修改 向量在平面几何中的应用
- 格式:ppt
- 大小:496.00 KB
- 文档页数:13
2.4 向量的应用2.4.1 向量在几何中的应用 2.4.2 向量在物理中的应用1.向量在平面几何中的应用(1)证明线段相等,转化为证明向量的长度相等,求线段的长,转化为求向量的长度; (2)证明线段、直线平行,转化为证明向量共线;(3)证明线段、直线垂直,转化为证明向量的数量积为零; (4)平面几何中与角相关的问题,转化为向量的夹角问题;(5)对于与长方形、正方形、直角三角形等平面几何图形有关的问题,通常以相互垂直的两边所在的直线分别为x 轴和y 轴,建立平面直角坐标系,通过代数(坐标)运算解决平面几何问题.【自主测试1-1】在四边形ABCD 中,若AB →=13CD →,则四边形ABCD 是( )A .平行四边形B .梯形C .菱形D .矩形解析:由AB →=13CD →⇒AB ∥CD ,且AB ≠CD ,故四边形ABCD 为梯形,故选B .答案:B【自主测试1-2】在△ABC 中,已知|AB →|=|AC →|=4,且AB →·AC →=8,则这个三角形的形状是__________.解析:∵AB →·AC →=|AB →||AC →|cos ∠BAC=8,∴4×4×cos ∠BAC=8,∴∠BAC=60°.又|AB →|=|AC →|,∴△ABC 为等边三角形. 答案:等边三角形2.向量在解析几何中的应用(1)设直线l 的倾斜角为α,斜率为k ,A (x 1,y 1)∈l ,P (x ,y )∈l ,向量a =(m ,n )平行于l ,则k =y -y 1x -x 1=n m =tan α;反之,若直线l 的斜率k =nm,则向量(m ,n )一定与该直线平行.(2)向量(1,k )与直线l :y =kx +b 平行.(3)与a =(m ,n )平行且过点P (x 0,y 0)的直线方程为n (x -x 0)-m (y -y 0)=0. (4)过点P (x 0,y 0),且与向量a =(m ,n )垂直的直线方程为m (x -x 0)+n (y -y 0)=0. 【自主测试2-1】已知直线l :mx +2y +6=0,向量(1-m,1)与l 平行,则实数m 的值为( )A .-1B .1C .2D .-1或2 答案:D【自主测试2-2】过点A (3,-2)且垂直于向量n =(5,-3)的直线方程是__________. 答案:5x -3y -21=0 3.向量在物理中的应用(1)力是具有大小、方向和作用点的向量,它与自由向量有所不同.大小和方向相同的两个力,如果作用点不同,那么它们是不相等的.但是,在不计作用点的情况下,可用向量求和的平行四边形法则求作用于同一点的两个力的合力.(2)速度是具有大小和方向的向量,因而可用三角形法则和平行四边形法则求两个速度的合速度.【自主测试3】已知两个力F 1,F 2的夹角为90°,它们的合力大小为10 N ,合力与F 1的夹角为60°,则F 1的大小为( )A .5 3 NB .5 NC .10 ND .52N 答案:B1.用向量的方法证明直线平行、直线垂直、线段相等及点共线等问题的基本方法 剖析:(1)要证两线段AB =CD ,可转化为证明|AB →|=|CD →|或AB →2=CD →2; (2)要证两线段AB ∥CD ,只要证明存在一实数λ≠0,使AB →=λCD →成立; (3)要证两线段AB ⊥CD ,可转化为证明AB →·CD →=0;(4)要证A ,B ,C 三点共线,只要证明存在一实数λ≠0,使AB →=λAC →,或若O 为平面上任一点,则只需要证明存在实数λ,μ(其中λ+μ=1),使OC →=λOA →+μOB →.2.对直线Ax +By +C =0的方向向量的理解剖析:(1)设P 1(x 1,y 1),P 2(x 2,y 2)为直线上不重合的两点,则P 1P 2→=(x 2-x 1,y 2-y 1)及与其共线的向量λP 1P 2→均为直线的方向向量.显然当x 1≠x 2时,向量⎝ ⎛⎭⎪⎫1,y 2-y 1x 2-x 1与P1P 2→共线,因此向量⎝ ⎛⎭⎪⎫1,-A B =1B(B ,-A )为直线l 的方向向量,由共线向量的特征可知(B ,-A )为直线l 的方向向量.(2)结合法向量的定义可知,向量(A ,B )与(B ,-A )垂直,从而向量(A ,B )为直线l 的法向量.3.教材中的“探索与研究”利用向量与向量平行、垂直的条件,再次研究两条直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0平行和垂直的条件,以及如何求出两条直线夹角θ的余弦.结论:l 1∥l 2(或重合)⇔A 1B 2-A 2B 1=0. l 1⊥l 2⇔A 1A 2+B 1B 2=0.cos θ=|A 1A 2+B 1B 2|A 21+B 21A 22+B 22.剖析:直线l 1:A 1x +B 1y +C 1=0的方向向量为n 1=(-B 1,A 1),直线l 2:A 2x +B 2y +C 2=0的方向向量为n 2=(-B 2,A 2).若l 1∥l 2,则n 1∥n 2,从而有-B 1A 2=-A 1B 2,即A 1B 2-A 2B 1=0. 若l 1⊥l 2,则n 1·n 2=0,从而有B 1B 2+A 1A 2=0. 所以直线l 1∥l 2⇔A 1B 2-A 2B 1=0, 直线l 1⊥l 2⇔A 1A 2+B 1B 2=0. 由于n 1·n 2=A 1A 2+B 1B 2, |n 1|=A 21+B 21,|n 2|=A 22+B 22, 所以cos 〈n 1,n 2〉=A 1A 2+B 1B 2A 21+B 21A 22+B 22. 所以直线l 1与l 2夹角θ的余弦值为cos θ=|cos 〈n 1,n 2〉|=|A 1A 2+B 1B 2|A 21+B 21A 22+B 22.题型一 向量在平面几何中的应用【例题1】已知正方形ABCD 中,E ,F 分别是CD ,AD 的中点,BE ,CF 交于点P . 求证:(1)BE ⊥CF ;(2)AP =AB .分析:建系→确定点A ,B ,C ,E ,F ,P 的坐标→证BE →·CF →=0及|AP →|=|AB →|→还原为几何问题证明:建立如图所示平面直角坐标系,设AB =2,则有A (0,0),B (2,0),C (2,2),E (1,2),F (0,1).(1)BE →=(-1,2),CF →=(-2,-1). ∵BE →·CF →=(-1)×(-2)+2×(-1)=0, ∴BE →⊥CF →,即BE ⊥CF . (2)设点P 的坐标为(x ,y ), 则FP →=(x ,y -1),CF →=(-2,-1), ∵FP →∥CF →,∴-x =-2(y -1),即x =2y -2, 同理,由BP →∥BE →得y =-2x +4,由⎩⎪⎨⎪⎧x =2y -2,y =-2x +4,得⎩⎪⎨⎪⎧x =65,y =85.∴点P 坐标为⎝ ⎛⎭⎪⎫65,85.则|AP →|=⎝ ⎛⎭⎪⎫652+⎝ ⎛⎭⎪⎫852=2=|AB →|,即AP =AB . 反思由于向量集数形于一身,用它来研究问题时可以实现形象思维与抽象思维的有机结合,因而向量法是研究几何问题的一个有效的工具,解题时一定注意用数形结合的思想.〖互动探究〗正方形OABC 的边长为1,点D ,E 分别为AB ,BC 的中点,求cos ∠DOE . 解:建立平面直角坐标系如图,则向量OE →=⎝ ⎛⎭⎪⎫12,1,OD →=⎝ ⎛⎭⎪⎫1,12,∴OD →·OE →=12×1+1×12=1.又|OD →|=|OE →|=52,∴cos ∠DOE =OD →·OE →|OD →||OE →|=152×52=45.题型二 向量在解析几何中的应用 【例题2】过点A (-2,1),求: (1)与向量a =(3,1)平行的直线方程; (2)与向量b =(-1,2)垂直的直线方程.分析:在直线上任取一点P (x ,y ),则AP →=(x +2,y -1).根据AP →∥a 和AP →⊥b 解题即可.解:设所求直线上任意一点P 的坐标为(x ,y ). ∵A (-2,1),∴AP →=(x +2,y -1).(1)由题意,知AP →∥a ,则(x +2)×1-3(y -1)=0, 即x -3y +5=0.故所求直线方程为x -3y +5=0.(2)由题意,知AP →⊥b ,则(x +2)×(-1)+(y -1)×2=0, 即x -2y +4=0,故所求直线方程为x-2y+4=0.反思已知直线l的方程Ax+By+C=0(A2+B2≠0),则向量(A,B)与直线l垂直,即向量(A,B)为直线l的法向量;向量(-B,A)与l平行,故过点P(x0,y0)与直线l平行的直线方程为A(x-x0)+B(y-y0)=0.【例题3】已知△ABC的三个顶点A(0,-4),B(4,0),C(-6,2),点D,E,F分别为边BC,CA,AB的中点.(1)求直线DE,EF,FD的方程;(2)求AB边上的高线CH所在的直线方程.分析:(1)利用向量共线的坐标表示求解;(2)利用向量垂直的坐标表示求解.解:(1)由已知,得点D(-1,1),E(-3,-1),F(2,-2).设M(x,y)是直线DE上任意一点,则DM∥DE.又DM=(x+1,y-1),DE=(-2,-2),所以(-2)×(x+1)-(-2)(y-1)=0,即x-y+2=0为直线DE的方程.同理可求,直线EF,FD的方程分别为x+5y+8=0,x+y=0.(2)设点N(x,y)是CH所在直线上的任意一点,则CN⊥AB.所以CN·AB=0.又CN=(x+6,y-2),AB=(4,4),所以4(x+6)+4(y-2)=0,即x+y+4=0为所求直线CH的方程.反思(1)利用向量法来解决解析几何问题,首先要将线段看成向量,再把坐标利用向量法则进行运算.(2)要掌握向量的常用知识:①共线;②垂直;③模;④夹角;⑤向量相等,则对应坐标相等.题型三向量在物理中的应用【例题4】一条河的两岸互相平行,河的宽度为d=500 m,一艘船从A处出发航行到河正对岸的B处,船的航行速度为|ν1|=10 km/h,水流速度为|ν2|=4 km/h.(1)试求ν1与ν2的夹角(精确到1°)及船垂直到达对岸所用的时间(精确到0.1 min); (2)要使船到达对岸所用时间最少,ν1与ν2的夹角应为多少?分析:船(相对于河岸)的航行路线不能与河岸垂直.原因是船的实际航行速度是船本身(相对于河水)的速度与水流速度的合速度.解:(1)依题意,要使船垂直到达对岸,就要使ν1与ν2的合速度的方向正好垂直于对岸,所以|ν|=ν21-ν22=100-16≈9.2(km/h),ν1与ν的夹角α满足sin α=0.4,α≈24°,故ν1与ν2的夹角θ=114°;船垂直到达对岸所用的时间t =d |ν|=0.59.2≈0.054 3(h)≈3.3 min. (2)设ν1与ν2的夹角为θ(如下图).ν1与ν2在竖直方向上的分速度的和为|ν1|·sin θ,而船到达对岸时,在竖直方向上行驶的路程为d =0.5 km ,从而所用的时间t =0.510sin θ.显然,当θ=90°时,t 最小,即船头始终向着对岸时,所用的时间最少,为t =0.510=0.05(h).反思注意“速度”是一个向量,既有大小又有方向.结合具体问题,在理解向量知识和应用两方面下功夫.将物理量之间的关系抽象成数学模型,然后通过对这个数学模型的研究解释相关物理现象.题型四 易错辨析【例题5】在直角坐标系中,O 为坐标原点,A ,B ,C 三点满足OC →=13OA →+23OB →.(1)求证:A ,B ,C 三点共线;(2)已知A (1,cos x ),B (1+sin x ,cos x ),x ∈⎣⎢⎡⎦⎥⎤0,π2,f (x )=OA →·OC →-⎝ ⎛⎭⎪⎫2m 2+23|AB→|的最小值为12,求实数m 的值.错解:(1)∵AB →=OB →-OA →,AC →=OC →-OA →=13OA →+23OB →-OA →=23OB →-23OA →=23AB →,∴AC →∥AB →,∴A ,B ,C 三点共线.(2)∵A (1,cos x ),B (1+sin x ,cos x ), ∴OC →=⎝ ⎛⎭⎪⎫1+23sin x ,cos x ,AB →=(sin x,0),从而|AB →|=|sin x |.故f (x )=-(sin x +m 2)2+m 4+2.又sin x ∈[-1,1],∴当sin x =1时,f (x )有最小值, 即-(1+m 2)2+m 4+2=12,解得m =±12.错因分析:错解中忽略了题目中x 的取值范围,造成正弦值的范围扩大. 正解:(1)∵AB →=OB →-OA →,AC →=OC →-OA →=13OA →+23OB →-OA →=23OB →-23OA →=23AB →,∴AC →∥AB →,∴A ,B ,C 三点共线.(2)∵A (1,cos x ),B (1+sin x ,cos x ), ∴OC →=⎝ ⎛⎭⎪⎫1+23sin x ,cos x ,AB →=(sin x,0),故|AB →|=sin x ,从而f (x )=-(sin x +m 2)2+m 4+2.又当x ∈⎣⎢⎡⎦⎥⎤0,π2时,sin x ∈[0,1],∴当sin x =1时,f (x )有最小值, 即-(1+m 2)2+m 4+2=12,化简得m 2=14,解得m =±12.1.若向量n 与直线l 垂直,则称向量n 为直线l 的法向量,则直线x +2y +3=0的一个法向量为( )A .(1,2)B .(1,-2)C .(2,1)D .(2,-1)解析:可以确定已知直线l 的斜率k =-12,所以直线的方向向量a =⎝ ⎛⎭⎪⎫1,-12.由a ·n =0,可知应选A .答案:A2.已知A (2,1),B (3,2),C (-1,4),则△ABC 是( ) A .等边三角形 B .锐角三角形 C .直角三角形 D .钝角三角形 答案:C3.过点A (2,3)且垂直于向量a =(2,1)的直线方程是( ) A .2x +y -7=0 B .2x +y +7=0 C .x -2y +4=0 D .x -2y -4=0 答案:A4.在重600 N 的物体上系两根绳子,与铅垂线的夹角分别为30°,60°,重物平衡时,两根绳子拉力的大小分别为( )A .3003N,3003NB .150 N,150 NC .3003N,300 ND .300 N,3003N解析:如图,作矩形OACB ,使∠AOC =30°,∠BOC =60°. 在△OAC 中,∠ACO =∠BOC =60°,∠OAC =90°,所以|OA |=|OC |cos 30°=3003N , |AC |=|OC |sin 30°=300 N , |OB |=|AC |=300 N. 答案:C5.通过点A (3,2)且与直线l :4x -3y +9=0平行的直线方程为__________. 答案:4x -3y -6=06.已知两个粒子a ,b 从同一点发射出来,在某一时刻,它们的位移分别为v a =(4,3),v b =(3,4),则v a 在v b 上的正射影为__________.解析:由题知v a 与v b 的夹角θ的余弦值为 cos θ=12+125×5=2425.所以v a 在v b 上的正射影为|v a |cos θ=5×2425=245.答案:2457.平面上不共线的三点A ,B ,C 使得AB +BC 所在的直线和AB -BC 所在的直线恰好互相垂直,则△ABC 必为__________三角形.解析:如图所示,作ABCD ,易知AB +BC =AC ,AB -BC =AB -AD =DB .依题意,知BD 与AC 互相垂直,故ABCD 为菱形,从而△ABC 为等腰三角形,且∠ABC 为顶角.答案:等腰 8.如图所示,已知ABCD 是菱形,AC 和BD 是它的两条对角线,求证:AC ⊥BD .证明:证法一:∵AC =AB +AD ,BD =AD -AB ,∴AC ·BD =(AB +AD )·(AD -AB )=|AD |2-|AB |2=0.∴AC ⊥BD . ∴AC ⊥BD .证法二:以BC所在的直线为x轴,点B为原点建立平面直角坐标系.设B(0,0),A(a,b),C(c,0),则由|AB|=|BC|,得a2+b2=c2.∵AC=BC-BA=(c-a,-b),BD=BA+BC=(a+c,b),∴AC·BD=c2-a2-b2=0.∴AC⊥BD,∴AC⊥BD.。
如何利用向量解决平面几何问题的投影平面几何是数学中重要的内容之一,而解决平面几何问题的投影,向量方法是一种常用且有效的解决方案。
本文将介绍如何利用向量解决平面几何问题的投影,并提供一些具体的案例分析。
一、向量投影的基本概念在介绍向量解决平面几何问题的投影之前,首先需要了解向量投影的基本概念。
向量投影是指一个向量在另一个向量或者某个平面上的投影,可以理解为一个向量在某个方向上的分量。
二、向量投影的计算方法向量投影的计算方法可以通过向量的内积来实现。
设有两个向量A 和B,向量A在向量B上的投影记为proj_BA,可以通过以下计算公式得到:proj_BA = (A·B) / |B|其中,A·B表示向量A和向量B的内积,|B|表示向量B的模长。
三、向量投影的应用举例下面通过一些具体的例子来说明如何利用向量解决平面几何问题的投影。
例1:已知向量A(2,3)在向量B(4,5)上的投影proj_BA,求解该投影的值。
首先计算A·B = 2*4 + 3*5 = 8 + 15 = 23然后计算向量B的模长|B| = √(4^2 + 5^2) = √(16 + 25) = √41最后代入公式进行计算:proj_BA = 23 / √41 ≈ 3.58例2:已知向量A(4,1)在平面P上的投影proj_PA,求解该投影的值。
假设平面P通过一点P0(2,3),且平面法向量为N(1,-1)。
首先计算A·N = 4*1 + 1*(-1) = 4 - 1 = 3然后计算向量N的模长|N| = √(1^2 + (-1)^2) = √2最后代入公式进行计算:proj_PA = 3 / √2 ≈ 2.12通过以上两个例子,我们可以看到向量投影的计算方法可以很好地应用于解决平面几何问题中的投影问题。
只需要通过向量的内积和模长计算,我们就可以得到所需的投影结果。
四、向量投影的几何意义除了计算投影的值,向量投影还有一个重要的几何意义。
利用向量解决平面几何问题的方法与技巧平面几何是数学中的一个重要分支,它研究平面上的点、直线、圆等几何图形及其性质。
解决平面几何问题时,常常可以运用向量的概念和运算来简化计算和分析过程。
本文将介绍一些利用向量解决平面几何问题的方法与技巧。
一、向量的基本概念与运算在讨论向量解决平面几何问题之前,首先需要了解向量的基本概念和运算。
向量是具有大小和方向的量,可以表示为箭头形式或坐标形式。
向量的加法满足交换律和结合律,即(a+b)+c=a+(b+c),a+b=b+a。
向量的数乘是将向量的长度进行拉伸或压缩的操作,结果仍是一个向量。
二、利用向量进行辅助构造1. 向量平移在解决平面几何问题时,有时可以通过向量平移来简化问题。
设有一个平面几何问题,已知点A,B,C等多个点,需要求得某个点D。
可以选择一个已知向量,用它将所有的点平移,然后通过平移后的点的位置关系来确定点D的位置。
2. 向量加法构造向量当需要得到几何图形中的一个向量时,可以利用已知向量进行向量加法构造。
例如,已知直线上的两个点A和B,需要求得直线上的另一个点C,可以利用已知向量AB和一条与直线垂直的向量得出向量AC,从而确定点C在直线上的位置。
三、利用向量进行问题的求解1. 直线和向量的关系在平面几何中,直线可以由点和向量唯一确定。
已知直线上的两点A和B,通过向量AB可以得到直线上的一个特征向量。
2. 平行和共线的判定利用向量的平行性质,可以方便地判定两条直线是否平行或共线。
若两个向量的方向相同或相反,则两条直线平行;若两个向量共线,则两条直线共线。
3. 角度和向量的夹角利用向量的内积,可以求得两个向量之间的夹角。
已知两个向量a和b,它们的夹角θ满足公式cosθ=(a·b)/(|a||b|)。
4. 平面和向量的关系在解决平面几何问题时,有时可以通过平面的法线向量来简化问题。
已知平面上的三个点A、B、C,可以通过向量AB和向量AC求得平面的法线向量,从而得到平面的方程。
向量知识在平面解析几何中的应用
平面解析几何是一门涉及抽象概念和实际绘图技巧的重要数学
学科。
它的研究主要集中在理解几何学形状的属性,以及它们之间的关系。
近年来,向量知识已被视为平面解析几何的重要资源,它通过一系列的实践来增强学生关于几何形状的理解和推理能力。
向量知识的应用主要用于研究几何形状的边、角和一些基本的概念。
首先,向量知识可以用来刻画平面上的几何形状,如多边形、圆和椭圆等。
向量代表了一条线段或者一个特定的方向,使得学生可以使用它们来描述和比较不同的形状,同时能够清楚地看到它们之间的相互关系。
其次,向量知识也可以用来定义和操作几何形状的角。
它可以用来测量两个向量之间的夹角,这是识别几何图形的一项重要技能。
此外,向量还可以用来找出平行线、垂直线、平分线等。
最后,向量知识也可以用来计算平面图形的面积和周长。
这类计算有助于学生更好地理解几何形状的特征,使其能更加熟练地掌握解析几何的概念和工具。
总而言之,向量知识在平面解析几何中有着重要的作用。
它能够帮助学生更好地理解几何形状,有助于掌握解析几何的概念和工具。
向量知识的应用涵盖了描述形状、测量角度和计算面积等重要内容,为学生学习解析几何提供了强大的支持。
因此,要想更好地掌握解析几何,学生应加强向量知识的学习,以便更好地理解和掌握解析几何中的概念和工具。
向量在几何中的应用几何是研究空间中点、线、面等几何图形的科学。
在几何学中,向量是一种重要的概念,它能够精确地描述几何图形之间的关系和运动。
通过向量的使用,我们可以更加深入地理解几何图形的性质和变换。
本文将探讨向量在几何中的应用,介绍几个常见的向量应用例子。
1. 向量表示线段和平移在几何中,线段是两点之间的部分。
我们可以使用向量来表示线段,并通过向量的运算得到线段的长度、方向和位置关系。
例如,设点A和点B是平面内的两点,则向量AB可以表示线段AB,其长度为|AB|,方向为从A指向B。
如果我们需要将线段AB平移,可以通过向量的平移运算来实现,即将线段的每个点都沿着相同的向量平移。
2. 向量表示几何图形的方向和面积在几何中,向量也被用来表示几何图形的方向。
例如,一条直线的方向可以用与其平行的向量表示,一个三角形的方向可以用两个不共线的向量表示。
通过向量的运算,我们可以判断两个向量之间的夹角,从而确定几何图形的方向关系。
此外,向量还可以用来计算几何图形的面积。
例如,设有一个三角形ABC,可以使用向量AB和向量AC来表示这个三角形,那么这个三角形的面积可以通过向量的叉积来计算,即S = 1/2 |AB x AC|。
3. 向量表示坐标和平面方程在平面几何中,向量可以表示点的坐标。
设点A的坐标为(a, b),可以将其表示为向量OA = [a, b],其中O为坐标系的原点。
通过向量的加法和数乘运算,我们可以计算出两个点之间的位置关系和距离。
除此之外,向量还可以用来表示平面方程。
在平面几何中,平面可以用一般方程的形式表示为Ax + By + Cz + D = 0,其中A、B、C为平面的法向量的分量,D为一个常数。
通过向量的点乘运算,我们可以计算出平面上任意一点的坐标和法向量之间的关系,从而确定平面的方程。
4. 向量表示旋转和投影向量在几何中还有其他应用,例如表示旋转和投影。
在平面几何中,可以通过向量的旋转运算来实现图形的旋转,将图形的每个点都按照同一个角度和方向进行旋转。
摘要:向量在平面几何与解析几何中多有应用,在历年来的高考试卷中也涉及部分向量知识。
向量知识不但让难题迎刃而解,还可让学生形成通用性规则,利用平面向量视角研究几何问题将取得良好成果与进展。
关键词:平面向量平面几何解析几何高中数学一、引言使用向量方法解题存在对应解题步骤,各步骤间联系紧密,存在逻辑顺序,在审题后需仔细核对题目题干,寻求问题突破口,在将几何问题转化为代数问题后,可实现题目的高精度运算,达到预期目的。
因此类题型具有复杂特点,在学生做题量得到提升后,学生对解答此类题目将拥有独到的个人见解,不但让图形对应特征得以描述,也让问题解决难度有所降低,下面将对相关题型与具体解题思路进行说明论证,在同学们阅读对应题干时,需带着对问题的解决思路求解。
二、向量教学存在的问题向量是高中数学的一大重点内容,在历年的高考试卷中有所涉及,也常与其他学科一同考试,为此提升向量教学效率,让学生灵活掌握向量知识,在拥有基本阅读审题能力的同时,提前了解向量习题的解题策略,不但有效保证做题效率,还让学生在复习前即可拥有一定知识储备,但现阶段教学存在的问题也较明显。
1.课内教学内容与高考试题具有脱轨性。
学生在学习人教版数学教材时,会学到复杂、零碎的知识,教师讲解新知识点时,也会向学生传授以往讲授过的知识点,用温故而知新的教学方法试图让学生快速进入学习状态,并建立对应向量学习思维。
高考试卷题量有限,不但要做到对高中阶段全部知识的灵活考查,还要做到面面俱到、照顾各个学习层次学生,并具有区分性,向量本身具有一定基础性,学生在初中阶段即接触过向量知识,在培养学生独立完成习题能力的同时,即使学生完全掌握教材教学内容,也不一定做对高考对应的向量试题,在与平面几何和立体几何综合出题考查的同时,学生对知识的综合运用能力也将决定做题准确率与效率。
面临新高考的改革,数学教师还需明确自身育人使命,适当给学生传授高考习题解题技巧,改变以往题海战术的陈旧教学模式,让学生热爱学习数学学科知识,并善于发现生活中的数学元素。
向量法在平面几何问题中的应用向量法在二维几何里占有重要地位,它可以用于解决各种几何问题,如点、线、圆、折线,以及更复杂的问题,如一般三角形、平面图形、多面体等各种几何问题。
其中,向量法在平面几何中的应用最为常用,下面介绍它的几个典型应用场景。
(1)由两点求出直线方程用向量法来求一般单调直线方程的优点在于,把直线上的两点表示成两个方向向量,通过向量的点积运算得出直线方程,简单明了。
一般单调直线方程(Ax +By +C=0 )的向量表示为:A = (A,B)B = (x1,y1)根据向量点积运算法则Ax1 +By1 = -C,可以计算出C的值,即可将该直线方程表示出来。
(2)由两条线段求出其夹角在空间几何中,有一个重要的定理――向量点积公式:AB*CD = |AB|* |CD|*cos α,其中AB与CD均为向量,|AB| 表示AB的大小,α 表示AB 与 CD的夹角,而AB*CD 为向量 AB 与CD的点积。
假设有两条(AB)与(CD)的线段,则有:AB*CD = |AB|* |CD|*cos α,由此可以将其余两条线段的参数代入公式,解出α的值,即可求出夹角的大小。
(3)求出线段的垂直平分线垂直平分线是以AB 向AB上任意点P分割AB ,使其分割线与AB 成垂直。
任意点P = A+t(B-A),将两个向量A(PA)、B(PB)代入向量点积公司t(B-A)*(B-A) = 0 得到 t=1/2,即P点在AB上的垂足位于AB中点,由此可以求出垂直平分线的方程。
(4)求出空间直线的垂线假设有一条直线(AB),垂线为(PQ),任意点Q = A+t(B-A),记向量:AB = (B-A) = a,PQ = (Q-P) = b,则有:a*b = |a|*|b|*cos γ,当γ=π/2时,又有b*a = − |a|* |b|,从而我们可以获得:t = - 1/|a|,即理出来可以得到垂线的表达式。
以上就是向量法在平面几何中最常用的几种应用场景,它对解决许多几何问题都有较大的便利性。
利用向量解决平面几何问题平面几何是数学中的一个重要分支,利用向量解决平面几何问题是一种常用的方法。
向量的引入可以使平面几何问题更加直观、简洁,并且能够帮助我们更好地理解和解决这些问题。
本文将介绍向量在平面几何中的应用,以及如何利用向量解决平面几何问题。
一、向量的基本概念1.1 向量的定义向量是有方向和大小的量,通常用一个箭头表示。
在平面几何中,向量可以表示为有序数对(x, y),其中x和y分别表示向量在x轴和y轴上的投影。
1.2 向量的运算在平面几何中,向量可以进行加减、数乘和内积运算。
- 向量的加减:向量的加法是对应分量相加,向量的减法是对应分量相减。
- 向量的数乘:向量的数乘是将向量的每个分量分别乘以一个标量。
- 向量的内积:向量的内积是将向量的对应分量相乘后相加。
1.3 向量的性质在平面几何中,向量具有以下重要的性质:- 向量的模:向量的模表示向量的大小,用 ||v|| 或 |v| 表示,计算公式为:||v|| = √(x^2 + y^2)。
- 零向量:零向量的模为0,记作0,它的方向任意。
- 单位向量:单位向量的模为1,可以通过将向量除以其模得到单位向量。
二、向量在平面几何中的应用2.1 向量的平移在平面几何中,我们可以利用向量实现图形的平移。
设有向量v表示平移的距离和方向,点A(x, y)经过平移后得到点B(x', y'),则有:B(x', y') = A(x, y) + v2.2 向量的共线与垂直在平面几何中,我们可以利用向量判断线段的共线与垂直关系。
设有向量u和v表示两条线段的方向,则有以下判断方法:- 共线判断:若存在实数k,使得 u = kv,则两条线段共线。
- 垂直判断:若 u·v = 0,则两条线段垂直。
2.3 向量的夹角在平面几何中,我们可以利用向量的夹角计算两条线段的夹角。
设有向量u和v,它们的夹角记作θ,则有以下计算方法:cosθ = (u·v) / (||u||·||v||)2.4 平面向量的投影在平面几何中,我们可以利用向量的投影解决线段之间的关系。