α过点(3,9),知3α=9,∴α=2,即f (x )=x 2,知C 正确. 2.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 31(x 2-1),x ≥2,则f (f (2))的值为( ) A .2e B .2e 2 C .2D.2e2 解析:选D ∵f (2)=log 31(4-1)=log 313=-1,∴f (f (2))=f (-1)=2e -1-1=2e 2.3.函数f (x )=lg (3x +1)1-x的定义域是( ) A.⎝⎛⎭⎫-13,1 B.⎝⎛⎭⎫-13,+∞ C.⎝⎛⎭⎫-13,13 D.⎝⎛⎭⎫-∞,-13 解析:选A 要使f (x )有意义,需⎩⎪⎨⎪⎧3x +1>0,1-x >0,解得-13<x <1,故f (x )的定义域为⎝⎛⎭⎫-13,1. 4.函数f (x )=1+log 2x 与g (x )=2-(x -1)在同一直角坐标系下的图象大致是( )解析:选C 由图象可判断C 正确.5.幂函数f (x )=x 45,若0<x 1<x 2 ,则f x 1+x 22和f (x 1)+f (x 2)2 的大小关系是( )A .f ⎝⎛⎭⎫x 1+x 22>f (x 1)+f (x 2)2B .f ⎝⎛⎭⎫x 1+x 22<f (x 1)+f (x 2)2C .f ⎝⎛⎭⎫x 1+x 22=f (x 1)+f (x 2)2D .无法确定解析:选A 易知f (x )=x 45的定义域为R ,且是偶函数,在(0,+∞)上单增,据此作出f (x )的图象如图所示,则点C 的纵坐标为f (x 1)+f (x 2)2,点D 的纵坐标为f ⎝⎛⎭⎫x 1+x 22,由图可知f (x 1)+f (x 2)2<f ⎝⎛⎭⎫x 1+x 22.6.已知log 7[log 3(log 2x )]=0,那么x -12等于( ) A.13 B.36 C.24D.33解析:选C 由条件知,log 3(log 2x )=1,∴log 2x =3,∴x =8,∴x -12=24. 7.a =log 0.7 0.8,b =log 1.1 0.9,c =1.10.9的大小关系是( ) A .c >a >b B .a >b >c C .b >c >aD .c >b >a解析:选A a =log 0.70.8∈(0,1),b =log 1.10.9∈(-∞,0),c =1.10.9∈(1,+∞),故c >a >b . 8.设偶函数f (x )=log a |x -b |在(-∞,0)上是增函数,则f (a +1)与f (b +2)的大小关系是( )A .f (a +1)=f (b +2)B .f (a +1)>f (b +2)C .f (a +1)<f (b +2)D .不能确定解析:选B 由f (x )为偶函数,∴b =0.又f (x )=log a |x |在(-∞,0)上为增函数,∴f (x )在(0,+∞)上为减函数.∴0<a <1,∴1<a +1<2=b +2, ∴f (a +1)>f (b +2). 9.函数f (x )=2x2log 的图象大致是( )解析:选C ∵f (x )=2x2log =⎩⎪⎨⎪⎧x ,x ≥1,1x ,0<x <1,∴选C.10.已知函数f (x )=4x 2-kx -8在区间(5,20)上既没有最大值也没有最小值,则实数k的取值范围是( )A .[160,+∞)B .(-∞,40]C .(-∞,40]∪[160,+∞)D .(-∞,20]∪[80,+∞)解析:选C 据题意可知k 8≤5或k8≥20,解得k ≤40或k ≥160.二、填空题(本大题共4小题,每小题5分,共20分) 11.当x ∈[-2,0]时,函数y =3x +1-2的值域是________.解析:∵x ∈[-2,0]时y =3x +1-2为增函数,得3-2+1-2≤y ≤30+1-2,即-53≤y ≤1.答案:⎣⎡⎦⎤-53,1 12.若指数函数f (x )与幂函数g (x )的图象相交于一点(2,4),则f (x )=________,g (x )=________.解析:设f (x )=a x ,g (x )=x α,代入(2,4), ∴f (x )=2x ,g (x )=x 2. 答案:2x x 213.已知函数f (x )满足:当x ≥4时,f (x )=⎝⎛⎭⎫12x;当x <4时,f (x )=f (x +1),则f (2+log 23)等于________.解析:∵1<log 23<2,∴3<2+log 23<4,∴f (2+log 23)=f (3+log 23),此时3+log 23>4,故f (3+log 23)=⎝⎛⎭⎫1223log 3+=223log 3--=2-3×22log 3-=18×2log213=18×13=124.即f (2+log 23)=124. 答案:12414.已知函数f (x )的图象与函数g (x )=2x 的图象关于直线y =x 对称,令h (x )=f (1-|x |),则关于函数h (x )有下列命题:①h (x )的图象关于原点(0,0)对称;②h (x )的图象关于y 轴对称;③h (x )的最小值为0;④h (x )在区间(-1,0)上单调递增.其中正确的是________.(把正确命题的序号都填上)解析:∵f (x )的图象与g (x )=2x 的图象关于y =x 对称,∴两者互为反函数,f (x )=log 2x (x >0),∴h (x )=f (1-|x |)=log 2(1-|x |).又h (-x )=h (x ),∴h (x )=log 2(1-|x |)为偶函数,故h (x )的图象关于y 轴对称,∴①②正确.∵当1-|x |的值趋近于0时,h (x )的函数值趋近于-∞,∴h (x )的最小值不是0,∴③不正确.设-1<x 1<x 2<0,则1-|x 2|>1-|x 1|,又∵y =log 2x 是单调增函数,∴log 2(1-|x 2|)>log 2(1-|x 1|),∴h (x 2)>h (x 1),∴h (x )在区间(-1,0)上单调递增,∴④正确.答案:②④三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤) 15.(10分)不用计算器计算: (1)log 327+lg 25+lg 4+77log 2+(-9.8)0;(2)⎝⎛⎭⎫278-23-⎝⎛⎭⎫4990.5+(0.008)-23×225.解:(1)原式=log 3 332+lg(25×4)+2+1=32+lg 102+3=32+2+3=132.(2)原式=⎝⎛⎭⎫82723-⎝⎛⎫49912+⎝⎛⎭⎫1 000823×225=49-73+25×225=-179+2=19. 16.(12分)已知函数f (x )=xk k 22-++(k ∈N)满足f (2)<f (3).(1)求k 的值并求出相应的f (x )的解析式;(2)对于(1)中得到的函数f (x ),试判断是否存在q ,使函数g (x )=1-qf (x )+(2q -1)x 在区间[-1,2]上的值域为⎣⎡⎦⎤-4,178?若存在,求出q; 若不存在,请说明理由. 解:(1)∵f (2)<f (3),∴⎝⎛⎭⎫32k k 22-++>1,即-k 2+k +2>0,解得-1<k <2.又∵k ∈N ,∴k =0或k =1.且当k =0或k =1时,-k 2+k +2=2,∴f (x )=x 2.(2)假设存在q >0满足题设. 由(1)知,g (x )=-qx 2+(2q -1)x +1.∵g (2)=-1,∴两个最值点只能在端点(-1,g (-1))和顶点⎝⎛⎭⎫2q -12q ,4q 2+14q 处取到,而4q 2+14q -g (-1)=4q 2+14q -(2-3q )=(4q -1)24q≥0,∴g (x )max =4q 2+14q =178,g (x )min =g (-1)=2-3q =-4,解得q =2.经检验q =2符合题意.17.(12分)已知函数f (x )=(log 14x )2-log 14x +5,x ∈[2,4],求f (x )的最大值及最小值.解:令t =log 14x .∵x ∈[2,4],t =log 14x 在定义域内递减,∴log 144<log 14x <log 142,∴t ∈⎣⎡⎦⎤-1,-12,∴f (t )=t 2-t +5=⎝⎛⎭⎫t -122+194,t ∈⎣⎡⎦⎤-1,-12,∴当t =-12时,f (x )取最小值234,当t =-1时,f (x )取最大值7.18.(12分)已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈⎣⎡⎦⎤13,2都有|f (x )|≤1成立,试求a 的取值范围.解:∵f (x )=log a x ,当0<a <1时,⎪⎪⎪⎪f ⎝⎛⎭⎫13-|f (2)|=log a 13+log a 2=log a 23>0, 当a >1时,⎪⎪⎪⎪f ⎝⎛⎭⎫13-|f (2)|=-log a 13-log a 2=-log a 23>0,∴⎪⎪⎪⎪f ⎝⎛⎭⎫13>|f (2)|总成立. 则y =|f (x )|的图象如图所示.要使x ∈⎣⎡⎦⎤13,2时恒有|f (x )|≤1,只需⎪⎪⎪⎪f ⎝⎛⎭⎫13≤1,即-1≤log a 13≤1,即log a a -1≤log a 13≤log a a , 即当a >1时,得a -1≤13≤a ,即a ≥3;当0<a <1时,得a -1≥13≥a ,即0<a ≤13.综上所述,a 的取值范围是⎝⎛⎦⎤0,13∪[3,+∞). 19.(12分)已知函数f (x )=ax 2-1(a >0且a ≠1). (1)若函数y =f (x )的图象经过点P (3,4),求a 的值; (2)判断并证明函数f (x )的奇偶性;(3)比较f ⎝⎛⎭⎫lg 1100与f (-2.1)的大小,并写出必要的理由. 解:(1)∵f (3)=a 2=4,∴a =2.(2)f (x )的定义域为R ,且f (-x )=a (-x )2-1=ax 2-1=f (x ),∴f (x )为偶函数. (3)∵f ⎝⎛⎭⎫lg 1100=f (-2), ①当a >1时,f (x )在(-∞,0)上单调递减, ∴f ⎝⎛⎭⎫lg 1100<f (-2.1); ②当0<a <1时,f (x )在(-∞,0)上单调递增,∴f ⎝⎛⎭⎫lg 1100>f (-2.1). 20.(12分)已知函数f (x )=a x -a +1,(a >0且a ≠1)恒过定点⎝⎛⎭⎫12,2. (1)求实数a ;(2)若函数g (x )=f ⎝⎛⎭⎫x +12-1,求函数g (x )的解析式; (3)在(2)的条件下,若函数F (x )=g (2x )-mg (x -1),求F (x )在[-1,0]上的最小值h (m ). 解:(1)由已知a12-a +1=2,∴a =12.(2)g (x )=f ⎝⎛⎭⎫x +12-1=⎝⎛⎭⎫12⎛⎫- ⎪⎝⎭1122x+-1+1=⎝⎛⎭⎫12x .(3)∵F (x )=⎝⎛⎭⎫122x -m ⎝⎛⎭⎫12x -1=⎝⎛⎭⎫122x -2m ⎝⎛⎭⎫12x .∴令t =⎝⎛⎭⎫12x ,t ∈[1,2]. ∴y =t 2-2mt =(t -m )2-m 2.①当m ≤1时,y =t 2-2mt 在[1,2]上单调递增, ∴t =1时,y min =1-2m ;②当1<m <2时,当t =m 时,y min =-m 2; ③当m ≥2时,y =t 2-2mt 在[1,2]上单调递减, ∴当t =2时,y min =4-4m . 综上所述:h (m )=⎩⎪⎨⎪⎧1-2m ,m ≤1,-m 2,1<m <2,4-4m ,m ≥2.。
学业分层测评(十八) 对数函数及其性质的应用(建议用时:45分钟)[学业达标]一、选择题1.(2016·荆州高一检测)若a =20.2,b =log 4(3.2),c =log 2(0.5),则( ) A .a >b >c B .b >a >c C .c >a >bD .b >c >a【解析】 ∵a =20.2>1>b =log 4(3.2)>0>c =log 2(0.5),∴a >b >c . 故选A. 【答案】 A2.设函数f (x )在(0,+∞)上是增函数,则a =f ⎝ ⎛⎭⎪⎫232,b =f ⎝ ⎛⎭⎪⎫log 232的大小关系是( )【导学号:97030113】 A .a >b B .a <b C .a ≥bD .a ≤b【解析】 由于232>2,log 21<log 232<log 22,即0<log 232<1.又函数f (x )在(0,+∞)上是增函数,则由232>log 232,即有a =f 232>b =f ⎝ ⎛⎭⎪⎫log 232,故选A.【答案】 A3.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为( ) A.14 B.12 C .2D .4【解析】 当a >1时,a +log a 2+1=a ,log a 2=-1,a =12(舍去). 当0<a <1时,1+a +log a 2=a , ∴log a 2=-1,a =12.4.已知log a 13>log b 13>0,则下列关系正确的是( ) A .0<b <a <1 B .0<a <b <1 C .1<b <aD .1<a <b【解析】 由log a 13>0,log b 13>0,可知a ,b ∈(0,1),又log a 13>log b 13,作出图象如图所示,结合图象易知a >b ,∴0<b <a <1.【答案】 A5.当0<x ≤12时,4x <log a x ,则a 的取值范围是( ) A .(2,2) B .(1,2) C.⎝ ⎛⎭⎪⎫22,1 D.⎝⎛⎭⎪⎫0,22【解析】 当0<x ≤12时,函数y =4x 的图象如图所示,若不等式4x <log a x 恒成立,则y =log a x 的图象恒在y =4x 的图象的上方(如图中虚线所示),∵y =log a x 的图象与y =4x 的图象交于⎝ ⎛⎭⎪⎫12,2点时,a =22,故虚线所示的y =log a x 的图象对应的底数a 应满足22<a <1,故选C.【答案】 C6.函数y =log 0.4(-x 2+3x +4)的值域是________. 【解析】 -x 2+3x +4=-⎝ ⎛⎭⎪⎫x -322+254≤254,∴有0<-x 2+3x +4≤254,所以根据对数函数y =log 0.4x 的图象即可得到: log 0.4(-x 2+3x +4)≥log 0.4254=-2, ∴原函数的值域为[-2,+∞). 【答案】 [-2,+∞)7.(2016·东莞高一检测)已知函数f (x )=m +log 2x 2的定义域是[1,2],且f (x )≤4,则实数m 的取值范围是________.【导学号:97030114】【解析】 ∵函数f (x )=m +log 2x 2在[1,2]上单调递增, ∴函数f (x )的值域为[m,2+m ], ∵f (x )≤4,∴2+m ≤4,解得m ≤2, ∴实数m 的取值范围是(-∞,2]. 【答案】 (-∞,2] 8.关于函数f (x )=lgxx 2+1有下列结论: ①函数f (x )的定义域是(0,+∞); ②函数f (x )是奇函数; ③函数f (x )的最小值为-lg 2;④当0<x <1时,函数f (x )是增函数;当x >1时,函数f (x )是减函数. 其中正确结论的序号是________. 【解析】 由xx 2+1>0知函数f (x )的定义域是(0,+∞),则函数f (x )是非奇非偶函数,所以①正确,②错误;f (x )=lg x x 2+1=-lg ⎝ ⎛⎭⎪⎫x +1x ≤lg 12=-lg 2,即函数f (x )的最大值为-lg 2,所以③错误;函数g (x )=x +1x ,当0<x <1时,函数g (x )是减函数;当x >1时,函数g (x )是增函数.而函数y =lg x 在(0,+∞)上单调递增,所以④正确.【答案】 ①④9.已知定义域为[1,2]的函数f (x )=2+log a x (a >0,a ≠1)的图象过点(2,3). (1)求实数a 的值;(2)若g (x )=f (x )+f (x 2),求函数g (x )的值域.【解】 (1)∵函数f (x )=2+log a x (a >0,a ≠1)的图象过点(2,3), ∴3=2+log a 2,即log a 2=1,解得a =2. (2)∵g (x )=f (x )+f (x 2)=4+3log 2x ,故g (x )的定义域满足⎩⎨⎧1≤x ≤21≤x 2≤2⇒1≤x ≤2, 且函数g (x )在定义域[1,2]上为增函数,由g (1)=4,g (2)=112,故g (x )的值域为⎣⎢⎡⎦⎥⎤4,112. 10.已知函数f (x )=ln(3+x )+ln(3-x ). (1)求函数y =f (x )的定义域; (2)判断函数y =f (x )的奇偶性;(3)若f (2m -1)<f (m ),求m 的取值范围.【解】 (1)要使函数有意义,则⎩⎨⎧3+x >03-x >0,解得-3<x <3,故函数y =f (x )的定义域为(-3,3).(2)由(1)可知,函数y =f (x )的定义域为(-3,3),关于原点对称. 对任意x ∈(-3,3),则-x ∈(-3,3), ∵f (-x )=ln(3-x )+ln(3+x )=f (x ),∴由函数奇偶性可知,函数y =f (x )为偶函数. (3)∵函数f (x )=ln(3+x )+ln(3-x )=ln(9-x 2),由复合函数单调性判断法则知,当0≤x <3时,函数y =f (x )为减函数. 又函数y =f (x )为偶函数,∴不等式f (2m -1)<f (m ),等价于|m |<|2m -1|<3, 解得-1<m <13或1<m <2.[能力提升]1.函数f (x )=log 12(x 2-4)的单调递增区间为( )C .(2,+∞)D .(-∞,-2)【解析】 要使f (x )单调递增,需有⎩⎨⎧x 2-4>0x <0,解得x <-2.【答案】 D2.若log a 34<1(a >0且a ≠1),则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,34 B.⎝ ⎛⎭⎪⎫0,34∪(1,+∞) C .(1,+∞)D .(0,1)【解析】 当a >1时,log a 34<0<1,成立.当0<a <1时,y =log a x 为减函数.由log a 34<1=log a a ,得0<a <34. 综上所述,0<a <34或a >1. 【答案】 B3.若函数f (x )=log (a 2-3)(ax +4)在[-1,1]上是单调增函数,则实数a 的取值范围是________. 【导学号:97030115】【解析】 设t =g (x )=ax +4,则y =f (x )=log (a 2-3)t ,若a >0,则函数t =ax +4递增,要使函数f (x )=log (a 2-3)(ax +4)在[-1,1]上是单调增函数,则有y =log (a 2-3)t 递增,所以有⎩⎨⎧ a 2-3>1g (-1)=-a +4>0,即⎩⎨⎧a >2或a <-2a <4,所以2<a <4.若a <0,则函数t =ax +4递减,要使函数f (x )=log (a 2-3)(ax +4)在[-1,1]上是单调增函数,则有y =log (a 2-3)t 递减,所以有⎩⎨⎧ 0<a 2-3<1g (1)=a +4>0,即⎩⎨⎧3<a 2<4a >-4,解得-2<a <- 3.综上,实数a 的取值范围是(-2,-3)∪(2,4). 【答案】 (-2,-3)∪(2,4) 4.设函数f (x )=lg(ax )·lg ax 2. (1)当a =0.1时,求f (1 000)的值;(3)若对一切正实数x 恒有f (x )≤98,求a 的范围. 【解】 (1)当a =0.1时,f (x )=lg(0.1x )·lg 110x 2, ∴f (1 000)=lg 100·lg 1107=2×(-7)=-14.(2)∵f (10)=lg(10a )·lg a 100=(1+lg a )(lg a -2)=lg 2a -lg a -2=10, ∴lg 2a -lg a -12=0,∴(lg a -4)(lg a +3)=0, ∴lg a =4或lg a =-3,即a =104或a =10-3. (3)∵对一切正实数x 恒有f (x )≤98, ∴lg(ax )·lg a x 2≤98对一切正实数恒成立. 即(lg a +lg x )(lg a -2lg x )≤98,∴2lg 2x +lg a lg x -lg 2a +98≥0对任意正实数x 恒成立, ∵x >0,∴lg x ∈R ,由二次函数的性质可得,Δ=lg 2a -8⎝ ⎛⎭⎪⎫98-lg 2a ≤0,∴lg 2a ≤1,∴-1≤lg a ≤1,∴110≤a ≤10.。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
单元质量评估(二)(第二章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.可用分数指数幂表示为( )A. B.a3C. D.都不对【解析】选C.====.故选C.2.(2015·怀柔高一检测)指数函数y=a x的图象经过点,则a的值是( )A. B. C.2 D.4【解析】选B.因为y=a x的图象经过点,所以a3=,解得a=.3.等于( )A.2B.2+C.2+D.1+【解析】选A.=2×=2.4.若100a=5,10b=2,则2a+b= ( )A.0B.1C.2D.3【解析】选B.因为100a=102a=5,10b=2,所以100a×10b=102a+b=5×2=10,即2a+b=1.【一题多解】选B.由100a=5得a=log1005,由10b=2得b=lg2,所以2a+b=2×lg5+lg2=1.5.(2015·塘沽高一检测)(log29)·(log34)= ( )A. B. C.2 D.4【解析】选D.(log29)〃(log34)=〃=·=4.【补偿训练】对数式lo(2-)的值是( )A.-1B.0C.1D.不存在【解析】选A.lo(2-)=lo=lo(2+)-1=-1.6.已知-1<a<0,则( )A.(0.2)a<<2aB.2a<<(0.2)aC.2a<(0.2)a<D.<(0.2)a<2a【解析】选B.由-1<a<0,得0<2a<1,(0.2)a>1,>1,知A,D不正确.当a=-时,=<=0.,知C不正确.所以2a<<(0.2)a.【补偿训练】(2014·邢台高一检测)设a=lo3,b=,c=,则a,b,c的大小顺序为( )A.a<b<cB.c<b<aC.c<a<bD.b<a<c【解析】选A.因为a=lo3<lo1=0,即a<0,0<b=<=1,即0<b<1,而c=>20=1,即c>1,所以a<b<c,选A.7.(2015·重庆高一检测)设函数y=x3与y=的图象的交点为(x0,y0),则x0所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选B.作出两个函数在同一坐标系内的图象如图所示,即可观察得出.8.若函数y=f的定义域是[2,4],则y= flo x的定义域是( )A. B.C.[4,16]D.[2,4]【解析】选B.由于2≤lo x≤4,即lo≤lo x≤lo,所以≤x≤,故选B.【误区警示】本题易误认为函数y= f中的变量x也应在[2,4]上从而造成错选D.9.已知函数y=f(x)的反函数f-1(x)=lo x,则方程f(x)=1的解集是( )A. B. C. D.【解析】选D.f-1(x)=lo x,则f(x)=,f(x)=1可得x=0.【一题多解】选 D.f(x)=1根据互为反函数的性质得x=f-1(1)=lo1=0.10.(2015·邢台高一检测)已知f(10x)=x,则f(5)= ( )A.105B.510C.lg 10D.lg 5【解题指南】利用换元法,先求出函数的解析式,再计算f(5)的值. 【解析】选 D.令10x=t>0,则x=lgt,故f(t)=lgt,所以函数f(x)=lgx(x>0),故f(5)=lg5.11.(2015·汉中高一检测)如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点M,N,P,Q,G中,可以是“好点”的个数为( )A.0个B.1个C.2个D.3个【解析】选C.设此函数为y=a x(a>0,a≠1),显然不过点M、P,若设对数函数为y=log b x(b>0,b≠1),显然不过N点,故选C.12.已知函数g(x)=2x-,若f(x)=则函数f(x)在定义域内( )A.有最小值,但无最大值B.有最大值,但无最小值C.既有最大值,又有最小值D.既无最大值,又无最小值【解析】选A.当x≥0时,函数f(x)=g(x)=2x-在[0,+≦)上单调递增,设x>0,则-x<0,f(x)=g(x),f(-x)=g(x),则f(-x)=f(x),故函数f(x)为偶函数,综上可知函数f(x)在x=0处取最小值f(0)=1-1=0,无最大值.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.函数y=的定义域是.【解析】因为lo(x-1)≥0,所以0<x-1≤1,所以1<x≤2.答案:(1,2]【补偿训练】函数y=的定义域为.【解析】因为log0.5(4x-3)≥0,所以0<4x-3≤1,所以<x≤1.答案:14.(2015·沈阳高一检测)已知函数f(x)=则f的值为.【解析】因为>0,所以f=log3=log33-2=-2,所以f(-2)=2-2=.答案:15.函数f(x)=log5(2x+1)的单调增区间是.【解析】函数f(x)的定义域为,设u=2x+1,f(x)=log5u(u>0)是单调增函数,因此只需求函数u=2x+1的单调增区间,而函数u=2x+1在定义域内单调递增.所以函数f(x)的单调增区间是.答案:16.(2015·通化高一检测)已知函数f(x)=是(-∞,+∞)上的减函数,那么a的取值范围是.【解题指南】由于函数在(-≦,+≦)上是减函数,故此分段函数应在每一段上也为减函数,且当x=1时应有3a-1+4a≥0,以此确定a的值. 【解析】由于函数f(x)=是(-≦,+≦)上的减函数,则有,解得≤a<.答案:【延伸探究】若本题将函数改为“f(x)=”且在(-∞,+∞)上是增函数,又如何求解a的取值范围?【解析】由于函数f(x)=是(-≦,+≦)上的增函数,则有:,解得a>1.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)计算:(1)2log32-log3+log38-5log325.(2)log2.56. 25+lg+ln(e)+log2(log216).【解析】(1)原式=log34-log3+log38-2=log3-=log39-9=2-9=-7.(2)原式=2-2++log24=.18.(12分)(2015·咸阳高一检测)已知f(x)=log a(1-x)(a>0,且a≠1)(1)求f(x)的定义域.(2)求使f(x)>0成立的x的取值范围.【解析】(1)依题意得1-x>0,解得x<1,故所求定义域为{x|x<1}. (2)由f(x)>0得log a(1-x)>log a1,当a>1时,1-x>1即x<0,当0<a<1时,0<1-x<1即0<x<1.19.(12分)(2014·十堰高一检测)已知函数f=(m2-m-1)是幂函数,且x∈(0,+∞)时,f(x)是增函数,求f(x)的解析式.【解析】因为f(x)是幂函数,所以m2-m-1=1,解得m=-1或m=2,所以f(x)=x-3或f(x)=x3,又易知f(x)=x-3在(0,+≦)上为减函数,f(x)=x3在(0,+≦)上为增函数.所以f(x)=x3.20.(12分)(2015·临沂高一检测)已知f是偶函数,当x≥0时,f=a x,若不等式f≤4的解集为[-2,2],求a的值. 【解题指南】由已知先求出x<0的解析式,根据f≤4,利用分段函数分段求解,结合其解集为[-2,2],确定出a的值.【解析】当x<0时,-x>0,f(-x)=a-x,因为f为偶函数,所以f=a-x,所以f=(a>1),所以f≤4化为或,所以0≤x≤log a4或-log a4≤x<0,由条件知log a4=2,所以a=2.21.(12分)设a>0,f(x)=+是R上的偶函数.(1)求a的值.(2)证明f(x)在(0,+∞)上是增函数.【解题指南】(1)根据题意,利用偶函数的定义对一切x∈R有f(-x)=f成立,确定出a的值.(2)利用函数单调性的定义证明.【解析】(1)依题意,对一切x∈R有f(-x)=f成立,即+=+ae x,所以=0,对一切x∈R成立,由此得到a-=0,所以a2=1,又a>0,所以a=1.(2)设0<x 1<x2,f-f=-+-=(-)<0,所以f<f,所以f(x)在(0,+≦)上是增函数.22.(12分)(2015·蚌埠高一检测)已知函数f(x)=log a(x+3)-log a(3-x),a>0且a≠1.(1)求函数f(x)的定义域.(2)判断并证明函数f(x)的奇偶性.(3)若a>1,指出函数的单调性,并求函数f(x)在区间[0,1]上的最大值.【解析】(1)由题得解得-3<x<3,故函数f(x)的定义域为(-3,3).(2)函数f(x)为奇函数,由(1)知函数f(x)的定义域关于原点对称,f(-x)=log a(-x+3)-log a(3+x)=-f(x),所以函数f(x)为奇函数.(3)当a>1时,函数f(x)为增函数,从而函数f(x)在区间[0,1]上也为增函数,最大值为f(1)=log a4-log a2=log a2.关闭Word文档返回原板块。
(三) 基本初等函数(Ⅰ)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.与函数y =⎝ ⎛⎭⎪⎫14x的图象关于直线y =x 对称的函数是( ) A .y =4xB .y =4-xC .y =log 14xD .y =log 4x【解析】 由指数、对数函数图象性质知,与函数y =⎝ ⎛⎭⎪⎫14x的图象关于直线y =x 对称的函数是对数函数y =log 14x ,故选C.【答案】 C2.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2)B .y =-x +1C .y =⎝ ⎛⎭⎪⎫12xD .y =x 2-2x【解析】 y =ln(x +2)的定义域为(-2,+∞),在(0,+∞)上递增;y =-x +1的定义域为[-1,+∞),在(0,+∞)上递减;y =⎝ ⎛⎭⎪⎫12x的定义域为R ,在(0,+∞)上递减;y =x 2-2x 的定义域为R ,在(1,+∞)上递增,在(0,1)上递减.故选A.【答案】 AA .(1,+∞)B .(2,+∞)C .(-∞,2]D .(1,2]【解析】得0<x -1≤1, ∴1<x ≤2. 【答案】 D4.设幂函数f (x )的图象经过点⎝ ⎛⎭⎪⎫13,3,设0<a <1,则f (a )与f -1(a )的大小关系是( )A .f -1(a )>f (a ) B .f -1(a )=f (a ) C .f -1(a )<f (a )D .不确定【解析】 设f (x )=x α,将点⎝ ⎛⎭⎪⎫13,3的坐标代入得:3=⎝ ⎛⎭⎪⎫13α,∴α=-12.∴f (x )=x -12,即y =x -12,∴x =y -2, ∴f -1(x )=x -2. 又0<a <1, ∴f -1(a )>f (a ). 故选A. 【答案】 A5.设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x-1,x ,log 2x 2+x ,x,若f (a )=1,则a 的值为( )A .-1B .1C .-1或1D .-1或1或-2【解析】 ∵f (a )=1,∴⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12a-1=1,a ≤0或⎩⎪⎨⎪⎧log 2a 2+a =1,a 2+a >0,a >0,(a 2+a >0与a >0的公共解为a >0)∴⎩⎪⎨⎪⎧a =-1,a ≤0或⎩⎪⎨⎪⎧a 2+a -2=0,a >0.∴a =-1或a =1. 【答案】 C6.若a >b >0,0<c <1,则( ) A .log a c <log b c B .log c a <log c b C .a c<b cD .c a>c b【解析】 对于选项A :log a c =lg c lg a ,log b c =lg clg b ,∵0<c <1,∴lg c <0.而a >b>0,∴lg a >lg b ,但不能确定lg a ,lg b 的正负,∴log a c 与log b c 的大小不能确定.对于选项B :log c a =lg a lg c ,log c b =lg b lg c ,而lg a >lg b ,两边同乘一个负数1lg c 不等号方向改变,∴log c a <log c b ,∴选项B 正确.对于选项C :利用y =x c(0<c <1)在第一象限内是增函数,可得a c>b c,∴选项C 错误.对于选项D :利用y =c x(0<c <1)在R 上为减函数,可得c a<c b,∴选项D 错误,故选B.【答案】 B 7.函数f (x )=lg ⎝ ⎛⎭⎪⎫21-x -1,x ∈(-1,1)的图象关于( )A .y 轴对称B .x 轴对称C .原点对称D .直线y =x 对称【解析】 f (x )=lg 1+x1-x,x ∈(-1,1),∴f (-x )=lg 1-x 1+x =lg ⎝ ⎛⎭⎪⎫1+x 1-x -1=-lg 1+x 1-x =-f (x ).即f (x )为奇函数,关于原点对称. 【答案】 C8.若f (x )=log a x (a >0且a ≠1),f (x )的反函数为g (x ),且g (2)<1,则f (x )的图象是( )【解析】 g (x )=a x(a >0且a ≠1),∴g (2)=a 2<1,故0<a <1, ∴f (x )=log a x 是减函数,应选B. 【答案】 B9.已知函数f (x )满足:f (x )≥|x |且f (x )≥2x,x ∈R .( ) A .若f (a )≤|b |,则a ≤b B .若f (a )≤2b,则a ≤b C .若f (a )≥|b |,则a ≥b D .若f (a )≥2b ,则a ≥b【解析】 ∵f (x )≥|x |,∴f (a )≥|a |.若f (a )≤|b |,则|a |≤|b |,A 项错误.若f (a )≥|b |且f (a )≥|a |,无法推出a ≥b ,故C 项错误.∵f (x )≥2x ,∴f (a )≥2a .若f (a )≤2b,则2b ≥2a ,故b ≥a ,B 项正确.若f (a )≥2b 且f (a )≥2a,无法推出a ≥b ,故D 项错误.故选B.【答案】 B10.已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b=f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a【解析】 由f (x )=2|x -m |-1是偶函数可知m =0,所以f (x )=2|x |-1.所以a =f (log 0.53)=2|log 0.53|-1=2log 23-1=2,b =f (log 25)=2|log 25|-1=2log 25-1=4,c =f (0)=2|0|-1=0,所以c <a <b .【答案】 C11.若函数f (x )=2x+12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)【解析】 因为函数y =f (x )为奇函数,所以f (-x )=-f (x ),即2-x+12-x -a =-2x+12x -a .化简可得a =1,则2x+12x -1>3,即2x+12x -1-3>0,即2x+1-x-2x-1>0,故不等式可化为2x-22x-1<0,即1<2x<2,解得0<x <1,故选C.【答案】 C12.函数y =a x-2(a >0且a ≠1,-1≤x ≤1)的值域是⎣⎢⎡⎦⎥⎤-53,1,则实数a =( )A .3 B.13 C .3或13D.23或32【解析】 当a >1时,y =a x-2在[-1,1]上为增函数,∴⎩⎪⎨⎪⎧a -2=1,1a-2=-53,解得a =3;当0<a <1时,y =a x-2在[-1,1]上为减函数,∴⎩⎪⎨⎪⎧a -2=-53,1a -2=1,解得a =13.综上可知a =3或13.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.计算⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=________.【解析】 原式=lg 1425÷(102) -12=lg10-2÷110=-2×10=-20.【答案】 -2014.化简: a a a =________.【解析】 a a a =aa ·a 1212=a 78.【答案】 a 7815.设函数y =x 2-2x ,x ∈[-2,a ],若函数的最小值为g (a ),则g (a )=________. 【解析】 ∵函数y =x 2-2x =(x -1)2-1的图象对称轴为x =1, ∴当-2<a ≤1时,y min =g (a )=a 2-2a ;当a >1时,y min =g (a )=-1.∴g (a )=⎩⎪⎨⎪⎧a 2-2a ,-2<a-1, a【答案】 ⎩⎪⎨⎪⎧a 2-2a ,-2<a-1, a16.对于下列结论: ①函数y =ax +2(x ∈R )的图象可以由函数y =a x(a >0且a ≠1)的图象平移得到;②函数y =2x与函数y =log 2x 的图象关于y 轴对称; ③方程log 5(2x +1)=log5(x 2-2)的解集为{-1,3};④函数y =ln (1+x )-ln (1-x )为奇函数.其中正确的结论是________.(把你认为正确结论的序号都填上) 【解析】 y =ax +2的图象可由y =a x 的图象向左平移2个单位得到,①正确;y =2x与y=log 2x 的图象关于直线y =x 对称,②错误;由log 5(2x +1)=log 5(x 2-2),得⎩⎪⎨⎪⎧2x +1=x 2-2,2x +1>0,x 2-2>0,∴⎩⎪⎨⎪⎧x =-1,3,x >-12,x >2或x <-2,∴x =3,③错误;设f (x )=ln (1+x )-ln (1-x ),定义域为(-1,1),关于原点对称,f (-x )=ln (1-x )-ln (1+x )=-[ln (1+x )-ln (1-x )]=-f (x ).∴f (x )是奇函数,④正确.故正确的结论是①④. 【答案】 ①④三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)求下列函数的定义域. (1)f (x )=1log 2x +-3; (2)f (x )=92x -1-127. 【解】 (1)要使函数有意义,须满足⎩⎪⎨⎪⎧x +1>0,log 2x +=log 28,∴⎩⎪⎨⎪⎧x >-1,x ≠7,∴函数的定义域为{x |x >-1且x ≠7}. (2)要使函数有意义,须满足:92x -1-127≥0, ∴34x -2≥3-3,∴x ≥-14,∴函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥-14.18.(本小题满分12分)若lg a ,lg b 是方程2x 2-4x +1=0的两根,求lg(ab )·⎣⎢⎡⎦⎥⎤lg ⎝ ⎛⎭⎪⎫a b 2的值.【解】 ∵lg a ,lg b 是方程2x 2-4x +1=0的两根, ∴⎩⎪⎨⎪⎧lg a +lg b =2,lg a ·lg b =12.∴⎩⎪⎨⎪⎧ab =2,lg a ·lg b =12.∴⎣⎢⎡⎦⎥⎤lg ⎝ ⎛⎭⎪⎫a b 2=(lg a -lg b )2=(lg a +lg b )2-4lg a ·lg b =[lg (ab )]2-4lg a ·lg b =22-4×12=2.∴lg(ab )·⎣⎢⎡⎦⎥⎤lg ⎝ ⎛⎭⎪⎫a b 2=2×2=4. 19.(本小题满分12分)求y =(log 12x )2-12log 12x +5在区间[2,4]上的最大值和最小值.【解】 ∵2≤x ≤4, ∴-2≤log 12x ≤-1.设t =log 12x ,则-2≤t ≤-1,y =t 2-12t +5=⎝ ⎛⎭⎪⎫t -142+7916.∵对称轴t =14∉[-2,-1],∴y =t 2-12t +5在[-2,-1]上是减函数.∴y (-1)≤y ≤y (-2), 即当t =-1时,y min =132,当t =-2时,y max =10.20.(本小题满分12分)已知f (x )=log a 1+x1-x (a >0,且a ≠1).(1)求f (x )的定义域;(2)求使f (x )>0的x 的取值范围.【解】 (1)要使f (x )有意义,x 的取值必须满足1+x1-x>0,即⎩⎪⎨⎪⎧1+x >0,1-x >0或⎩⎪⎨⎪⎧1+x <0,1-x <0,解得-1<x <1.故f (x )的定义域为(-1,1). (2)当a >1时,由log a 1+x1-x >0=log a 1,得1+x1-x>1, 即⎩⎪⎨⎪⎧-1<x <1,1+x >1-x .解得0<x <1.当0<a <1时,由log a 1+x 1-x >0=log a 1,得0<1+x 1-x<1,即⎩⎪⎨⎪⎧-1<x <1,1+x <1-x .解得-1<x <0.故当a >1时,所求x 的取值范围为0<x <1; 当0<a <1时,所求x 的取值范围为-1<x <0.21.(本小题满分12分)分贝是计量声音强度相对大小的单位.物理学家引入了声压级(spl)来描述声音的大小:把声压P 0=2×10-5帕作为参考声压,把所要测量的声压P 与参考声压P 0的比值取常用对数后乘以20得到的数值称为声压级.声压级是听力学中最重要的参数之一,单位是分贝(dB).分贝值在60以下为无害区,60~110为过渡区,110以上为有害区.(1)根据上述材料,列出分贝值y 与声压P 的函数关系式; (2)某地声压P =0.002帕,试问该地为以上所说的什么区?(3)某晚会中,观众用仪器测量到最响亮的一次音量达到了90分贝,试求此时的声压是多少?【解】 (1)由已知,得y =20lg P P 0. 又P 0=2×10-5,则y =20lg P2×10-5.(2)当P =0.002时,y =20lg 0.0022×10-5=20lg 102=40(分贝).由已知条件知40分贝小于60分贝,所以该地区为无害区. (3)由题意,得90=20lg P P 0,则P P 0=104.5, 所以P =104.5P 0=104.5×2×10-5=2×10-0.5≈0.63(帕).22.(本小题满分12分)已知指数函数y =g (x )满足g (2)=4,定义域为R 的函数f (x )=-g x +n 2g x +m是奇函数. (1)确定y =g (x )的解析式; (2)求m ,n 的值;(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求实数k 的取值范围. 【解】 (1)g (x )=2x. (2)由(1)知f (x )=-2x +n 2x +1+m .∵f (x )在R 上是奇函数,∴f (0)=0,即n -12+m=0,∴n =1.∴f (x )=1-2x2x +1+m.又由f (1)=-f (-1)知1-24+m =-1-12m +1,解得m =2.(3)由(2)知f (x )=1-2x2+2x +1=-12+12x+1, 易知f (x )在(-∞,+∞)上为减函数.又f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),∴t 2-2t >k -2t 2,即3t 2-2t -k >0. 由判别式Δ=4+12k <0可得k <-13.。
第二章 基本初等函数(Ⅰ)(一)(指数与指数函数) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a <14,则化简4(4a -1)2的结果是( ) A.1-4a B.4a -1 C .-1-4aD .-4a -12.某林区的森林蓄积量每年比上一年平均增加110.4%,那么经过x 年可增长到原来的y 倍,则函数y =f (x )的图象大致是( )3.设f (x )=⎝ ⎛⎭⎪⎫12|x |,x ∈R ,那么f (x )是( )A .奇函数且在(0,+∞)上是增函数B .偶函数且在(0,+∞)上是增函数C .奇函数且在(0,+∞)上是减函数D .偶函数且在(0,+∞)上是减函数 4.若3a >1,则实数a 的取值范围为( )A .(-∞,0)B .(0,1)C .(0,+∞)D .(2,+∞) 5.函数y =2x -12x +1是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数6.函数y =⎝ ⎛⎭⎪⎫12 x 2-2 的单调递减区间为()A .(-∞,0]B .0,+∞)C .(-∞,2]D .2,+∞)7.函数y =⎝ ⎛⎭⎪⎫12-x 2+2x 的值域是( )A .R B.⎣⎢⎡⎭⎪⎫12,+∞ C .(2,+∞)D .(0,+∞)8.设f (x )是定义在实数集R 上的函数,满足条件:y =f (x +1)是偶函数,且当x ≥1时,f (x )=5x,则f ⎝ ⎛⎭⎪⎫23,f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫13的大小关系是( )A .f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32B .f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫23C .f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫13D .f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫139.函数y =|x |e -xx 的图象的大致形状是( )10.下列函数中,与y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( )A .y =-1x B .y =|x |-1|x | C .y =-(2x +2-x )D .y =x 3-111.已知函数f (x )=⎩⎪⎨⎪⎧a x (x <0),(a -3)x +4a (x ≥0)满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是( )A.⎝ ⎛⎦⎥⎤0,14 B .(0,1) C.⎣⎢⎡⎭⎪⎫14,1 D .(0,3) 12.设函数f (x )=2-x 2+x +2,对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K ,f (x )>K ,若对于函数f (x )=2-x 2+x +2定义域内的任意x ,恒有f K (x )=f (x ),则( )A .K 的最大值为2 2B .K 的最小值为2 2C .K 的最大值为1D .K 的最小值为1第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.2-12+(-4)2+12-1-(1-5)0=________.14.函数f (x )=2a x +1-3(a >0,且a ≠1)的图象经过的定点坐标是________.15.若函数f (x )=⎩⎪⎨⎪⎧1x ,x <0,⎝ ⎛⎭⎪⎫13x,x ≥0,则不等式|f (x )|≥13的解集为________.16.设f (x )是定义在R 上的奇函数,且当x >0时,f (x )=2x -3,则当x <0时,f (x )=________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)函数f (x )=k ·a -x (k ,a 为常数,a >0且a ≠1)的图象过点A (0,1),B (3,8). (1)求函数f (x )的解析式;(2)若函数g (x )=f (x )-1f (x )+1,试判断函数g (x )的奇偶性并给出证明.18.(本小题满分12分) 已知函数f (x )=2x -4x .(1)求y =f (x )在-1,1]上的值域; (2)解不等式f (x )>16-9×2x ;(3)若关于x 的方程f (x )+m -1=0在-1,1]上有解,求m 的取值范围.19.(本小题满分12分)某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的关系近似满足如图所示的曲线.(1)写出服药后y 与t 之间的函数关系式y =f (t );(2)进一步测定:每毫升血液中的含药量不少于0.25毫克时,药物对治疗疾病有效.求服药一次治疗疾病的有效时间.20.(本小题满分12分)已知函数f (x )=a 2+22x +1是奇函数.(1)求a 的值;(2)判断f (x )的单调性,并用定义加以证明; (3)求f (x )的值域.21.(本小题满分12分)已知函数f (x )=⎝ ⎛⎭⎪⎫13x ,x ∈-1,1],函数φ(x )=f (x )]2-2af (x )+3的最小值为h (a ).(1)求h (a );(2)是否存在实数m >n >3,当h (a )的定义域为n ,m ]时,值域为n 2,m 2]?若存在,求出m ,n 的值;若不存在,请说明理由.22.(本小题满分12分)定义在D 上的函数f (x ),如果满足:对任意x ∈D ,存在常数M >0,都有|f (x )|≤M 成立,则称f (x )是D 上的有界函数,其中M 称为函数f (x )的上界.已知函数f (x )=1+a ·⎝ ⎛⎭⎪⎫13x +⎝ ⎛⎭⎪⎫19x . (1)当a =-12时,求函数f (x )在(-∞,0)上的值域,并判断函数f (x )在(-∞,0)上是否为有界函数,请说明理由;(2)若函数f (x )在0,+∞)上是以4为上界的有界函数,求实数a 的取值范围.详解答案第二章 基本初等函数(Ⅰ)(一)(指数与指数函数)1.A 解析:∵a <14,∴4a -1<0,∴4(4a -1)2=1-4a . 2.D 解析:经过x 年后y =(1+110.4%)x =2.104x .3.D 解析:函数f (x )的定义域R 关于原点对称,且f (-x )=⎝ ⎛⎭⎪⎫12|-x |=⎝ ⎛⎭⎪⎫12|x |=f (x ),所以f (x )是偶函数.又f (x )=⎝ ⎛⎭⎪⎫12|x |=⎩⎨⎧⎝ ⎛⎭⎪⎫12x ,x ≥0,2x ,x <0,所以f (x )在(0,+∞)上是减函数.4.C 解析:因为3a >1,所以3a >30,3>1,∴y =3a 是增函数.∴a >0.5.A 解析:函数y =2x -12x +1的定义域(-∞,+∞)关于原点对称,且f (-x )=2-x -12-x +1=12x -112x +1=1-2x1+2x=-f (x ),所以该函数是奇函数.6.B 解析:函数y =⎝ ⎛⎭⎪⎫12u 为R 上的减函数,欲求函数y =⎝ ⎛⎭⎪⎫12 x 2-2 的单调递减区间,只需求函数u =x 2-2的单调递增区间,而函数u =x 2-2的单调递增区间为0,+∞).7.B 解析:令t =-x 2+2x ,则t =-x 2+2x 的值域为(-∞,1],所以y =⎝ ⎛⎭⎪⎫12-x 2+2x =⎝ ⎛⎭⎪⎫12t 的值域为⎣⎢⎡⎭⎪⎫12,+∞.解题技巧:本题主要考查了指数型函数的值域,解决本题的关键是先求出指数t =-x 2+2x 的值域,再根据复合函数的单调性求出指数型函数的值域.8.D 解析:∵y =f (x +1)是偶函数,∴y =f (x +1)的对称轴为x =0,∴y =f (x )的对称轴为x =1.又x ≥1时,f (x )=5x ,∴f (x )=5x 在1,+∞)上是增函数,∴f (x )在(-∞,1]上是减函数.∵f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫12,且23>12>13,∴f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13,即f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13. 9.C 解析:由函数的表达式知,x ≠0,y =e -x |x |x =⎩⎪⎨⎪⎧e -x,x >0,-e -x,x <0,所以它的图象是这样得到的:保留y =e -x ,x >0的部分,将x <0的图象关于x 轴对称.故选D.10.C 解析:设函数f (x )=y =-3|x |,x ∈R ,∴f (-x )=-3|-x |.∵f (x )=f (-x ),∴f (x )为偶函数.令t =|x |,∴t =|x |,x ∈(-∞,0)是减函数,由复合函数的单调性知,y =-3|x |在x ∈(-∞,0)为增函数.选项A 为奇函数,∴A 错;选项B 为偶函数但是在x ∈(-∞,0)为减函数,∴B 错;选项C 令g (x )=-(2x +2-x ),g (-x )=-(2-x +2x ),∴g (x )=g (-x ),∴g (x )为偶函数.由复合函数的单调性知,g (x )在x ∈(-∞,0)为增函数.故选C.11.A 解析:∵对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,∴f (x )是R 上的减函数.∴⎩⎪⎨⎪⎧0<a <1,a 0≥4a ,解得a ∈⎝ ⎛⎦⎥⎤0,14.故选A.12.B 解析:∵函数f (x )=2-x 2+x +2的值域为1,22],又∵对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K ,f (x )>K ,若对于函数f (x )=2-x 2+x +2定义域内的任意x ,恒有f K (x )=f (x ),∴K ≥2 2.故选B.13.-22 解析:2- 12+(-4)2+12-1-(1-5)0=12-42+2+11-1=-32+2=-22.14.(-1,-1) 解析:由指数函数恒过定点(0,1)可知,函数f (x )=2a x +1-3(a >0,且a ≠1)的图象恒过定点(-1,-1).15.-3,1] 解析:当x <0时,|f (x )|≥13,即1x ≤-13,∴x ≥-3;当x ≥0时,|f (x )|≥13,即⎝ ⎛⎭⎪⎫13x ≥13,∴x ≤1.综上不等式的解集是x ∈-3,1].解题技巧:本题主要考查了关于分段函数的不等式,解决本题的关键是分段求出不等式的解集,最后取并集.16.-2-x +3 解析:当x <0时,-x >0.∵当x >0时,f (x )=2x -3,∴f (-x )=2-x -3.又f (x )是定义在R 上的奇函数,∴当x <0时,f (-x )=2-x -3=-f (x ),∴f (x )=-2-x +3.17.解:(1)由函数图案过点A (0,1)和B (3,8)知,⎩⎪⎨⎪⎧k =1,k ·a -3=8,解得⎩⎨⎧k =1,a =12,∴f (x )=2x .(2)函数g (x )=2x -12x +1为奇函数.证明如下:函数g (x )定义域为R ,关于原点对称;且对于任意x ∈R ,都有g (-x )=2-x -12-x +1=1-2x 1+2x =-2x -12x +1=-g (x )成立.∴函数g (x )为奇函数.18.解:(1)设t =2x ,因为x ∈-1,1],∴t ∈⎣⎢⎡⎦⎥⎤12,2,y =t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,∴t =12时,f (x )max =14,t =2时,f (x )min =-2. ∴f (x )的值域为⎣⎢⎡⎦⎥⎤-2,14. (2)设t =2x ,由f (x )>16-9×2x 得t -t 2>16-9t , 即t 2-10t +16<0,∴2<t <8,即2<2x <8,∴1<x <3,∴不等式的解集为(1,3).(3)方程有解等价于m 在1-f (x )的值域内,∴m 的取值范围为⎣⎢⎡⎦⎥⎤34,3. 19.解:(1)当t ∈0,1]时,设函数的解析式为y =kt ,将M (1,4)代入,得k =4,∴ y =4t .又当t ∈(1,+∞)时,设函数的解析式为y =⎝ ⎛⎭⎪⎫12t -a , 将点(3,1)代入得a =3,∴ y =⎝ ⎛⎭⎪⎫12t -3. 综上,y =f (t )=⎩⎨⎧ 4t ,0≤t ≤1,⎝ ⎛⎭⎪⎫12t -3,t >1.(2)由f (t )≥0.25,解得116≤t ≤5.所以服药一次治疗疾病的有效时间为5-116=7916(小时).解题技巧:解题时,先观察图形,将图形语言转化成符号语言.由图形可知这是一个一次函数、指数函数相结合的题目.根据条件设出解析式,结合图象中的已知点求出函数解析式,再利用分段函数的知识即可求解服药一次治疗疾病的有效时间.20.解:(1)由题知,f (x )的定义域是R ,∵f (x )是奇函数,∴f (0)=0,即f (0)=a 2+220+1=0, 解得a =-2.经验证可知,f (x )是奇函数,∴a =-2.(3)f (x )=-1+22x +1, ∵2x >0,∴2x+1>1,∴0<22x +1<2,-1<-1+22x +1<1, ∴-1<y <1.故f (x )的值域为(-1,1).21.解:(1)因为x ∈-1,1],所以⎝ ⎛⎭⎪⎫13x ∈⎣⎢⎡⎦⎥⎤13,3. 设t =⎝ ⎛⎭⎪⎫13x ,t ∈⎣⎢⎡⎦⎥⎤13,3,则φ(x )=t 2-2at +3=(t -a )2+3-a 2. 当a <13时,y min =h (a )=φ⎝ ⎛⎭⎪⎫13=289-2a 3; 当13≤a ≤3时,y min =h (a )=φ(a )=3-a 2;当a >3时,y min =h (a )=φ(3)=12-6a .∴h (a )=⎩⎪⎨⎪⎧ 289-2a 3⎝ ⎛⎭⎪⎫a <13,3-a 2⎝ ⎛⎭⎪⎫13≤a ≤3,12-6a (a >3).(2)假设满足题意的m ,n 存在,∵m >n >3,∴h (a )=12-6a 在(3,+∞)上是减函数.∵h (a )的定义域为n ,m ],值域为n 2,m 2],∴⎩⎪⎨⎪⎧12-6m =n 2,12-6n =m 2,两式相减,得6(m -n )=(m -n )(m +n ). 由m >n >3,∴m +n =6,但这与m >n >3矛盾,∴满足题意的m ,n 不存在.解题技巧:本题主要考查了指数型函数的值域、存在性问题;解决存在性问题的关键是先假设存在,把假设作为已知条件进行推理,若推理合理则存在,若推理不合理则不存在.22.解:(1)当a =-12时,f (x )=1-12×⎝ ⎛⎭⎪⎫13x +⎝ ⎛⎭⎪⎫19x .令t =⎝ ⎛⎭⎪⎫13x ,∵x <0,∴t >1,f (t )=1-12t +t 2.∵f (t )=1-12t +t 2在(1,+∞)上单调递增,∴f (t )>32,即f (x )在(-∞,1)的值域为⎝ ⎛⎭⎪⎫32,+∞. 故不存在常数M >0,使|f (x )|≤M 成立,∴函数f (x )在(-∞,0)上不是有界函数.(2)由题意知,|f (x )|≤4,即-4≤f (x )≤4对x ∈0,+∞)恒成立.令t =⎝ ⎛⎭⎪⎫13x ,∵x ≥0,∴t ∈(0,1],∴-⎝⎛⎭⎪⎫t +5t ≤a ≤3t -t 对t ∈(0,1]恒成立, ∴⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫t +5t max ≤a ≤⎝ ⎛⎭⎪⎫3t -t min .设h (t )=-⎝ ⎛⎭⎪⎫t +5t ,p (t )=3t -t ,t ∈(0,1]. 由于h (t )在t ∈(0,1]上递增,p (t )在t ∈(0,1]上递减,h (t )在t ∈(0,1]上的最大值为h (1)=-6,p (t )在1,+∞)上的最小值为p (1)=2,则实数a 的取值范围为-6,2].。
基本初等函数章节测试一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 ) 1. 化简[√(−5)23]34的结果为( ) A.5B.√5C.−√5D.−52. 若x 1是方程lg x +x =3的解,x 2是10x +x =3的解,则x 1+x 2的值为( ) A.32B.23C.3D.133. 函数f(x)=(m 2−m −1)x 4m 9−m 5−1是幂函数,对任意x 1,x 2∈(0, +∞),且x 1≠x 2,满足f(x 1)−f(x 2)x 1−x 2>0,若a ,b ∈R ,且a +b >0,ab <0,则f(a)+f(b)的值( ) A.恒大于0 B.恒小于0C.等于0D.无法判断4. 化简: (827)−13+lg √10=( ) A.1B.2C.3D.45. 已知函数f(x)={2x x ≤1f(x −1)x >1,则f(log 23)=( )A.3B.32C.1D.26. 若xy ≠0,那么等式√4x 2y 3=−2xy √y 成立的条件是( ) A.x >0,y >0B.x >0,y <0C.x <0,y >0D.x <0,y <07. 下面的函数中是幂函数的是( )①y =x 2+2; ②y =x 12; ③y =2x 3; ④y =x 34; ⑤y =x 13+1. A.①⑤B.①②③C.②④D.②③⑤8. 若指数函数f(x)=a x (a >0且a ≠1)在区间[1,4]上的最大值是最小值的8倍,则实数a 的值为( ) A.12或2B.√2或√22C.13或3D.√33或√39. 已知幂函数y =(m 2−9m +19)x 2m 2−7m−9的图象不过原点,则m 的值为( )A.6B.3C.3或6D.3或010. 设a =(57)37,b =(37)57,c =(37)37,则a ,b ,c 的大小关系为( )A.b<c<aB.a<b<cC.a<c<bD.c<a<b11. 已知点(√33,√3)在幂函数f(x)的图象上,则f(x)是()A.奇函数B.偶函数C.定义域内的减函数D.定义域内的增函数12. 设a>1,若对于任意的x∈[a, 2a],都有y∈[a, a2]满足方程log a x+log a y=3,这时a的取值集合为()A.{a|1<a≤2}B.{a|a≥2}C.{a|2≤a≤3}D.{2, 3}二、填空题(本题共计 4 小题,每题 5 分,共计20分)13. 某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y=e kt(其中k为常数,t表示时间,单位:小时,y表示病毒个数),经过5小时,1个病毒能繁殖为________个.14. 已知函数f(x)=ln x+1的图象与直线y=x−a+2015恰有一个公共点,关于x的不等式loga x+1x−1>logamx+2在[1, +∞)上恒成立.则实数m的取值范围是________.15. 若a+a−1=4,则a2+a−2=________;若x log4 3=1,则3x+3−x=________.16. 已知a,b∈R+,且满足log4(2a+b)=log2√ab,则8a+b的最小值为________.三、解答题(本题共计 5 小题,每题 14 分,共计70分)17. 求下列函数的定义域:(1)y=log(x−1)(−x2+2x+3);(2)y=√1−log a(x+a)>0,a≠1).18. 比较大小:(1)0.40.2,20.2,21.6;(2)log0.10.4,1og120.4,log30.4,lg0.4;(3)a−b,a b,a a,其中0<a<b<1.(0<a<1).19. 函数f(x)=log a1−x1+x(1)求函数f(x)的定义域D,并判断f(x)的奇偶性;(2)如果当x∈(t, a)时,f(x)的值域为(−∞, 1),求a与t的值.20. 在函数y=log a x(a>1)的图象上有A、B、C三点,横坐标分别为m,m+2,m+ 4,其中m>1.(1)求△ABC的面积S=f(m)的表达式;(2)求S=f(m)的值域..21. 已知f(x)=log21+x1−x(1)求函数f(x)的定义域;(2)判断函数奇偶性并给予证明;(3)求函数f(x)的单调区间.参考答案与试题解析一、选择题(本题共计 12 小题,每题 5 分,共计60分)1.【解答】解:[√(−5)23]34=(52)13×34=52×14=512=√5故选B2.【解答】解:x1是方程lg x+x=3的解,就是y=lg x和y=3−x图象交点的横坐标.同理,方程10x+x=3的解就是函数y=10x和y=3−x图象交点的横坐标,函数y=lg x和y=10x的图象关于直线y=x对称,又直线y=3−x和y=x互相垂直,根据对称性可得,x1+x2就是直线y=3−x和y=x交点的横坐标的二倍,故x1+x2=3.故选C.3.【解答】根据题意,得f(x)=(m2−m−1)x4m9−m5−1是幂函数,∴m2−m−1=1,解得m=2或m=−1;又f(x)在第一象限是增函数,且当m=2时,指数4×29−25−1=2015>0,满足题意;当m=−1时,指数4×(−1)9−(−1)5−1=−4<0,不满足题意;∴幂函数f(x)=x2015是定义域R上的奇函数,且是增函数;又∵a,b∈R,且a+b>0,∴a>−b,又ab<0,不妨设b<0,即a>−b>0,∴f(a)>f(−b)>0,f(−b)=−f(b),∴f(a)>−f(b),∴f(a)+f(b)>0.4.【解答】解:原式=32+12=2.故选B. 5.【解答】解:∵2=log24>log23>log22=1∴f(log23)=f(log23−1)。
绝密★启用前|KS5U 试题命制中心2017-2018学年高一数学人教必修1(第02章)章末检测(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{1,0,1}A =-,集合{|124}x B x =≤<,则A B 等于A .{}1,0,1-B .{1}C .{}1,1-D .{0,1}2.设34a =,则2log 3的值等于A .2aB .aC .1aD .2a3.下列函数中,在其定义域内是减函数的是A .()2x f x =B .()ln f x x =C .12()f x x =D .13()log f x x =4.若幂函数()f x的图象过点,则(8)f =A .8B .6C .4D .25.函数()f x 的图象向右平移1个单位长度,所得图象与曲线e x y =关于y 轴对称,则()f x =A .1e x +B .1e x -C .1e x -+D .1e x --6.已知函数1 (4()2(1),4)xx f x f x x ⎧≥⎪=⎨⎪+<⎩,,则12(2log 3)f -= A .124B .112C .18D .387.设12log 3a =,0.21()3b =,132c =,则A .a b c <<B .c b a <<C .c a b <<D .b a c <<8.二次函数2y ax bx =+与指数函数()xb y a=的图象可以是9.已知幂函数26()mm y x m --=∈Ζ的图象与x 轴无公共点,则m 的取值范围是A .{1,0,1,2}-B .{2,1,0,1,2,3}--C .{2,1,0,1}--D .{3,2,1,1,2}---10.已知函数12,1()1log ,1()3x a a x f x x x ⎧-≤⎪=⎨+>⎪⎩,当12x x ≠时,1212()()0f x f x x x -<-,则a 的取值范围是A .11[,]32B .1(0,]3C .1(0,]2D .11[,]4311.已知定义在R 上的函数()f x 满足()(),(1)(1)f x f x f x f x -=-+=-,且当[0,1]x ∈时,()f x =2log (1)x +,则(31)f =A .0B .1C .1-D .212.定义函数(),y f x x D =∈(定义域),若存在常数C ,对于任意1x D ∈,存在唯一的2x D ∈,使得12()()2f x f x C +=,则称函数()f x 在D 上的“均值”为C ,已知()lg ,[10,100]f x x x =∈,则函数()f x 在[10,100]上的均值为A .32B .34C .110D .10第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.已知(()log 3(01))a f x x a a =->≠且,则函数()f x 的图象必过定点 .14.已知15x x -+=,则22x x -+= .15.函数2234()3x x y -+-=的单调增区间为 .16.已知()f x 是定义在R 上的偶函数,且当0x >时,2()lg 21xx f x =+,若对任意实数1[,2]2t ∈,都有()(1)f ta f t +-->恒成立,则实数a 的取值范围是 .三、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)计算下列各式的值:(1)1140440.0625[3]()+--(2)245(lg 2)lg 2lg 5log 5log 4+⋅⋅.18.(本小题满分12分)已知函数()(0,1)x f x a b a a =+>≠的图象过点0,2,()()2,0-.(1)求a 与b 的值;(2)求[2,4]x ∈-时,()f x 的最大值与最小值.19.(本小题满分12分)已知幂函数21()*()()mm f x x m -+=∈N .(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数()f x 经过点,试确定m 的值,并求满足条件(2)(1)f a f a ->-的实数a 的取值范围.20.(本小题满分12分)已知函数2()lg(2)f x ax x a =-+.(1)若函数()f x 的定义域为R ,求实数a 的取值范围;(2)若函数()f x 的值域为R ,求实数a 的取值范围.21.(本小题满分12分)已知11()()2()3,[1,1]93xxf x a x =-+∈-.(1)若()f x 的最小值记为()h a ,求()h a 的解析式;(2)是否存在实数,m n 同时满足以下条件:①33log log 1m n >>;②当()h a 的定义域为[,]n m 时,值域为22[,]n m .若存在,求出,m n 的值;若不存在,请说明理由.22.(本小题满分12分)已知函数1()log (01amxf x a x -=>-且1)a ≠是奇函数. (1)求实数m 的值; (2)判断函数在区间(1,)+∞上的单调性并说明理由;(3)当(,2)x n a ∈-时,函数()f x 的值域为(1,)+∞,求实数,n a 的值.。
2018-2019学年人教A 数学必修1基本初等函数(Ⅰ)单元测试卷 选择题(本大题共12小题,每小题5分,共60分.每小题只有一个选 项符合题意1. 函数f(x)=√4−x ( )A.[1,4]B.(1,4)C.[2,4]D.(1,2]2. 已知x ,y 为正实数,则( )A.3lg x+lg y =3lg x +3lg yB.3lg (x+y)=3lg x ⋅3lg yC.3lg x⋅lg y =3lg x +3lg yD.3lg (xy)=3lg x ⋅3lg y3. 已知函数f(x)=3x −(13)x ,则f(x)( )A.是偶函数,且在R 上是增函数B.是奇函数,且在R 上是增函数C.是偶函数,且在R 上是减函数D.是奇函数,且在R 上是减函数4. 函数y =1−lg x1+lg x (x ≥1)的值域是( )A.[−1,1]B.[−1,1)C.(−1,1]D.(−1,1)5. 已知x =log 23−log 2√3,y =log 0.5π,z =0.9−1.1,则x ,y ,z 的大小关系是( )A.x <y <zB.z <y <xC.y <z <xD.y <x <z6. 已知函数f(x)={f(x +4),x <2(13)x ,x ≥2,则f(−3+log 35)的值为( )A.115B.53 C.15 D.237. 若函数f(x)=3|2x−m|(m 为常数)在区间[3,+∞)上是增函数,则m 的取值范围是( )A.[3,+∞)B.(3,+∞)C.(−∞,6]D.(−∞,6)8. 若偶函数f(x)在(−∞,0]上单调递减,则( )A. f(log49)<f(log2√5)<f(232)B.f(232)<f(log49)<f(log2√5)C.f(log2√5)<f(log49)<f(232)D. f(232)<f(log2√5)<f(log49)9. 在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数f(x)的图象恰好通过n(n∈N∗)个整点,则称函数f(x)为n阶整点函数.有下列函数:①f(x)=x+1x (x>0);②g(x)=x3;③ℎ(x)=(13)x;④φ(x)=ln x.其中一阶整点函数的个数是( )A.1B.2C.3D.410. 某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.已知在过滤过程中废气中的污染物数量P(单位:mg/L)与过滤时间t(单位:ℎ)之间的函数关系为:P=P0e−kt,(k,P0均为正的常数).若在前5ℎ的过滤过程中污染物被排除了90%.那么废气可以排放至少还需过滤( )A.1 2ℎB.59ℎ C.5ℎ D.10ℎ11. 函数f(x)=x a满足f(2)=4,那么函数g(x)=|log a(x+1)|的图象大致为()A. B.C. D.12. 设函数f(x)=−4x+2x+1−1,g(x)=lg(ax2−4x+1),若对任意x1∈R,都存在x2∈R,使f(x1)=g(x2),则实数a的最大值为( )A.−4B.4C.0D.16二、填空题(本大题共4小题,每小题5分,共20分把答案填在题中横线函数f(x)=log 18(x 2−3)的单调递减区间为________.已知函数f(x)={log 2(1−x)+1,−1≤x <0x,0≤x ≤a的值域是[0,2],则实数a 的取值范围为________.对于函数f(x)定义域上任意的x 1,x 2(x 1≠x 2),有如下结论:①f(x 1+x 2)=f(x 1)f(x 2);②f(−x 1x 2)=f(x 1)+f(x 2);③(x 1−x 2)[f(x 1)−f(x 2)]<0;④f(x 1+x 22)<f(x 1)+f(x 2)2.当f(x)=lg (−x)时,上述结论中正确的是________(填序号).如图,函数f(x)的图象为折线ACB ,则不等式f(x)ln 3−ln (x +2)≥0的解集为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程 演算步骤计算下列各式:(1)(−2018)0+1.5−2×(338)23−0.01−0.5+log 12√324;(2)log 2.56.25+lg 1100+ln √e +21+log 23.已知函数g(x)=(a +1)x−2+1(a >0)的图象恒过定点A ,且点A 又在函数f(x)=log √3(x +a)的图象上.(1)求实数a 的值;(2)解不等式f(x)<log √3a .已知函数f(x)=a x (a >0且a ≠1)在[−1,1]上的最大值与最小值之差为32. (1)求实数a 的值;(2)若g(x)=f(x)−f(−x),当a >1时,解不等式g(x 2+2x)+g(1−x 2)>0.已知直线y =2x +3与y 轴的交点为A ,二次函数f(x)的图象过点A ,且满足f(x +1)=f(x)+2x −1.(1)求函数f(x)的解析式;(2)若函数y =f(log 3x +m)(13≤x ≤3)的最小值为3,求实数m 的值.已知函数f(x)=log a x−5x+5(a >0且a ≠1).(1)判断f(x)的奇偶性,并加以证明.(2)是否存在实数m ,使得f(x +2)+f(m −x)为常数?若存在,求出m 的值;若不存在,请说明理由.已知函数f(x)=(12)x ,函数g(x)=log 12x . (1)若g(ax 2+2x +1)的定义域为R ,求实数a 的取值范围;(2)当x ∈[(12)t+1, (12)t ]时,求函数y =[g(x)]2−2g(x)+2的最小值ℎ(t);(3)是否存在非负实数m 、n ,使得函数y =log 12f(x 2)的定义域为[m, n],值域为[2m, 2n]?若存在,求出m 、n 的值;若不存在,则说明理由.参考答案与试题解析2018-2019学年人教A 数学必修1基本初等函数(Ⅰ)单元测试卷 选择题(本大题共12小题,每小题5分,共60分.每小题只有一个选 项符合题意 1.【答案】B【考点】函数的定义域及其求法【解析】本题主要考查函数定义域的求解.【解答】解:由{x −1>0,4−x >0.得1<x <4.故选B .2.【答案】D【考点】对数及其运算有理数指数幂的化简求值【解析】本题主要考查对数与指数的运算.【解答】解:3lg (xy)=3lg x+lg y =3lg x ⋅3lg y ,故选D .3.【答案】B【考点】函数单调性的判断与证明函数奇偶性的判断【解析】本题主要考查函数的奇偶性和单调性.【解答】解:易知函数f(x)的定义域为R ,f(−x)=(13)x−3x =−f(x),所以为奇函数.因为y =(13)x 在R 上是减函数,所以y =−(13)x 在R 上是增函数,又y =3x 在R 上是增函数,所以函数f(x)=3x −(13)x 在R 上是增函数. 故选B .4.【答案】C【考点】函数的值域及其求法【解析】本题主要考查函数的值域.【解答】解:由题意得y =−1+21+lg x , 因为x ≥1,所以lg x +1≥1,0<2lg x+1≤2, 所以y ∈(−1,1].故选C .5.【答案】D【考点】指数式、对数式的综合比较【解析】本题考查指数、对数的大小比较.【解答】解:因为x =log 23−log 2√3=log 2√3,所以0<x <1.又y =log 0.5π<0,z =0.9−1.1=(109)1.1>1, 所以y <x <z .故选D .6.【答案】A【考点】分段函数的应用【解析】本题主要考查分段函数的求值.【解答】解:因为1<log 35<2,所以−2<−3+log 35<−1,所以2<−3+log 35+4<3,所以f(−3+log 35)=f(−3+log 35+4)=(13)1+log 35=13×(13)log 1315=13×15=115,故选A.7.【答案】C【考点】指数函数的单调性与特殊点复合函数的单调性【解析】此题暂无解析【解答】解:令t=|2x−m|,则t=|2x−m|在区间[m2,+∞)上单调递增,在区间(−∞,m2]上单调递减.而y=3t为增函数,所以要使函数f(x)=3|2x−m|在(3,+∞)上单调递增,则有m2≤3,即m≤6,所以m的取值范围是(−∞,6].故选C.8.【答案】C【考点】指数式、对数式的综合比较抽象函数及其应用奇偶性与单调性的综合【解析】本题主要考查抽象函数的单调性、奇偶性,比较指数、对数的大小. 【解答】解:因为log49=log23∈(1,2),log2√5<log23,232>2,所以0<log2√5<log49<232.因为偶函数f(x)在(−∞,0]上单调递减,所以在[0,+∞)上单调递增,所以f(log2√5)<f(log49)<f(232).="" 故选C.9.【答案】D【考点】【解析】本题主要考查基本函数求值以及特殊值法的应用.【解答】,解:①f(x)=x+1x∵f(1)=2,f(−1)=−2,∴f(x)=x+1不是一阶整点函数;x②g(x)=x3,∵ g(0)=0,g(1)=1,∴g(x)=x3不是一阶整点函数;)x,③ℎ(x)=(13∵ℎ(−1)=3,ℎ(0)=1,∴ℎ(x)=(1)x不是一阶整点函数;3④φ(x)=ln x,φ(1)=0,当x∈(1,+∞)时,∵e为无理数,∴对任意的x∈Z,ln x∉Z,∴φ(x)是一阶整点函数.故选A.10.【答案】C【考点】函数模型的选择与应用【解析】本题主要考查函数模型的应用.【解答】解:由题意,t=0时,P=P0,前5ℎ排除了90%的污染物,则(1−90%)P0=P0e−5k,∴0.1=e−5k,即−5k=ln0.1,∴k=−1ln0.1.5当污染物的含量不超过1%时才能排放,即P≤1%P0,则1%P0≥P0e−kt=P0e t5ln0.1,∴0.12≥0.1t5,∴t≥10,10−5=5,∴至少还需过滤5ℎ,才可以排放废气.故选C.11.C【考点】对数函数的图象与性质幂函数的性质指数函数的定义、解析式、定义域和值域【解析】本题主要考查幂函数的求值问题与对数函数的图象和性质.【解答】解:由f(2)=2a =4,得a =2,∴ g(x)=|log 2(x +1)|.∵ 函数y =log 2(x +1)在区间(−1,0)上单调递增且y <0,在区间(0,+∞)上单调递增且y >0,∴ 函数g(x)在区间(−1,0)上单调递减,在区间(0,+∞)上单调递增,故选C .12.【答案】B【考点】函数的值域及其求法【解析】本题主要考查函数的值域.【解答】解:对任意x 1∈R ,令t =2x 1,则t >0,设y =−t 2+2t −1(t >0),则y ≤0,即f(x 1)≤0.设函数g(x)=lg (ax 2−4x +1)的值域为N ,因为对任意x 1∈R ,都存在x 2∈R ,使f(x 1)=g(x 2),所以(−∞,0]⊆N .令u(x)=ax 2−4x +1,则函数u(x)的函数值需能取到区间(0,1]上的任意数,又u(0)=1,所以a ≤0或{a >0Δ=16−4a ≥0, 解得a ≤4,故实数a 的最大值为4,故选B .二、填空题(本大题共4小题,每小题5分,共20分把答案填在题中横 线【答案】 (√3,+∞)【考点】对数函数的单调性与特殊点【解析】本题主要考查对数函数的单调性.【解答】解:函数f(x)的定义域为(−∞,−√3)∪(√3,+∞),因为函数y=log18x在定义域内单调递减,所以要求函数f(x)=log18(x2−3)的单调递减区间,即求函数y=x2−3在(−∞,−√3)∪(√3,+∞)上的单调递增区间,又该函数的单调递增区间为(√3,+∞),所以函数f(x)的单调递减区间为(√3,+∞).故答案为(√3,+∞).【答案】[1,2]【考点】分段函数的应用【解析】本题主要考查对数函数的值域及分段函数.【解答】解:当−1≤x<0时,1<1−x≤2,所以1<log2(1−x)+1≤2,此时f(x)的值域为(1,2].当0≤x≤a时,f(x)的值域为[0,a],则[0,1]⊆[0,a]⊆[0,2],所以1≤a≤2,所以实数a的取值范围为[1,2].故答案为[1,2].【答案】②③【考点】函数单调性的性质【解析】此题暂无解析【解答】解:函数f(x)=lg(−x)的定义域为(−∞,0),①f(x1+x2)=lg(−x1−x2),f(x1)f(x2)=lg(−x1)⋅lg(−x2),故①错误;②f(−x1x2)=lg(x1x2)=lg[(−x1)(−x2)]=lg(−x1)+lg(x2)=f(x1)+f(x2),故②正确;③函数f(x)在(−∞,0)上单调递减,所以x1−x2与f(x1)−f(x2)异号,则有(x1−x2)[f(x1)−f(x2)]<0,故③正确;④由函数f(x)的图象,可知f(x1+x22)>f(x1)+f(x2)2,故④错误.故答案为②③.【答案】[−1,1]【考点】对数函数的定义域对数函数的图象与性质分段函数的应用【解析】本题主要考查对数型函数与分段函数的综合应用.【解答】解:因为f(x)ln3−ln(x+2)≥0,所以f(x)ln3≥ln(x+2),所以f(x)≥log3(x+2).函数y=log3(x+2)的图象与函数f(x)的图象的交点坐标为(−1,0),(1,1)(如图所示).由图象,可得不等式f(x)≥log3(x+2)的解集为[−1,1].故答案为[−1,1].三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程演算步骤【答案】解:(1)原式=1+(32)−2×(278)23−(1100)−12+log12254=1+(32)−2×(32)2−10−54=1+1−10−54=−374.(2)log2.56.25+lg1100+ln√e+21+log23=log2.52.52+lg10−2+ln e12+2×2log23=2−2+12+6=13 2.【考点】有理数指数幂的运算性质及化简求值对数与对数运算指数式与对数式的互化对数及其运算有理数指数幂的化简求值【解析】此题暂无解析【解答】11【答案】解:(1)由题意,知点A 的坐标为(2,2).又点A 在函数f(x)的图象上,则f(2)=log √3(2+a)=2,得2+a =3,所以a =1.(2)由f(x)<log √3a ,得log √3(x +1)<log √31=0,则0<x +1<1,即−1<x <0,所以原不等式的解集为(−1,0).【考点】对数函数图象与性质的综合应用指数函数的单调性与特殊点其他不等式的解法【解析】此题暂无解析【解答】解:(1)由题意,知点A 的坐标为(2,2).又点A 在函数f(x)的图象上,则f(2)=log √3(2+a)=2,得2+a =3,所以a =1.(2)由f(x)<log √3a ,得log √3(x +1)<log √31=0,则0<x +1<1,即−1<x <0,所以原不等式的解集为(−1,0).【答案】解:(1)当a >1时,f(x)max =a ,f(x)min =1a ,则a −1a =32,解得a =2;当0<a<1时,f(x)max=1a,f(x)min=a,则1a −a=32,解得a=12.综上,得a=2或12.(2)当a>1时,由(1)知a=2,∴g(x)=2x−2−x.又g(x)为奇函数且在R上是增函数,∴g(x2+2x)+g(1−x2)>0⇔g(x2+2x)>−g(1−x2)=g(x2−1)⇔x2+2x>x2−1⇔x>−12,∴不等式g(x2+2x)+g(1−x2)>0的解集为(−12,+∞).【考点】其他不等式的解法指数函数的实际应用指数函数的性质【解析】此题暂无解析【解答】解:(1)当a>1时,f(x)max=a,f(x)min=1a,则a−1a =32,解得a=2;当0<a<1时,f(x)max=1a,f(x)min=a,则1a −a=32,解得a=12.综上,得a=2或12.(2)当a>1时,由(1)知a=2,∴g(x)=2x−2−x.又g(x)为奇函数且在R上是增函数,∴g(x2+2x)+g(1−x2)>0⇔g(x2+2x)>−g(1−x2)=g(x2−1)⇔x2+2x>x2−1⇔x>−12,∴不等式g(x2+2x)+g(1−x2)>0的解集为(−12,+∞).【答案】解:(1)设f(x)=ax2+bx+c(a≠0),因为直线y =2x +3与y 轴的交点为A ,所以A 点的坐标为(0,3).因为二次函数f(x)的图象过点A ,所以f(0)=3,所以c =3.因为f(x +1)−f(x)=a(x +1)2+b(x +1)+c −(ax 2+bx +c )=2ax +a +b , 又f(x +1)−f(x)=2x −1,故2ax +a +b =2x −1恒成立,所以{2=2a ,a +b =−1, 解得{a =1,b =−2.故函数f(x)的解析式为f(x)=x 2−2x +3.解:(2)令t =log 3x +m ,因为x ⊆[13,3],所以t ⊆[m −1,m +1],从而y =f(t)=t 2−2t +3=(t −1)2+2,t ⊆[m −1,m +1].①当m +1≤1,即m ≤0时,y min =f(m +1)=m 2+2=3,解得m =−1或m =1(舍去);②当m −1<1<m +1时,y min =f(1)=2,不合题意.③当m −1≥1,即m ≥2时,y min =f(m −1)=m 2−4m +6=3,解得m =3或m =1(舍去).综上,实数m 的值为−1或3.【考点】二次函数的性质函数解析式的求解及常用方法【解析】此题暂无解析【解答】解:(1)设f(x)=ax 2+bx +c (a ≠0),因为直线y =2x +3与y 轴的交点为A ,所以A 点的坐标为(0,3).因为二次函数f(x)的图象过点A ,所以f(0)=3,所以c =3.因为f(x +1)−f(x)=a(x +1)2+b(x +1)+c −(ax 2+bx +c )=2ax +a +b , 又f(x +1)−f(x)=2x −1,故2ax +a +b =2x −1恒成立,所以{2=2a ,a +b =−1,解得{a =1,b =−2.故函数f(x)的解析式为f(x)=x 2−2x +3.解:(2)令t =log 3x +m ,因为x ⊆[13,3], 所以t ⊆[m −1,m +1],从而y =f(t)=t 2−2t +3=(t −1)2+2,t ⊆[m −1,m +1]. ①当m +1≤1,即m ≤0时,y min =f(m +1)=m 2+2=3, 解得m =−1或m =1(舍去);②当m −1<1<m +1时,y min =f(1)=2,不合题意. ③当m −1≥1,即m ≥2时,y min =f(m −1)=m 2−4m +6=3, 解得m =3或m =1(舍去).综上,实数m 的值为−1或3.【答案】解:(1)f(x)为奇函数.理由如下:要使函数f(x)有意义,只需x−5x+5>0,解得x >5或x <−5,所以函数f(x)的定义域为{x|x >5或x <−5},关于原点对称. 又f(−x)=log a −x−5−x+5=−log a x−5x+5=−f(x),所以函数f(x)为奇函数.(2)假设存在实数m ,使f(x +2)+f(m −x)=log a (x−3x+7⋅−x+m−5−x+m+5)=log a −x 2+(m−2)x−3(m−5)−x 2+(m−2)x+7(m+5)为常数, 设−x 2+(m−2)x−3(m−5)−x 2+(m−2)x+7(m+5)=k .则(k −1)x 2+(m −2)(1−k)x −3(m −5)−7k(m +5)=0对定义域内的x 恒成立.所以{k −1=0,(m −2)(1−k)=0,−3(m −5)−7k(m +5)=0,解得{k =1,m =−2.所以存在实数m =−2,使得f(x +2)+f(m −x)为常数.【考点】函数奇偶性的性质函数奇偶性的判断【解析】此题暂无解析【解答】解:(1)f(x)为奇函数.理由如下:要使函数f(x)有意义,只需x−5x+5>0,解得x >5或x <−5,所以函数f(x)的定义域为{x|x >5或x <−5},关于原点对称. 又f(−x)=log a −x−5−x+5=−log a x−5x+5=−f(x),所以函数f(x)为奇函数.(2)假设存在实数m ,使f(x +2)+f(m −x)=log a (x−3x+7⋅−x+m−5−x+m+5)=log a −x 2+(m−2)x−3(m−5)−x 2+(m−2)x+7(m+5)为常数, 设−x 2+(m−2)x−3(m−5)−x 2+(m−2)x+7(m+5)=k .则(k −1)x 2+(m −2)(1−k)x −3(m −5)−7k(m +5)=0对定义域内的x 恒成立.所以{k −1=0,(m −2)(1−k)=0,−3(m −5)−7k(m +5)=0,解得{k =1,m =−2.所以存在实数m =−2,使得f(x +2)+f(m −x)为常数.【答案】解:(1)因为g (ax 2+2x +1)=log 12(ax 2+2x +1)的定义域为R , 所以ax 2+2x +1>0对一切x ∈R 成立.当a =0时,2x +1>0不可能对一切x ∈R 成立,所以{a >0,Δ=4−4a <0,解得a >1. 所以实数a 的取值范围为(1,+∞).(2)由题意,得y =(log 12x)2−2log 12x +2,x ∈[(12)t+1,(12)t ], 令u =log 12x ,则u ∈[t,t +1], 所以y =u 2−2u +2=(u −1)2+1,u ∈[t,t +1], 当t ≥1时,y min =t 2−2t +2;当0<t <1时,y min =1;当t ≤0时,y min =t 2+1.所以ℎ(t)={t 2+1,t ≤0,1,0<t <1,t 2−2t +2,t ≥1.(3)由题意,得y =log 12f (x 2)=x 2,在[0,+∞)上是增函数.若存在非负实数m ,n 满足题意,则{m 2=2m ,n 2=2n ,即m ,n 是方程x 2=2x 的两个非负实根,且m <n , 所以m =0,n =2.即存在m =0,n =2满足题意.【考点】对数函数的图象与性质一元二次不等式与一元二次方程函数最值的应用函数的最值及其几何意义【解析】此题暂无解析【解答】解:(1)因为g (ax 2+2x +1)=log 12(ax 2+2x +1)的定义域为R , 所以ax 2+2x +1>0对一切x ∈R 成立.当a =0时,2x +1>0不可能对一切x ∈R 成立,所以{a >0,Δ=4−4a <0,解得a >1. 所以实数a 的取值范围为(1,+∞).(2)由题意,得y =(log 12x)2−2log 12x +2,x ∈[(12)t+1,(12)t], 令u =log 12x ,则u ∈[t,t +1], 所以y =u 2−2u +2=(u −1)2+1,u ∈[t,t +1], 当t ≥1时,y min =t 2−2t +2;当0<t <1时,y min =1;当t ≤0时,y min =t 2+1.所以ℎ(t)={t 2+1,t ≤0,1,0<t <1,t 2−2t +2,t ≥1.(3)由题意,得y =log 12f (x 2)=x 2,在[0,+∞)上是增函数.若存在非负实数m ,n 满足题意, 则{m 2=2m ,n 2=2n ,即m ,n 是方程x 2=2x 的两个非负实根,且m <n , 所以m =0,n =2.即存在m =0,n =2满足题意.。
课时作业(二十)1.化简(1-2x )2(2x>1)的结果是( ) A.1-2x B.0 C.2x -1 D.(1-2x)2【参考答案】 C2.若3x 2为一个正数,则( ) A.x ≥0 B.x>0 C.x ≠0 D.x<0 【参考答案】 C3.已知m 10=2,则m 等于( ) A.102B.-102C.210D.±102【参考答案】 D 4.把a -1a根号外的a 移到根号内等于( ) A. a B.- a C.-a D.--a【参考答案】 D5.计算[(-2)2]-12的结果是( )A. 2B.- 2C.22D.-22【参考答案】 C6.已知x -23=4,则x 等于( )A.±8B.±18C.344D.±232【参考答案】 B7.2-(2k +1)-2-(2k -1)+2-2k等于( )A.2-2kB.2-(2k -1)C.-2-(2k +1)D.2【参考答案】 C8.下列根式与分数指数幂互化中正确的是( ) A.3m 2+n 2=(m +n)23 B.(b a )5=a 15b 5 C.(-2)2=-2 D.34=213【参考答案】 D9.计算a a a a 的结果是( ) A.a 78 B.a 158 C.a 74D.a 178【参考答案】 B 10.若100x =25,则10-x等于( )A.-15B.15C.150D.1625【参考答案】 B11.计算:3(19-29)3·(32+3)+(3)4-(2)4(3-2)0=________. 【参考答案】 4【解析】 原式=1-23·3(2+1)+9-41=1-(2)2+5=5-1=4.12.若x<2,则x 2-4x +4-|3-x|的值是________. 【参考答案】 -113.化简(3+2)2 015·(3-2)2 016=________. 【参考答案】 3- 214.求614-3338+30.125的值. 【解析】 原式=254-3278+318=52-32+12=32. 15.计算下列各式的值.(1)12112; (2)(6449)-12; (3)10 000-34;(4)(12527)-23; (5)481×923; (6)23×33×63.【参考答案】 (1)11 (2)78 (3)11 000 (4)925 (5)376 (6)6►重点班·选做题16.已知f(x)=e x -e -x ,g(x)=e x +e -x (e =2.718…).求[f(x)]2-[g(x)]2的值. 【解析】 [f(x)]2-[g(x)]2 =[f(x)+g(x)]·[f(x)-g(x)] =2e x ·(-2e -x )=-4e 0=-4.1.51,54, 72,316中,最简根式的个数是( ) A.1 B.2 C.3D.4【参考答案】 A2.若4a -2+(a -4)0有意义,则a 的取值范围是( ) A.a ≥2 B.a ≥2且a ≠4 C.a ≠2 D.a ≠4【参考答案】 B3.11-230+7-210=________. 【参考答案】 6- 2【解析】11-230+7-210=6-230+5+5-210+2=(6-5)+(5-2)=6- 2.4.若x ≤-3,则(x +3)2-(x -3)2=________. 【参考答案】 -65.求值:4-15+4+15. 【解析】 原式=8-2152+8+2152=5-32+5+32=252=10.【参考答案】 106.设f(x)=4x 4x +2,若0<a<1,试求f(a)+f(1-a)的值,并进一步求f(11 001)+f(21 001)+f(31 001)+…+f(1 0001 001)的值.思路分析 观察式子不难发现11 001+1 0001 001=21 001+9991 001=31 001+9981 001=…=1. 【解析】 ∵f(a)+f(1-a)=4a4a +2+41-a41-a +2=4a4a +2+44a44a +2=4a 4a +2+24a +2=1,∴f(11 001)+f(21 001)+f(31 001)+…+f(1 0001 001)=[f(11 001)+f(1 0001 001)]+[f(21 001)+f(9991 001)]+[f(31 001)+f(9981 001)]+…+[f(5001 001)+f(5011 001)]=500.。
2017-2018学年度xx学校xx月考卷一、选择题(共12小题,每小题5.0分,共60分)1.给定函数①y=,②y=,③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是()A.①②B.②③C.③④D.①④2.下列运算结果中正确的为()A.a4·a3=a12B. (-a3)4=(-a4)3C.a0=1D. (-a4)3=-a123.已知a,b,c均为正数,且都不等于1,若实数x,y,z满足ax=by=cz,++=0,则abc的值等于()A. 1B. 2C. 3D. 44.函数y=log a|x|+1(0<a<1)的图象大致是()A.选项AB.选项BC.选项CD.选项D5.若-1<x<0,那么下列各不等式成立的是()A. 2-x<2x<0.2xB. 2x<0.2x<2-xC. 0.2x<2-x<2xD. 2x<2-x<0.2x6.下列函数是对数函数的是()A.y=lg(x+1)B.y=log ax(a∈R)C.y=5log ax(a>0,且a≠1)D.y=log7x7.下列各式中,根式与分数指数幂的互化,正确的是() A.-=(x>0)B.=(y<0)C.=(x>0)D.=-(x≠0)8.函数y=log2(x-1)的定义域为()A. {x|x>1}B. {x|x≥1}C. {x|x>1且x≠2}D.R9.把根号外的a移到根号内等于()A.B.-C.D.-10.设a,b∈R,下列各式总能成立的是() A. (-)6=a-bB.=a2+b2C.-=a-bD.=a+b11.当0<x≤时,4x<log ax,则a的取值范围是() A. (0,)B. (,1)C. (1,)D. (,2)12.函数f(x)=a|x+1|(a>0,a≠1)的值域为[1,+∞),则f(-4)与f(1)的关系是()A.f(-4)>f(1)B.f(-4)=f(1)C.f(-4)<f(1)D.不能确定二、填空题(共4小题,每小题5.0分,共20分)13.无论a取何值(a>0且a≠1),函数y=-3ax+5的图象恒过定点________.14.求值:lg 2+lg 5=________.15.函数y=(m-1)为幂函数,则该函数为________(填序号).①奇函数;②偶函数;③增函数;④减函数.16.函数f(x)=(x-5)0+的定义域是________(用区间表示).三、解答题(共6小题,每小题12.0分,共72分)17.已知函数f(x)=log 2(4x)·log2(2x),≤x<4.(1)设t=log2x,求t的取值范围;(2)求f(x)的最值,并给出函数取得最值时相应的x的值.18.计算|1+lg 0.001|++lg 6-lg 0.02的值.19.已知函数f(x)=log a(1-x)+log a(x+3),其中(0<a<1).(1)求函数f(x)的定义域;(2)若函数f(x)的最小值为-4,求a的值.20.某晚会的现场上无数次响起响亮的掌声,一个记者用仪器测量到最响亮的一次音量达到了90.1分贝.分贝是计量声音强度相对大小的单位.物理学家引入了声压级(spl)来描述声音的大小:把一很小的声压P0=2×10-5帕作为参考声压,把所要测量的声压P与参考声压P0的比值取常用对数后乘以20得到的数值称为声压级.声压级是听力学中最重要的参数之一,单位是分贝(dB).分贝值在60以下为无害区,60-110为过渡区,110以上为有害区.(1)根据上述材料,列出分贝y与声压P的函数关系式;(2)某地声压P=0.002帕,试问该地为以上所说的什么区?声音环境是否优良?21.计算:2log 32-log3+log38.22.设的整数部分为x,小数部分为y,求x2+xy+的值.答案解析1.【答案】B【解析】①y=在(0,1)上为单调递增函数,∴①不符合题意,排除A,D.④y=2x+1在(0,1)上也是单调递增函数,排除C,故选B.2.【答案】D【解析】a4·a3=a7;(-a3)4=(-1)4·(a3)4=a12,而(-a4)3=-a12,∴在a≠0时(-a3)4≠(-a4)3;若a=0,则a0无意义,所以只有D正确.3.【答案】A【解析】∵a,b,c均为正数,且都不等于1,实数x,y,z满足ax=by=cz,++=0,∴设ax=by=cz=k(k>0),则x=log ak,y=log bk,z=log ck,∴++=log ka+log kb+log kc=log kabc=0,∴abc=1.故选A.4.【答案】C【解析】由题意知函数f(x)为偶函数,且当x>0时,函数y=log a|x|+1(0<a<1)为单调递减函数,其图象可由对数函数y=log ax(0<a<1)的图象向上平移1个单位而得到.故正确答案选C.5.【答案】D【解析】∵-1<x<0,∴由指数函数的图象和性质可得:2x<1,2-x>1,0.2x>1.又∵0.5x<0.2x,∴2x<2-x<0.2x,故选D.6.【答案】D【解析】利用对数函数的概念,分析A、B、C、D四个函数的形式,得到y=log7x是对数函数,故选D.7.【答案】C【解析】A.-=-(x>0),故A错;B.=,故B错;C.=(x>0),故C正确;D.==,故D错.故选C.8.【答案】A【解析】要使函数有意义,则x-1>0,解得:x>1.所以函数的定义域为{x|x>1}.故选A.9.【答案】D【解析】10.【答案】B【解析】∵a2+b2≥0,∴B正确.11.【答案】B【解析】方法一∵0<x≤,∴1<4x≤2,∴log ax>4x>1,∴0<a<1.令f(x)=4x,g(x)=log ax,当x=时,f()=2.(如图)而g()=log a=2,∴a=.又∵g(x)=log ax,x0∈(0,1),a1,a2∈(0,1)且a1<a2时,log a2x0>log a1x0,∴要使当0<x≤时,4x<log ax成立,需<a<1.故选B.方法二∵0<x≤,∴1<4x≤2,∴log ax>4x>1,∴0<a<1,排除答案C,D;取a=,x=,则有=2,=1,显然4x<log ax不成立,排除答案A,故选B.12.【答案】A【解析】由f(x)=a|x+1|(a>0,a≠1)的值域为[1,+∞),可知a>1,而f(-4)=a|-4+1|=a3,f(1)=a|1+1|=a2,∵a3>a2,∴f(-4)>f(1).13.【答案】(0,2)【解析】∵y=ax(a>0且a≠1)过定点(0,1),∴y=-3ax+5的图象恒过定点(0,2).14.【答案】1【解析】因为lg 2+lg 5=lg 10=1.15.【答案】②【解析】由y=(m-1)为幂函数,得m-1=1,即m=2,则该函数为y=x2,故该函数为偶函数,在(-∞,0)上是减函数,在(0,+∞)上是增函数.16.【答案】(2,5)∪(5,+∞)【解析】由题意得:⇒x>0且x≠5,所以f(x)的定义域为(2,5)∪(5,+∞).17.【答案】(1)∵t=log2x,≤x<4,∴log 2≤t<log24,∴-2≤t<2,即t的取值范围是[-2,2).(2)f(x)=log2(4x)·log2(2x)=(log24+log2x)(log22+log2x)=(2+log2x)(1+log2x)=(2+t)(1+t)=t2+3t +2=(t+)2-,∵-2≤t<2,当t=-即x=时,f(x)取得最小值,且f(x)min=-,f(x)无最大值.【解析】18.【答案】原式=|1-3|+|lg 3-2|+lg 300=2+2-lg 3+lg 3+2=6.【解析】19.【答案】(1)要使函数有意义,则有解之得:-3<x<1,∴函数的定义域为(-3,1).(2)函数可化为:f(x)=log a(1-x)(x+3)=log a(-x2-2x+3)=log a[-(x+1)2+4],∵-3<x<1,∴0<-(x+1)2+4≤4.∵0<a<1,∴log a[-(x+1)2+4]≥log a4,即f(x)min=log a4;由log a4=-4,得a-4=4,∴a==.【解析】20.【答案】(1)由已知y=(lg)×20=20·lg(其中P 0=2×10-5).(2)将P=0.002代入函数关系y=20lg,则y=20lg=20lg 102=40(分贝).由已知条件知40分贝小于60分贝,所以在噪音无害区,环境优良.【解析】21.【答案】原式=log 34-log3+log38=log3(4××8)=log39=2.【解析】22.【答案】∵===2+,∴x=2,y=.原式=22+·2·+=4+7-++1=12.【解析】。