七年级数学图形与面积问题(整理)资料
- 格式:doc
- 大小:164.50 KB
- 文档页数:13
第1页 共16页七年级数学几何图形初步难题精选(含解析答案)1. 美术课上,老师要求同学们将如图所示的白纸只沿虚线剪开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是A. B. C. D2. 《几何原本》的诞生,标志着几何学已成为一个有着严密理论系统和科学方法的学科,它奠定了现代数学的基础.它是下列哪位数学家的著作( )A. 欧几里得B. 杨辉C. 费马D. 刘徽3.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,BD ⊥DC ,BD =DC ,CE 平分∠BCD ,交AB 于点E ,交BD 于点H ,EN ∥DC 交BD 于点N ,下列结论:①BH =DH ;②CH =(√2+1)EH ;③S △ENH S △EBH =EHEC.其中正确的是( )A. ①②③B. 只有②③C. 只有②D. 只有③4. 如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是( )A. B. C. D.5. 如图,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后的图形是( )A. AB. BC. CD. D6. 图1所示的正方体木块棱长为6 cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图2的几何体,一只蚂蚁沿着图2的几何体表面从顶点A爬行到顶点B的最短距离为cm.7. 如图1,图2,图3,用一种大小相等的正多边形密铺成一个“环”,我们称之为环形密铺,但图4,图5不是我们所说的环形密铺.请你再写出一种可以进行环形密铺的正多边形:.8. 如图,n+1个上底、两腰长皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P1M1N1N2面积为S1,四边形P2M2N2N3的面积为S2,…,四边形PnMnNnNn+1的面积记为Sn,通过逐一计算S1,S2,…,可得Sn=________.9. 有一张矩形纸片ABCD,按下面步骤进行折叠:第一步:如图①,将矩形纸片ABCD折叠,使点B,D重合,点C落在点C′处,得折痕EF;第二步:如图②,将五边形AEFC′D折叠,使AE,C′F重合,得折痕DG,再打开;第三步:如图③,进一步折叠,使AE,C′F均落在DG上,点A,C′落在点A′处,点E,F落在点E′处,得折痕MN,QP.第3页 共16页这样,就可以折出一个五边形DMNPQ .(1)请写出图①中一组相等的线段__________(写出一组即可);(2)若这样折出的五边形DMNPQ (如图③)恰好是一个正五边形,当AB =a ,AD =b ,DM =m 时,有下列结论:①a 2-b 2=2ab tan 18°; ②m =√a 2+b 2tan 18°;③b =m +a tan 18°; ④b =32m +m tan 18°其中,正确结论的序号是______(把你认为正确结论的序号都.填上). 10. 一个圆柱形的蛋糕,将它截三刀,能截出六块、七块或八块吗?若能,画出示意图;若不能,请说明理由.11. 图①的正方体切去一块,得到图②~⑤的几何体.(1)所得几何体各有多少个面?多少条棱?多少个顶点?(2)举例说明其他形状的几何体也切去一块,所得到的几何体的面数、棱数和顶点数各是多少? (3)若面数记为f ,棱数记为e ,顶点数记为v ,则f , v , e 应满足什么关系?12. 有一副直角三角板,其中一个三角板的内角是45°,45°,90°,另一个三角板的内角是30°,60°,90°.(1)将该副三角板按如图①所示方式放置,AB ⊥AD ,则∠CAE =________,BC 与AD 的位置关系是________;(2)在第1问的基础上,再拿一个内角为30°,60°,90°的直角三角板,按如图②所示方式放置,AC'边和AD 边部分重合,则AE 平分∠CAB′吗?请说明理由;(3)根据第1问和第2问的计算,请解决下列问题:如图③,∠BAG =90°,∠BAC =∠FAG =20°,将一个内角为45°,45°,90°的直角三角板的一直角边与AG 部分重合,锐角顶点与∠BAG 的顶点重合,AE 平分∠CAF 吗?请说明理由;(4)如果图③中的∠BAC =∠FAG =∠α(∠α是锐角),其他条件不变,那么第3问中的结论还成立吗?只需回答成立或者不成立,不需要说明理由.13. 如图给出的正多边形的边长都是20 cm.请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线表示,在图中标注出必要的符号和数据,并作简要说明)(1)将图①中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等;(2)将图②中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等;(3)将图③中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等.14. 十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察如图所示的几种简单多面体模型,解答下列问题.四面体长方体正八面体正十二面体(1)根据上面的多面体模型,补全表格:顶点数(V)、面数(F)、棱数(E)之间存在的关系式是________;(2)一个多面体的顶点数比面数大8,且有30条棱,则这个多面体的面数是________;(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成的,且有24个顶点,每个顶点处都有3条棱.设该多面体外表面的三角形的个数为x,八边形的个数为y,求x+y 的值.15. 在图中,对于四个平面图形①②③④,我们规定:如图形③,它的顶点为共5个,区域为△AED,△ABE,△BEC,△CED,共4个,边为AE,EC,DE,EB,AB,BC,CD,DA,共8条.①②③④(1)按此规定将图形①②④的顶点数、边数、区域数填入下列表格:第5页 共16页(2)观察上表,请你归纳上述平面图形的顶点数、边数、区域数之间的数量关系;(3)如果有一个平面图形满足第2问中归纳所得的数量关系,它共有9个区域,且从每一个顶点出发都有3条边,那么这个平面图形共有多少条边?16. 在多边形中,三角形是最基本的图形,而研究多边形一般是将多边形分割成三角形,那么一个八边形至少可以分割成多少个三角形?n 边形呢?17. 如图,P 是定长线段AB 上一点,C ,D 两点同时从P ,B 出发分别以1cm s ⁄和2 cm/s 的速度沿线段向左运动(C 在线段AP 处上,D 在线段BP 上).已知C ,D 运动到任一时刻时,总有PD =2AC .(1)线段AP 与线段AB 的数量关系是________;(2)若Q 是线段AB 上一点,且AQ -BQ =PQ ,求证:AP =PQ .(3)若C ,D 运动5秒,恰好有CD =12AB ,此时C 点停止运动,D 点在线段BP 上继续运动, M ,N 分别是CD , PD 的中点,问MN AB 的值是否发生变化?若变化,请说明理由;若不变,请求出MNAB的值. 18. 已知在同一平面内,∠AOB =90°,∠AOC =60°. (1)∠COB = ;(2)如果OD 平分∠BOC ,OE 平分∠AOC ,那么∠DOE 的度数为 ;(3)试问在第2问的条件下,如果将题目中∠AOC =60°改成∠AOC =2α(α<45°),其他条件不变,你能求出∠DOE 的度数吗?若能,请写出求解过程;若不能,请说明理由.19. 先阅读下面的材料,然后解答问题:在一条直线上有依次排列的n (n >1)台机床在工作,我们要设置一个零件供应站P ,使这n 台机床到供应站P 的距离总和最小,要解决这个问题,先“退”到比较简单的情形:如图所示,如果直线上有2台机床甲、乙,很明显供应站P 设在A 1和A 2之间的任何地方都行,因为甲和乙到P 的距离之和等于A 1到A 2的距离.如图所示,如果直线上有3台机床甲、乙、丙,不难判断,供应站P 设在中间A 2处最合适,因为如果P设在A 2处,甲和丙到P 的距离之和恰好为A 1到A 3的距离,而如果把P 设在别处,例如D 处,那么甲和丙到P 的距离之和仍是A 1到A 3的距离,可是乙到P 的距离是从A 2到D 的这一段的长,这是多出来的,因此P 放在A 2处最合适.不难知道,如果直线上有4台机床,P 应设在第2台与第3台之间的任何地方;有5台机床,P 应设在第3台处.(1)有n (n >1)台机床时,P 应设在何处?(2)根据第1问的结论,求|x-1|+|x-2|+|x-3|+…+|x-617|的最小值.(3)变式:某公司员工分别住在离公路较近的A,B,C三个住宅区,其中A区有75人,B区有45人,C区有30人,A,B,C三区与公路的连接点分别为D,E,F,如图,且DE=100米,EF=200米,该公司的接送车打算在公路上只设一个停靠点,为使所有员工在公路上步行到停靠点的路程之和最小,那么停靠点的位置应设在.20. 如图,两个形状、大小完全相同的含有30°,60°角的三角尺如图①放置,PA,PB与直线MN重合,且三角尺PAC,三角尺PBD均可以绕点P逆时针旋转.(1)试说明:∠DPC=90°;(2)如图②,若三角尺PAC的边PA从PN处开始绕点P逆时针旋转一定角度,PF平分∠APD,PE平分∠CPD,求∠EPF;(3)如图③,若三角尺PAC的边PA从PN处开始绕点P逆时针旋转,转速为3°/秒,同时三角尺PBD的边PB从PM处开始绕点P逆时针旋转,转速为2°/秒,在两个三角尺旋转过程中(PC转到与PM重合时,两三角尺都停止转动),以下两个结论:①∠CPD∠BPN为定值;②∠BPN+∠CPD为定值,请选出正确的结论,并说明理由.21. 已知线段AB=12,CD=6,线段CD在直线AB上运动(如图,A在B的左侧,C在D的左侧,且运动中D在B的右侧).(1)M,N分别是线段AC,BD的中点,若BC=4,求MN的长;(2)当线段CD运动到D点与B点重合时,P是线段AB的延长线上一点,下列两个结论:①PA+PBPC 是定值,②PA-PBPC是定值.其中有一个正确,请你选出正确的结论,并求出这个定值.22. 墙角处有由若干大小相同的小正方体堆成的如图所示的立体图形,如果你打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、上面、右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以搬走多少个小正方体?23. 已知C为直线AB上任意一点,M,N分别为AC,BC的中点,试探究MN与AB之间的关系,并说明理由.24. 已知直线AB上有点O,OD,OC是从点O出发的两条射线,∠AOD=42°,∠BOC=34°,求∠AOD 与∠BOC的角平分线的夹角的度数.25. 如图,射线OM,ON分别是∠AOC和∠BOC的平分线,且∠AOB=90°.(1)求∠MON的度数;(2)当OC在∠AOB内转动时,∠MON的度数是否会发生变化?简单说明理由.26. 比较两个角的大小,有以下两种方法(规则):①用量角器度量两个角的大小,用度数表示,则角度大的角大;②构造图形,如果一个角包含(或覆盖)另一个角,则这个角大.对于如图给定的∠ABC与∠DEF,用以上两种方法分别比较它们的大小.27. 如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)若将题干中的∠AOB=90°改为∠AOB=α,其余条件不变,求∠MON的度数;(3)若将题干中的∠BOC=30°改为∠BOC=β(β为锐角),其余条件不变,求∠MON的度数;(4)从前面的结果中,你能得出什么结论?28. 根据所给图形解答问题.第7页共16页(1)如图1,已知∠AOB=80°,OC是∠AOB的平分线,OD,OE分别平分∠COB,∠AOC,求∠DOE的度数;(2)如图2,在第1问中把“OC是∠AOB的平分线”改为“OC是∠AOB内任意一条射线”,其他任何条件都不变,试求∠DOE的度数;(3)如图3,在第1问中把“OC是∠AOB的平分线”改为“OC是∠AOB外任意一条射线”,其他任何条件都不变,你能求出∠DOE的度数吗?说明理由.29. 一只蜘蛛在一个正方体的顶点A处,一只蚊子在正方体的顶点B处,如图所示,现在蜘蛛想尽快地捉到这只蚊子,那么它所走的最短路线是怎样的?在图上画出来,这样的最短路线有几条?参考答案1. 【答案】B【解析】由图的特征可知B选项符合题意2. 【答案】A【解析】由常识可知选A.3. 【答案】B【解析】过点H作HM⊥BC于M.∵CE平分∠BCD.∴DH=HM.在Rt△BMH中BH>HM∴BH>DH.故①不正确②③正确故选B.4. 【答案】B【解析】实际动手做一下,就可知几何体表面展开图是B.5. 【答案】D【解析】相反操作顺序展开,再利用对称性作图,可得D正确.6. 【答案】3√2+3√6【解析】本题考查平面展开图及最短路径问题,难度较大.将图②的几何体表面展开,根据“两点之间线段最短”得出结果.如图所示,蚂蚁爬行的最短距离即线段AB的长度,∵BC=BD,AC=AD,∴AB垂直平分线段CD,设垂足为点E,∵△BCD是等腰直角三角形,∴CD=√BC2+BD2=第9页 共16页√62+62=6√2(cm),∴BE =12CD =3√2(cm),∵AD ,AC ,CD 均为正方形的对角线,∴AD =AC =CD =6√2,即△ACD 是等边三角形,∴AE =AD sin 60°=6√2×√32=3√6, ∴AB =BE +AE =3√2+3√6(cm),∴蚂蚁爬行的最短距离为(3√2+3√6)cm.7. 【答案】正十二边形(答案不唯一)【解析】本题考查平面图形的镶嵌问题,属于较难题.由题意知,符合环形密铺的条件是各正多边形的重心到所围成的图形的重心距离要相等,即正多边形的重心在一个圆上,图中的④,⑤明显的不符合,正六边形符合,则正十二边形也符合.8. 【答案】3√34-12n+1√34【解析】当上底为1,腰为1,下底为2时,高为√1−14=√32,上底与下底的比为1∶2,∴S △1=14S △AN 1M 1=2×√32×23×14×12=√312, S 1=12(1+2)√32-√312=3√34-√312=2√33,S 1=3√34-12×1+1√34,同理,由相似,S 2=3√34-12×2+1√34,…,以此类推,S n =3√34-12n+1√34. 9.(1) 【答案】AD =C ′D (答案不唯一,也可以是AE =C ′F 等)【解析】图①中,AD =C ′D ,AE =C ′F ,DE =BE ,C ′F =CF 等 (2) 【答案】①②③【解析】延长MN ,则M 、N 、B 在一条直线上,∴∠MBA =18°, ∴AM AB =AMa=tan 18°,∴AM =a tan 18°,又AD =AM +MD ,∴b =m +a tan 18°,延长线BM 至M ′,使DM =DM ′,∠DM ′M =∠DMM ′=72°, ∴∠M ′DB =90° ∴DM =DM ′=BD tan18°=√a 2+b 2tan18°=m .∴AE =b tan 18°,DE =BE =a -b tan 18°,AD =b .∴b 2+b 2tan 2 18°=a 2-2ab tan 18°+b 2tan 18°,∴2ab tan 18°=a2-b2.故①②③正确10. 【答案】垂直、平行于底面各截一刀,第三刀刚好过前两个截面的交线,如图1,可以截出六块(方法不唯一);垂直、平行于底面各截一刀,第三刀不过前两个截面的交线,如图2,可以截出七块;垂直于底面交叉截两刀,再平行于底面横截一刀,如图3,可以截出八块.11.(1) 【答案】题图②有7个面、15条棱、10个顶点,题图③有7个面、14条棱、9个顶点,题图④有7个面、13条棱、8个顶点,题图⑤有7个面、12条棱、7个顶点.(2) 【答案】例如:三棱锥被切去一块,如图所示,所得到的几何体有5个面、9条棱、6个顶点.(3) 【答案】由前两问可得到规律,f+v-e=2,所以f,v,e应满足的关系是f+v-e=2.12.(1) 【答案】15°;BC∥AD.(2) 【答案】AE平分∠CAB′,理由:易知∠EAB′=15°,由第1问知,∠CAE=15°,所以∠CAE=∠EAB′,所以AE平分∠CAB′.(3) 【答案】AE平分∠CAF,理由:因为∠GAE=45°,∠BAG=90°,所以∠BAE=45°,因为∠BAC=∠FAG=20°,所以∠CAE=25°,∠EAF=25°,即∠CAE=∠EAF,则AE平分∠CAF. (4) 【答案】成立.13.(1) 【答案】将图①中四个角上的4个小正方形剪下,拼成一个正方形,作为直四棱柱的一个底面.(2) 【答案】将图②中三个角上的3个四边形剪下,拼成一个正三角形,作为直三棱柱的一个底面.第11页 共16页(3) 【答案】将图③中五个角上的5个四边形剪下,拼成一个正五边形,作为直五棱柱的一个底面.14.(1) 【答案】6;6;V +F −E =2.(2) 【答案】12.(3) 【答案】这个多面体的面数为x +y ,棱数为24×32=36,根据V +F −E =2可得24+(x +y)−36=2,所以x +y =14. 15.(1) 【答案】①栏依次填入:4;6;3;②栏依次填入:6;9;4;④栏依次填入:10;15;6.(2) 【答案】顶点数+区域数-边数=1.(3) 【答案】设这个平面图形有n 个顶点.因为从每一个顶点出发都有3条边,所以它3n2有条边.根据上述数量关系,有n +9−3n 2=1,可得n =16.所以3n2=24,所以这个平面图形共有24条边.16. 【答案】(1)将八边形内一点与各个顶点相连,可把八边形分割成8个三角形(如图(1)),用同样方法分割,可知n 边形可以分割成n 个三角形;(2)从八边形边上一点出发,连接各个顶点,能分成7个三角形(如图(2)),用同样方法分割,可知n 边形可以分割成(n −1)个三角形;(3)将八边形的一个顶点与同它不相邻的各顶点相连可以分割成6个三角形(如图(3)),用同样方法分割,可知n 边形可以分割成(n −2)个三角形.综上所述,八边形至少可以分割成6个三角形,n 边形至少可以分割成(n −2)个三角形.17.(1) 【答案】 AB =3AP .(提示:因为PD =2AC,DB =2PC ,所以PB =PD +DB =2(AC +PC )=2AP ,AB = AP +PB ,所以AB =3AP )(2) 【答案】证明:如图,由题意得AQ>BQ,∴AQ=AP+PQ,又∵AQ−BQ=PQ,∴AQ=BQ+PQ,∴AP=BQ.由第1问得,AP=13AB,∴PQ=AB−AP−BQ=13AB.∴AP=PQ.(3) 【答案】MNAB的值不变.当C点恰好停止运动时,有CD=12AB,∴AC+BD=12AB,∴AP−PC+BD=12AB,又∵AP=13AB,当C点恰好停止运动时,PC=1×5=5cm,BD=2×5=10cm,∴13AB−5+10=12AB,∴AB=30cm.∵M是CD的中点,N是PD的中点,∴MN=CD−MC−ND=CD−12CD−12PD=12(CD−PD)=12CP=52(cm),∴MNAB =112.18.(1) 【答案】150°或30°(2) 【答案】45°(3) 【答案】能求出∠DOE的度数.当OC在∠AOB内部时,如图①,因为∠AOB=90°,∠AOC=2α,所以∠BOC=90°-2α,因为OD,OE分别平分∠BOC,∠AOC,所以∠DOC=12∠BOC=45°-α,∠COE=12∠AOC=α,所以∠DOE=∠DOC+∠COE=(45°-α)+α=45°;当OC在∠AOB外部时,如图②,因为∠AOB=90°,∠AOC=2α,所以∠BOC=90°+2α,因为OD,OE分别平分∠BOC,∠AOC,所以∠DOC=12∠BOC=45°+α,∠COE=12∠AOC=α,所以∠DOE=∠DOC-∠COE=(45°+α)-α=45°.综上所述,∠DOE=45°.第13页 共16页19.(1) 【答案】当n 为奇数时,P 应设在第n+12台处;当n 为偶数时,P 应设在第n 2台和第(n 2+1)台之间的任何地方.(2) 【答案】根据绝对值的几何意义,求|x -1|+|x -2|+|x -3|+…+|x -617|的最小值就是在数轴上找出表示x 的点,使它到表示1,2,…,617各点的距离之和最小,根据问题(1)的结论知,当x =309时,原式的值最小.最小值是:|309-1|+|309-2|+|309-3|+…+|309-308|+0+|309-310|+|309-311|+…+|309-617|=308+307+306+…+1+1+2+…+308=308×309=95172. (3) 【答案】D 与E 两点之间(包括点D ,E )20.(1) 【答案】因为∠DPB =30°, ∠CPA =60°,所以∠DPC =180°-30°-60°=90°.(2) 【答案】设∠CPE =∠DPE =x ,∠CPF =y ,则∠APF =∠DPF =2x +y ,因为∠CPA =60°,所以y +2x +y =60°,所以x +y =30°,所以∠EPF =x +y =30°.(3) 【答案】①正确,②不正确.理由:设旋转时间为t 秒,则∠BPM =(2t )°,∠APN =(3t )°.所以∠BPN =180°-∠BPM =(180-2t )°,∠DPM =30°-∠BPM =(30-2t )°.所以∠CPD =180°-∠DPM -∠CPA -∠APN =(90-t )°,所以∠CPD ∠BPN =90-t 180-2t =12.21.(1) 【答案】如图①,因为M ,N 分别为线段AC ,BD 的中点,所以AM=12AC =12(AB +BC)=8,DN =12BD =12(CD +BC )=5,所以MN =AD -AM -DN =9;如图②,困为M ,N 分别为线段AC ,BD 的中点,所以AM =12AC =12(AB -BC )=4,DN =12BD =12(CD -BC )=1,所以MN =AD -AM -DN =9. (2) 【答案】①正确.因为PA+PB PC =(PC+AC)+(PC -CB)PC =2PC PC =2,所以PA+PBPC是定值2.22. 【答案】第1列最多可以搬走9个小正方体; 第2列最多可以搬走8个小正方体;第3列最多可以搬走3个小正方体;第4列最多可以搬走5个小正方体;第5列最多可以搬走2个小正方体,因为9+8+3+5+2=27(个),所以最多可以搬走27个小正方体.23. 【答案】因为M是线段AC的中点,所以CM=12AC.因为点N是线段BC的中点,所以CN=12BC.分以下三种情况:①当点C在线段AB上时,如图1,则有MN=CM+CN=12AC+12BC=12(AC+BC)=12AB;②当点C在线段AB的延长线上时,如图2,则有MN=CM−CN=12AC−12BC=12(AC−BC)=12AB;③当点C在线段BA的延长线上时,如图3,则有MN=CN−CM=12BC−12AC=12(BC−AC)=12AB.综上所述,MN=12AB.24. 【答案】设∠AOD,∠BOC的角平分线分别为OE,OF.分两种情况讨论.①当射线OD和射线OC在直线AB的同侧时,由题意,得∠BOF=12∠BOC=17°,∠AOE=12∠AOD=21°,故∠EOF=180°−∠BOF−∠AOE=180°−17°−21°=142°;②当射线OD和射线OC在直线AB的异侧时,∠EOF=180°−∠AOE+∠BOF=180°−21°+17°=176°.综上所述,∠AOD与∠BOC的角平分线的夹角为142°或176°.25.(1) 【答案】因为∠NOC=12∠BOC,∠MOC=12∠AOC,所以∠MON=∠NOC+∠MOC=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12∠AOB=45°.(2) 【答案】由第1问知,∠NOC+∠MOC是个定值,所以当OC在∠AOB内转动时,∠MON的度数不会发生改变,恒为45°.26. 【答案】①测量∠ABC=45°,∠DEF=65°,所以∠ABC<∠DEF.②如图,使∠ABC的一边BC与∠DEF的一边EF、顶点B与E分别重合,BA落在∠DEF的内部,所以∠ABC<∠DEF.27.(1) 【答案】因为OM平分∠AOC,ON平分∠BOC,所以∠MOC=12∠AOC,∠NOC=12∠BOC,又因为∠AOB=90°,∠BOC=30°所以∠MON=∠MOC−∠NOC=12∠AOC−12∠BOC=12(∠AOC−∠BOC)=12∠AOB=12×90°=45°.(2) 【答案】当∠AOB=α,其他条件不变时,∠MON=12∠AOB=12α.(3) 【答案】当∠BOC=β,其他条件不变时,∠MON=12∠AOB=12×90°=45°.(4) 【答案】∠MON总等于∠AOB的一半,而与∠BOC的大小无关.28.(1) 【答案】因为∠AOB=80°,OC是∠AOB的平分线,所以∠AOC=∠BOC=12∠AOB=40°. 因为OD,OE分别平分∠BOC,∠AOC,所以∠COD=12∠BOC=20°,∠COE=12∠AOC=20°,所以∠DOE=∠COD+∠COE=40°.第15页共16页(2) 【答案】因为OD,OE分别平分∠BOC,∠AOC,所以∠COD=12∠BOC,∠COE=12∠AOC,所以∠DOE=∠COD+∠COE=12(∠BOC+∠AOC)=12∠AOB=12×80°=40°.(3) 【答案】能.∠DOE=∠DOC−∠COE=12∠BOC−12∠AOC=12(∠BOC−∠AOC)=12∠AOB=12×80°=40°.29. 【答案】欲求从A点到B点的最短路线,在立体图形中难以解决,可以考虑把正方体展开成平面图形.如图所示.在两点之间,走线段最短,因而沿着从A到B的虚线(如上图)走路程最短.在正方体中,像这样的最短路线一共有六条,如图所示.。
几何图形(简答题:较易)1、一个几何体由大小相同的小立方体搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.2、(1)由大小相同的小立方块搭成的几何体如左图,请在右图的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.3、有若干个完全相同的棱长为1cm的小正方体堆成一个几何体,如图所示.(1)这个几何体由个小正方体组成,请画出这个几何体的三视图.(2)该几何体的表面积是 cm2.(3)若还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加____个小正方体.4、如图,截一个正方体,可以得到三角形,但要得到一个最大的等边三角形,你会切吗?你能说出你的切法吗?5、指出下列几何体的截面形状.6、有一个正方体,在它的各个面上分别标有数字l、2、3、4、5、6.甲、乙、丙三位同学从三个不同角度去观察此正方体,观察结果如图l、2、3所示,那么这个正方体各个面上的数字对面各是什么数字?甲乙丙图1图2图37、如图的几何体放在水平桌面上,请你画出分别从正面、左面、上面看这个几何体时所看到的图形.8、是否存在一个由10个面、24条棱和18个顶点构成的棱柱?若存在,请指出是几棱柱;若不存在,请说明理由.9、如图是一个正方体盒子的展开图,要把-8、10、-12、8、-10、12些数字分别填入六个小正方形,使得按虚线折成的正方体相对面上的两个数相加得0.10、如图,这是一个由大小相同的小立方块塔成的几何体从上面看到的形状图,小正方形中的数字表示该位置的小立方块的个数.请你画出它从正面和从左面看到的这个几何体的形状图.11、(2015秋•微山县期末)如图是由四个大小一样的小正方体组成的立体图形.请你在指定区域内画出从三个不同方向看图所看到的图形.12、由大小相同的小立方块搭成的几何体,请在方格中画出该几何体的三视图.13、用平面截下列几何体,写出下列截面的形状.14、(6分)画出如图所示立体图的三视图.15、(本题6分)分别画出下面实物图从三个面看到的形状图16、假如圆锥的体积一定,它的底面直径与高()A.成正比例B.成反比例C.不成比例D.无法确定17、(3分)如图所示由五个小立方体构成的立体图形,请你分别画出从它的正面、左面、上面三个方向看所得到的平面图形.主视图(从正面看)左视图(从左面看)俯视图(从上面看)18、(6分)分别画下图几何体的三视图.主视图:左视图:俯视图:19、如图,是由小立方块塔成的几何体,请分别从前面看、左面看和上面看,试将你所看到的平面图形画出来.20、(本题满分6分)回答下列问题:(1)如图所示的甲、乙两个平面图形能折成什么几何体?_________________________(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为,顶点个数为,棱数为,分别计算第(1)题中两个多面体的的值?你发现什么规律?(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.21、(本题6分)下图是一些小正方块所搭几何体的俯视图,小正方块中的数字表示该位置的小方块的个数,请画出这个几何体的主视图和左视图.22、用剪刀将形状如图1所示的矩形纸片ABCD沿着直线CM剪成两部分,其中M为AD 的中点.用这两部分纸片可以拼成一些新图形,例如图2中的Rt△BCE就是拼成的一个图形. 用这两部分纸片除了可以拼成图2中的Rt△BCE外,还可以拼成一些四边形,请你试一试,把拼成的四边形分别画在图3、图4的虚框内。
有理数的概念一、本节学习指导本带知识点比较多,同学们要认真学习并加以总结,用自己的语言来理解部分知识是有助于我们记忆的。
对于本行的知识如果一时记不住也不要急,毕竟我们才刚刚进入初级数学的学习。
本节有配套学习视频。
二、知识要点1、正数和负数(1)、大于。
的数叫做正数。
(2)、在正数前面加上负号“-”的数叫做负数。
(3)、数0既不是正数,也不是负数,0是正数与负数的分界。
(4)、在同一个问题中,分别用正数与负数表示的量具有相反的意义。
2、有理数(D凡能写成分数形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,如:-(-2) =4,这个时候的汽不是有理数;正有理数<'正整数正分数整数♦正整数零(2)有理数的分类:①有理数< 零②有理数负整数负有理数,负整数负分数分数‘正分数负分⑶自然数00和正整数;a>0 Oa是正数;a<0 Oa是负数;a'OOa是正数或00是非负数;aWOOa是负数或0U>a是非正数.3、数轴【重点】(1)、用一条直线上的点表示数,这条直线叫做数轴。
它满足以下要求:I I I I I I )-2-10123①在直线上任取一个点表示数0,这个点叫做原点;②通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;③选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3-;从原点向左,用类似的方法依次表示-1,-2, -3…(2)、数轴的三要素:原点、正方向、单位长度。
(3)、画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。
数轴的规范画法:是条直线,数字在下,字母在上。
注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。
(4)、一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a 个单位长度:表示数-a的点在原点的左边,与原点的距离是a个单位长度。
七年级数学知识点归纳一、数与代数1. 整数- 整数 classification- 奇数与偶数- 质数与合数- 整数的四则运算- 整数的性质2. 有理数- 有理数的概念- 有理数的加法与减法- 有理数的乘法与除法- 有理数的比较大小- 绝对值与相反数3. 代数表达式- 单项式与多项式- 代数式的加减运算- 代数式的乘法运算- 代数式的除法运算- 因式分解4. 线性方程- 一元一次方程- 二元一次方程- 线性方程的解法- 线性方程的应用问题5. 不等式- 不等式的概念- 不等式的解集表示- 不等式的解法- 线性不等式与二次不等式二、几何1. 平面图形- 点、线、面的基本性质- 直线、射线、线段- 角的概念与分类- 平行线与相交线的性质- 三角形的基本性质与分类2. 圆的基本性质- 圆的定义- 圆的半径、直径、弦、弧- 圆周角与圆心角- 切线的概念与性质3. 面积与体积- 平行四边形、三角形、梯形的面积计算 - 圆的面积计算- 长方体与立方体的体积计算4. 变换图形- 平移、旋转、对称的概念- 图形的平移变换- 图形的旋转变换- 轴对称与中心对称三、数据与概率1. 数据的收集与整理- 数据的表示方法- 统计表的绘制- 频数与频率的概念2. 数据的分析与解释- 众数、中位数、平均数的计算- 数据的图表表示(条形图、折线图、饼图)3. 概率的初步认识- 随机事件的概念- 可能性的判断与概率计算以上是七年级的数学知识点归纳,每个部分都包含了基础概念、性质、计算方法和应用实例。
学生应掌握这些知识点,以便能够解决实际问题,并为以后的学习打下坚实的基础。
教师和家长应指导学生通过练习和实际应用来巩固这些概念。
一、解答题1.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.解析:(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用直线以及射线的定义画出图形即可;(2)利用角的定义作射线DC,DB即可;(3)连接AC,与BD的交点即为所求.【详解】解:(1)如图所示:直线AB、射线AD即为所求;(2)如图所示:∠CDB即为所求;(3)如图所示:点P即为所求.【点睛】此题主要考查了直线、射线以及角的定义,正确把握相关定义是解题关键.2.如图是由若干个正方体形状的木块堆成的,平放于桌面上。
其中,上面正方体的下底面的四个顶点恰是下面相邻正方体的上底面各边的中点,如果最下面的正方体的棱长为1.(1)当只有两个正方体放在一起时,这两个正方体露在外面的面积和是;(2)当这些正方体露在外面的面积和超过8时,那么正方体的个数至少是多少?(3)按此规律下去,这些正方体露在外面的面积会不会一直增大?如果会,请说明理由;如果不会,请求出不会超过哪个数值?(提示:所有正方体侧面面积加上所有正方体上面露出的面积之和,就是需求的面积,从简单入手,归纳规律.)解析:(1)7;(2)4个;(3)不会,理由见解析【分析】(1)若只有一层(即只有一个)时,每个面的面积是1,共露出5个面,所以外露面积为:1+1×4=5;若有两层,则第二层每个侧面的面积是12,与一层相比,多了4个侧面,所以外露面积为:1+(1+12)×4=7;(2)若有三层,则第三层的每个侧面的面积是14,与两层相比,多了4个侧面,所以外露面积=1+(1+12+14)×4=8,这些正方体露在外面的面积和超过8,那么正方体的个数至少是4个;(3)若有n层,所以,露在外面的面积为:1+[1+12+14+……+(1)12n-]×4<1+2×4=9,即按此规律堆下去,总面积最大不会超过9.【详解】解:(1)若只有一层(即只有一个)时,每个面的面积是1,共露出5个面,所以外露面积为:1+1×4=5;若有两层,则第二层每个侧面的面积是12,与一层相比,多了4个侧面,所以外露面积为:1+(1+12)×4=7;(3)若有三层,则第三层的每个侧面的面积是14,与两层相比,多了4个侧面,所以外露面积=1+(1+12+14)×4=8,∴这些正方体露在外面的面积和超过8,那么正方体的个数至少是4个;(3)若有n层,所以,露在外面的面积为:1+[1+12+14+……+(1)12n-]×4<1+2×4=9,∴按此规律堆下去,总面积最大不会超过9.【点睛】此题考查了立体图形的表面积问题.解决本题的关键是得到上下正方体的一个面积之间的关系,从而即可得出依次排列的正方体的一个面的面积,这里还要注意把最下面的正方体看做是5个面之外,上面的正方体都是露出了4个面.解决本题的关键是得到上下正方体的一个面积之间的关系.3.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长.(2)若CE=5cm,求DB的长.解析:(1)AB=18;(2)DB=15.【分析】(1)由线段中点的定义可得CD=12AC,CE=12BC,根据线段的和差关系可得DE=12AB,进而可得答案;(2)根据中点定义可得AC=BC,CE=BE,AD=CD,根据线段的和差关系即可得答案.【详解】(1)∵D是AC的中点,E是BC的中点.∴CD=12AC,CE=12BC,∵DE=CD+CE=9,∴12AC+12BC=12(AC+BC)=9,∵AC+BC=AB,∴AB=18.(2)∵C是AB的中点,D是AC的中点,E是BC的中点,∴AC=BC,CE=BE=12BC,,AD=CD=12AC,∴AD=CD=CE=BE,∴DB=CD+CE+BE=3CE,∵CE=5,∴DB=15.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.4.如图,点B和点C为线段AD上两点,点B、C将AD分成2︰3︰4三部分,M是AD的中点,若MC=2,求AD的长.解析:AD=36.【分析】根据点B、C将AD分成2︰3︰4三部分可得出CD与AD的关系,根据中点的定义可得MD=12AD,利用MC=MD-CD即可求出AD的长度.【详解】∵点B、C将AD分成2︰3︰4三部分,∴CD=49AD,∵M是AD的中点,∴MD=12 AD,∵MC=MD-CD=2,∴12AD-49AD=2,∴AD=36.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.5.(1)如图,AC=DB,请你写出图中另外两条相等的线段.(2)在一直道边植树8棵,若相邻两树之间距离均为1.5m,则首尾两颗大树之间的距离是_____.解析:(1)AB=CD;(2)10.5m.【分析】(1)根据等式的性质即可得出结论;(2)8棵树之间共有7段距离,从而计算即可.【详解】(1)因为AC=BD,∴AC-BC=DB-BC,即AB=CD.(2)设首尾之间的距离为x,由8棵树之间共有7段间隔,可得x=7×1.5=10.5(m).故答案为:10.5m.【点睛】本题考查了等式的性质及线段的计算,属于基础题,明白8棵树之间的间隔是关键.6.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.7.蜗牛爬树 一棵树高九丈八,一只蜗牛往上爬.白天往上爬一丈,晚上下滑七尺八.试问需要多少天,爬到树顶不下滑? 解析:蜗牛需41天才爬到树顶不下滑. 【分析】根据题意可知蜗牛一个白天加一个晚上所爬行的路程,即蜗牛每天前进的路程,最后一天,也就是还剩下一丈的时候,他爬到树顶就不再往下滑了,在这之前都是白天爬一丈,晚上下滑七尺八;接下来设需要x 天,爬到树顶不下滑,列出方程即可解答. 【详解】设蜗牛需x 天才爬到树顶不下滑,即爬到九丈八需x 天,可列方程(10-7.8)(x -1)+10=98,解得x =41.答:蜗牛需41天才爬到树顶不下滑. 【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找到等量关系列出方程.8.如图,已知40AOB ∠=︒,3BOC AOB ∠=∠,OD 平分AOC ∠,求BOD ∠的度数.解析:40° 【分析】根据3BOC AOB ∠=∠,40AOB ∠=︒求出120BOC ∠=︒,得到∠AOC 的度数,利用OD 平分AOC ∠,求出∠AOD 的度数,即可求出BOD ∠的度数.【详解】解:∵3BOC AOB ∠=∠,40AOB ∠=︒,∴120BOC ∠=︒.∵AOC AOB BOC ∠=∠+∠,40120=︒+︒,160=︒,又∵OD 平分AOC ∠,∴1802AOD AOC ∠=∠=︒, ∴BOD AOD AOB ∠=∠-∠,8040=︒-︒,40=︒.【点睛】此题考查角度的和差计算,会看图明确各角之间的大小关系,注意角平分线的运用. 9.如图,点B 、C 在线段AD 上,且::2:3:4AB BC CD =,点M 是线段AC 的中点,点N 是线段CD 上的一点,且9MN =. (1)若点N 是线段CD 的中点,求BD 的长; (2)若点N 是线段CD 的三等分点,求BD 的长.解析:(1)14;(2)37823或37831. 【分析】(1)设AB=2x ,则BC=3x ,CD=4x .根据线段中点的性质求出MC 、CN ,列出方程求出x ,计算即可;(2)分两种情况:①当N 在CD 的第一个三等分点时,根据MN=9,求出x 的值,再根据BD=BC+CD 求出结果即可;②当N 在CD 的第二个三等分点时,方法同①. 【详解】设AB=2x ,则BC=3x ,CD=4x . ∴AC=AB+BC=5x , ∵点M 是线段AC 的中点, ∴MC=2.5x ,∵点N 是线段CD 的中点, ∴CN=2x ,∴MN=MC+CN=2.5x+2x=4.5x ∵MN=9,∴4.5x=9,解得x=2, ∴BD=BC+CD=3x+4x=7x=14.(2)情形1:当N 在CD 的第一个三等分点时,CN=43x ,∴MN=MC+CN=54239236x x x +== 解得,5423x =,∴BD=BC+CD=3x+4x=7x=37823; 情形2:当当N 在CD 的第二个三等分点时,CN=83x , ∴MN=MC+CN=58319236x x x +== 解得,5431x =, ∴BD=BC+CD=3x+4x=7x=37831; 故BD 的长为37823或37831. 【点睛】本题考查的是两点间的距离的计算,掌握线段中点和三等分点的性质、灵活运用数形结合思想是解题的关键.10.[阅读理解]射线OC 是AOB ∠内部的一条射线,若1,2COA BOC ∠=∠则我们称射线OC 是射线OA 的伴随线.例如,如图1,60 20AOB AOC COD BOD ∠=∠=∠=∠=,,则12AOC BOC ∠=∠,称射线OC 是射线OA 的伴随线:同时,由于12BOD AOD ∠=∠,称射线OD 是射线OB 的伴随线. [知识运用](1)如图2,120AOB ∠=,射线OM 是射线OA 的伴随线,则AOM ∠= ,若AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线,则NOC ∠的度数是 .(用含α的代数式表示)(2)如图,如180AOB ∠=,射线OC 与射线OA 重合,并绕点O 以每秒3的速度逆时针旋转,射线OD 与射线OB 重合,并绕点O 以每秒5的速度顺时针旋转,当射线OD 与射线OA 重合时,运动停止,现在两射线同时开始旋转.①是否存在某个时刻t (秒),使得COD ∠的度数是20,若存在,求出t 的值,若不存在,请说明理由;②当t 为多少秒时,射线OC OD OA 、、中恰好有一条射线是其余两条射线的伴随线. 解析:(1)40︒,16α;(2)①存在,当20t =秒或25秒时,∠COD 的度数是20︒;②当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线. 【分析】(1)根据伴随线定义即可求解;(2)①利用分类讨论思想,分相遇之前和之后进行列式计算即可; ②利用分类讨论思想,分相遇之前和之后四个图形进行计算即可. 【详解】(1)∵120AOB ∠=,射线OM 是射线OA 的伴随线, 根据题意,12AOM BOM ∠=∠,则111204033AOM AOB ∠=∠=⨯︒=︒; ∵AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线, ∴111233BON AON AOB α∠=∠=∠=,1122BOC AOB α∠=∠=, ∴111236NOC BOC BON ααα∠=∠-∠=-=; 故答案为:40︒,16α;(2)射线OD 与OA 重合时,180365t ==(秒), ①当∠COD 的度数是20°时,有两种可能:若在相遇之前,则1805320t t --=, ∴20t =;若在相遇之后,则5318020t t +-=, ∴25t =;所以,综上所述,当20t =秒或25秒时,∠COD 的度数是20°; ②相遇之前: (i )如图1,OC 是OA 的伴随线时,则12AOC COD ∠=∠,即()13180532t t t =--, ∴907t =; (ii )如图2,OC 是OD 的伴随线时, 则12COD AOC ∠=∠, 即11805332t t t --=⨯, ∴36019t =; 相遇之后:(iii )如图3,OD 是OC 的伴随线时, 则12COD AOD ∠=∠, 即()15318018052t t t +-=-, ∴1807t =; (iv )如图4,OD 是OA 的伴随线时,则12AOD COD ∠=∠,即()118053t 5t 1802t -=+-, ∴30t =;所以,综上所述,当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线. 【点睛】本题是几何变换综合题,考查了角的计算,考查了动点问题,解题的关键是理解题意,学会用分类讨论的思想思考问题.11.(1)已知一个角的补角比它的余角的3倍多10︒,求这个角的度数. (2)已知α∠的余角是β∠的补角的13,并且32βα∠=∠,试求a β∠+∠的度数.解析:(1)50°;(2)150° 【分析】(1)设这个角为α,则补角为(180°-α),余角为(90°-α),再由补角比它的余角的3倍多10°,可得方程,解出即可;(2)根据互余和互补的定义,结合已知条件列出方程组,解方程组得到答案. 【详解】(1)设这个角为α,根据题意,得18039010()a α︒-=︒-+︒.解得:50α=︒. 答:这个角的度数为50︒. (2)根据题意,得190(180)3αβ︒︒-∠=⨯-∠且32βα∠=∠, ∴60α∠=︒,90β∠=︒. ∴ 150αβ∠+∠≡︒. 【点睛】本题考查的是余角和补角的概念,掌握若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补是解题的关键.12.如图,已知平面上有四个村庄,用四个点A ,B ,C ,D 表示.(1)连接AB ,作射线AD ,作直线BC 与射线AD 交于点E ;(2)若要建一供电所M ,向四个村庄供电,要使所用电线最短,则供电所M 应建在何处?请画出点M 的位置并说明理由.解析:(1)如图所示.见解析;(2)如图,见解析;供电所M 应建在AC 与BD 的交点处.理由:两点之间,线段最短.【分析】(1)根据射线、直线的定义进而得出E点位置;(2)根据线段的性质:两点之间,线段距离最短;结合题意,要使它与四个村庄的距离之和最小,就要使它在AC与BD的交点处.【详解】(1)如图所示:点E即为所求;(2)如图所示:点M即为所求.理由:两点之间,线段最短.【点睛】本题主要考查了作图与应用作图,关键是掌握线段的性质:两点之间,线段距离最短.13.小刚和小强在争论一道几何问题,问题是射击时为什么枪管上有准星.小刚说:“过两点有且只有一条直线,所以枪管上才有准星.”小强说:“过两点有且只有一条直线我当然知道,可是若将人眼看成一点,准星看成一点,目标看成一点,这样不是有三点了吗?既然过两点有且只有一条直线,那弄出第三点是为什么呢?”聪明的你能回答小强的疑问吗?解析:见解析【分析】根据直线的性质,结合实际意义,易得答案.【详解】解:如果将人眼看成一点,准星看成一点,目标看成一点,那么要想射中目标,人眼与目标确定的这条直线应与子弹所走的直线重合,即与准星和目标所确定的这条直线重合,即可看到哪儿打到哪儿.换句话说要想射中目标就必须使准星在人眼与目标所确定的直线上.【点睛】题考查直线的性质,无限延伸性即没有端点;同时结合生活中的射击场景,立意新颖,熟练掌握直线的性质是解题的关键.14.如图,已知线段a和b,直线AB和CD相交于点O.利用尺规,按下列要求作图(只保留作图痕迹即可):(1)在射线OA,OB,OC上作线段OA′,OB′,OC′,使它们分别与线段a相等;(2)在射线OD上作线段OD′,使OD′与线段b相等;(3)连接A′C′,C′B′,B′D′,D′A′.解析:详见解析【解析】【分析】(1)以点O为圆心,a为半径作圆,分别交射线OA,OB,OC于A′、B′、C′;、(2)以点O为圆心,b为半径作圆,分别交射线OD,于D′.(3)依次连接A′C′B′D′,即可解答.【详解】解:(1)如图所示OA′、OB′、OC′.(2)如图所示OD′.(3)如图所示A′C′B′D′.【点睛】此题考查作图—复杂作图,解题关键在于掌握尺规作图.15.如图,O在直线AC上,OD是∠AOB的平分线,OE在∠BOC内.(1)若OE是∠BOC的平分线,则有∠DOE=90°,试说明理由;(2)若∠BOE=12∠EOC,∠DOE=72°,求∠EOC的度数.解析:(1)见解析;(2)72°【解析】【分析】(1)根据角平分线的定义可以求得∠DOE=12∠AOC=90°;(2)设∠EOB=x度,∠EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法.【详解】(1)如图,因为OD是∠AOB的平分线,OE是∠BOC的平分线,所以∠BOD=12∠AOB,∠BOE=12∠BOC,所以∠DOE=12(∠AOB+∠BOC)=12∠AOC=90°;(2)设∠EOB=x,则∠EOC=2x,则∠BOD=12(180°–3x),则∠BOE+∠BOD=∠DOE,即x+12(180°–3x)=72°,解得x=36°,故∠EOC=2x=72°.【点睛】本题考查了角平分线的定义.设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.16.读下列语句,画出图形,并回答问题.(1)直线l经过A,B,C三点,且C点在A,B之间,点P是直线l外一点,画直线BP,射线PC,连接AP;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.解析:(1)见解析;(2)直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC 【分析】(1)根据直线、射线、线段的定义作图;(2)根据直线、射线、线段的定义解答.【详解】(1)如图所示.(2) 直线有2条,分别是直线PB ,AB ;射线有7条,分别是射线PC ,PB ,BP ,AC ,CB ,BC ,CA ;线段有6条,分别是线段PA ,PB ,PC ,AB ,AC ,BC .【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.17.如图,已知∠BOC =2∠AOC ,OD 平分∠AOB ,且∠COD =20°,求∠AOB 的度数.解析:120°【分析】此题可以设∠AOC=x ,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【详解】解:设∠AOC =x ,则∠BOC =2x .∴∠AOB =3x .又OD 平分∠AOB ,∴∠AOD =1.5x .∴∠COD =∠AOD ﹣∠AOC =1.5x ﹣x =20°.∴x =40°∴∠AOB =120°.【点睛】此题考查角平分线的定义及角的计算,设出适当的未知数,运用方程求出角的度数是解题的关键.18.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2t s =时,1CD cm =,试探索AP 的值.解析:(1)①3cm ;②见解析;(2)9AP =或11cm.【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论.【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=,∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=,∴2433CD CP PB DB cm =+-=+-=;②∵8,12AP AB ==,∴4,82BP AC t ==-,∴43DP t =-,∴2434CD DP CP t t t =+=+-=-,∴2AC CD =;(2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=,∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=,综上所述,9AP =或11cm.【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.19.如图,已知点C 为线段AB 上一点,15cm AC =,35CB AC =,D ,E 分别为线段AC ,AB 的中点,求线段DE 的长.解析:5cm【分析】根据线段的中点定义即可求解.【详解】解:因为15cm AC =,35CB AC =, 所以3159(cm)5CB =⨯=, 所以15924(cm)AB =+=.因为D ,E 分别为线段AC ,AB 的中点,所以112cm 2AE BE AB ===,17.5cm 2DC AD AC ===. 所以127.5 4.5(cm)DE AE AD =-=-=. 【点睛】本题考查了两点间的距离,解决本题的关键是利用线段的中点定义.20.线段12cm AB =点C 在线段AB 上,点D ,E 分别是AC 和BC 的中点. (1)若点C 恰好是AB 中点,求DE 的长;(2)若4cm AC =,求DE 的长;(3)若点C 为线段AB 上的一个动点(点C 不与A ,B 重合),求DE 的长. 解析:(1)6cm ;(2)6cm ;(3)6cm【分析】(1)根据中点的定义,进行计算即可求出答案;(2)由中点的定义,先求出DC 和CE 的长度,然后求出DE 即可;(3)利用中点的定义,即可得到结论.【详解】解:(1)因为点C 是AB 中点,所以16cm 2AC BC AB ===. 又因为D ,E 分别是AC 和BC 的中点, 所以1116cm 222DE DC CE AC BC AB =+=+==, 故DE 的长为6cm .(2)因为12cm AB =,4cm AC =,所以8cm BC =.因为点D ,E 分别是AC 和BC 的中点,所以12cm 2DC AC ==,14cm 2CE BC ==, 所以6cm DE =. (3)因为111222DE DC CE AC BC AB =+=+=, 且12cm AB =,所以6cm DE =.【点睛】本题考查了线段中点的定义,解题的关键是熟练掌握线段之间的数量关系进行解题. 21.如图,长度为12cm 的线段AB 的中点为M ,点C 将线段MB 分成两部分,且:1:2MC CB =,则线段AC 的长度为________.解析:8cm【分析】先由中点的定义求出AM ,BM 的长,再根据MC :CB=1:2的关系,求MC 的长,最后利用AC=AM+MC 得其长度.【详解】∵线段AB 的中点为M ,∴AM=BM=6cm设MC=x ,则CB=2x ,∴x+2x=6,解得x=2即MC=2cm .∴AC=AM+MC=6+2=8cm .故答案为:8cm .【点睛】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键.同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.22.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示,设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .解析:(1)-4;(2)-88【分析】(1)根据以B 为原点,则C 表示1,A 表示-2,进而得到p 的值;根据以C 为原点,则A 表示-3,B 表示-1,进而得到p 的值;(2)根据原点O 在图中数轴上点C 的右边,且CO=28,可得C 表示-28,B 表示-29,A 表示-31,据此可得p 的值.【详解】(1)若以B 为原点,则点C 对应1,点A 对应2-,所以1021p =+-=-;若以C 为原点,则点A 对应3-,点B 对应1-,所以3104p =--+=-.(2)若原点O 在题图中数轴上点C 的右边,且28CO =,则点C 对应28-,点B 对应29-,点A 对应31-,所以31292888p =---=-.【点睛】本题考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离.23.射线OA ,OB ,OC ,OD ,OE 有公共端点O .(1)若OA 与OE 在同一直线上,如图(1),试写出图中小于平角的角.(2)如图(2),若108AOC ︒∠=,(072)COE n n ︒∠=<<,OB 平分AOE ∠,OD平分COE ∠,求BOD ∠的度数.解析:(1)AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,COD ∠,DOE ∠;(2)54︒【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE ,进而求出即可. 【详解】(1)题图(1)中小于平角的角有AOD ∠,AOC ∠,AOB ∠,∠BOE ,BOD ∠,BOC ∠,COE ∠,COD ∠,DOE ∠.(2)因为OB 平分AOE ∠,OD 平分COE ∠,108AOC ︒∠=,(072)COE n n ︒∠=<<,所以1111()2222BOD BOE DOE AOE COE AOE COE AOC ∠=∠-∠=∠-∠=∠-∠=∠. 因为108AOC ∠=︒,所以54BOD ∠=︒【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE 、∠BOD 和∠BOD 的关系是解题的关键,24.如图,点O 是直线AB 上一点,OC 为任一条射线,OD 平分∠AOC ,OE 平分∠BOC . (1)分别写出图中∠AOD 和∠AOC 的补角(2)求∠DOE 的度数.解析:(1)∠BOD ,∠BOC ;(2)90°.【分析】(1)由题意根据补角的定义即和是180度的两个角互补,一个角是另一个角的补角进行分析;(2)根据角平分线的性质,可得∠COE ,∠COD ,再根据角的和差即可得出答案.【详解】解:(1)根据补角的定义可知,∠AOD 的补角是∠BOD ;∠AOC 的补角是∠BOC ;(2)∵OD 平分∠AOC ,OE 平分∠BOC ,∴∠COD= 12∠AOC ,∠COE=12∠BOC . 由角的和差得∠DOE=∠COD+∠COE=12∠AOC+12∠BOC=12∠AOB=90°. 【点睛】本题考查余角和补角,利用了补角的定义和角的和差以及角平分线的性质进行分析求解. 25.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长;(2)求线段MN 的长;(3)若C 在线段AB 延长线上,且满足AC ﹣BC=b cm ,M ,N 分别是线段AC ,BC 的中点,你能猜想MN 的长度吗?请写出你的结论(不需要说明理由)解析:(1)BC= 7cm ;(2)MN= 6.5cm ;(3)MN=2b 【分析】(1)根据线段中点的性质,可得MC 的长,根据线段的和差,可得BC 的长;(2)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得MN 的长; (3)根据(1)(2)的结论,即可解答.【详解】解:(1)∵AC=6cm ,点M 是AC 的中点,∴12MC AC ==3cm , ∴BC=MB ﹣MC=10﹣3=7cm .(2)∵N 是BC 的中点,∴CN=12BC=3.5cm , ∴MN=MC+CN=3+3.5=6.5cm .(3)如图,MN=MC ﹣NC=1122AC BC -=12(AC ﹣BC )=12b .MN=2b . 【点睛】 本题考查两点间的距离.26.已知线段14AB =,在线段AB 上有点C ,D ,M ,N 四个点,且满足AC :CD :1DB =:2:4,12AM AC =,且14DN BD =,求MN 的长. 解析:7或3【分析】 求出AC ,CD ,BD ,求出CM ,DN ,根据MN CM CD DN =++或MN CM CD ND =+-求出即可.【详解】如图,14AB =,AC :CD :1BD =:2:4,2AC ∴=,4CD =,8BD =,12AM AC =,14DN DB =, 1CM ∴=,2DN =,1427MN CM CD DN ∴=++=++=或1423MN CM CD ND =+-=+-=. 则MN 的长是7或3.【点睛】本题考查了求出两点间的距离的应用及分类讨论的数学思想,关键是找找出线段间的数量关系.27.把一副三角板的直角顶点O 重叠在一起.(1)问题发现:如图①,当OB 平分∠COD 时,∠AOD+∠BOC 的度数是 ; (2)拓展探究:如图②,当OB 不平分∠COD 时,∠AOD+∠BOC 的度数是多少? (3)问题解决:当∠BOC 的余角的4倍等于∠AOD 时,求∠BOC 的度数.解析:(1)180°;(2)180°;(3)60°.【解析】试题分析:(1)先根据OB 平分∠COD 得出∠BOC 及∠AOC 的度数,进而可得出结论; (2)根据直角三角板的性质得出∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°进而可得出结论;(3)根据(1)、(2)的结论可知∠AOD+∠BOC=180°,故可得出∠AOD=180°﹣∠BOC,根据∠BOC的余角的4倍等于∠AOD即可得出结论.解:(1)∵OB平分∠COD,∴∠BOC=∠BOD=45°.∵∠AOC+∠BOC=45°,∴∠AOC=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°.故答案为180°;(2)∵∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=90°+90°=180°;(3)∵由(1)、(2)得,∠AOD+∠BOC=180°,∴∠AOD=180°﹣∠BOC.∵∠AOD=4(90°﹣∠BOC),∴180°﹣∠BOC=4(90°﹣∠BOC),∴∠BOC=60°.考点:余角和补角;角平分线的定义.28.如图,已知OE是∠AOB的平分线,C是∠AOE内的一点,若∠BOC=2∠AOC,∠AOB =114°,则求∠BOC,∠EOC的度数.解析:∠BOC=76°,∠EOC=19°.【分析】由∠BOC=2∠AOC,则∠AOB=∠BOC+∠AOC=3∠AOC,即∠BOC=23∠AOB,然后求解即可;再根据OE是∠AOB的平分线求得∠BOE,最后根据角的和差即可求得∠EOC.【详解】解:∵∠BOC=2∠AOC,∠AOB=114°,∴∠BOC=23∠AOB =23×114°=76°,∵OE是∠AOB的平分线,∠AOB=114°,∴∠BOE=12∠AOB =12×114°=57°.∴∠EOC=∠BOC-∠BOE=19°.【点睛】本题主要考查了角平分线的定义以及角的和差运算,掌握数形结合思想成为解答本题的关键.29.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.30.如图是一个去掉盖子的长方体礼品盒的展开图(单位:cm).从A,B两题中任选一题作答.A.该长方体礼品盒的容积为______3cm.B.如果把这个去掉盖子的礼品盒沿某些棱重新剪开,可以得到周长最大的展开图,则周长最大为____cm.解析:A:800;B:146【分析】A:根据题意可以得到长方体的长为16宽为10高为5,即可求出体积.B:依据题意展开,计算即可.【详解】解:A:根据题意高为20-15=5 宽为15-5=10 长为 26-10=16V=16×10×5=800B:依据题意展开如图周长=5×2+16×6+10×4=146【点睛】此题主要考查了立体图形体积计算及最大展开周长,注意最大展开周长一定是最长棱长最多的.。
初一求面积10题
以下是10道初一数学中求面积的题目:
一个长方形的长是8厘米,宽是6厘米,求这个长方形的面积。
一个正方形的边长是9厘米,求这个正方形的面积。
一个三角形的底是10厘米,高是8厘米,求这个三角形的面积。
一个梯形的上底是6厘米,下底是12厘米,高是10厘米,求这个梯形的面积。
一个平行四边形的底是15厘米,高是9厘米,求这个平行四边形的面积。
一个菱形的两条对角线长分别为8厘米和12厘米,求这个菱形的面积。
一个圆的半径是5厘米,求这个圆的面积。
一个扇形的半径是6厘米,圆心角是120°,求这个扇形的面积。
一个矩形的对角线长是10厘米,一边长是6厘米,求这个矩形的面积。
一个三角形的两边长分别是4厘米和6厘米,这两边所夹的角是90°,求这个三角形的面积。
这些题目涵盖了长方形、正方形、三角形、梯形、平行四边形、菱形、圆、扇形等基本图形的面积计算,旨在检验学生对面积计算公式的掌握和应用能力。
初一数学上册最重要的知识点最新数学来源于生活,又服务于生活。
与数学相关的问题是取之不尽的,若能把它们运用得恰到好处,就会开启学生的智慧之门。
初一数学上册最重要的知识点有哪些你知道吗?一起来看看初一数学上册最重要的知识点最新,欢迎查阅!初一数学上册最重要的知识点一次方程与方程组-----------3.1一元一次方程及其解法①方程是含有未知数的等式。
②方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的整式方程叫做一元一次方程。
③注意判断一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;(系数中含字母时不能为零)3)经整理后方程中未知数的次数是1.④解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
方程的解代入满足,方程成立。
⑤等式的性质:1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等)。
a=b得:a+(-)c=b+(-)c2)等式两边同时乘以或除以同一个不为零的数,等式不变。
a=b得:a×c=b×c或a÷c=b÷c(c≠0)注意:运用性质时,一定要注意等号两边都要同时+、-、×、÷;运用性质2时,一定要注意0这个数。
⑥解一元一次方程一般步骤:去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个步骤不一定完全用上,或有些步骤还需要重复使用.因此,解方程时,要根据方程的特点,灵活选择方法.在解方程时还要注意以下几点:⑴去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;注意:去分母(等式的基本性质)与分母化整(分数的基本性质)是两个概念,不能混淆;⑵去括号:遵从先去小括号,再去中括号,最后去大括号不要漏乘括号的项;不要弄错符号(连着符号相乘);⑶移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(以=为界限),移项要变号;⑷合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式.⑸系数化1:(两边同除以未知数的系数)把方程化成ax=b(a≠0)的形式,字母及其指数不变系数化成1在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒(一步一步来) --------3.2一次方程的应用:(一)、概念梳理⑴列一元一次方程解决实际问题的一般步骤是:审题,特别注意关键的字和词的意义,弄清相关数量关系,注意单位统一,注意设未知数;①解:设出未知数(注意单位),②根据相等关系列出方程,③解这个方程,④答(包括单位名称,检验)。
人教版七年级数学上册第四章几何图形复习试题二(含答案) 指出下列平面图形各是什么几何体的展开图.【答案】(1)圆柱;(2)圆锥;(3)三棱柱;(4)三棱锥;(5)长方体.【解析】【分析】根据几何体的平面展开图的特征可知:(1)是圆柱的展开图;(2)是圆锥的展开图;(3)是三棱柱的展开图;(4)是三棱锥的展开图;(5)是长方体的展开图.【详解】(1)圆柱;(2)圆锥;(3)三棱柱;(4)三棱锥;(5)长方体.【点睛】本题主要考查几何体展开图的知识点,熟记常见几何体的平面展开图的特征是解决此类问题的关键.62.如图是一个长方体的表面展开图,每个外表面都标注了字母,请根据要求回答问题:(1)如果面A在多面体的底部,那么哪一个面会在上面?(2)如果面F在前面,从左面看是面B,那么哪一个面会在上面?(3)如果从右面看是面C,面D在后面,那么哪一个面会在上面?【答案】(1)面F.(2)面C.(3)面A.【解析】【分析】利用长方体及其表面展开图的特点解题.这是一个正方体的平面展开图,共有六个面,其中面“A”与面“F”相对,面“B”与面“D”相对,“C”与面“E”相对.【详解】由图可知,“C”与面“E”相对.则(1)∵面“A”与面“F”相对,∴A面是长方体的底部时,F面在上面;(2)由图可知,如果F面在前面,B面在左面,那么“E”面在下面,∵面“C”与面“E”相对,∴C面会在上面;(3)由图可知,如果C面在右面,D面在后面,那么“F”面在下面,∵面“A”与面“F”相对,∴A面在上面.A面会在上面.【点睛】本题考查的知识点是展开图折叠成长方体,解题关键是注意长方体的空间图形,从相对面入手,分析及解答问题.63.两位同学画的小动物如图所示,哪个图形是用立体图形组成的?用了哪些立体图形?哪个图形是用平面图形组成的?用了哪些平面图形?【答案】左边的图形是用立体图形组成的,用了圆柱体、长方体、球体和正方体;右边的图形是用平面图形组成的,用了三角形、正方形、长方形、五边形、六边形、圆.【解析】【分析】左图是由立体图形组成的,右图是由平面图形组成的,仔细识图即可作答.【详解】左边的图形是用立体图形组成的,用了圆柱体、长方体、球体和正方体;右边的图形是用平面图形组成的,用了三角形、正方形、长方形、五边形、六边形、圆.【点睛】本题考查的知识点是立体图形和平面图形的区别,解题关键是熟记立体图形和平面图形的定义.64.以给定的图形“○○、△△、=”(两个圆、两个三角形、两条线段)为构件,构思独特且有意义的图形.举例:如图,左框中是符合要求的一个图形.你还能构思出其他的图形吗?请在右框中画出与之不同的一个图形,并写出一两句贴切、诙谐的解说词.【答案】见解析.【解析】【分析】本题答案不唯一,结合实际生活中的实物,画一幅图画,再说出它像什么就可以.【详解】答案不唯一,如:【点睛】本题的关键是要善于观察与思考,结合实际有利于培养想象能力.65.如图①、②、③、④四个图形都是平面图形,观察图②和表中对应数值,探究计数的方法并解答下面的问题.(1)数一数每个图各有多少顶点、多少条边、这些边围成多少区域,将结果填入下表:(2)根据表中的数值,写出平面图的顶点数、边数、区域数之间的关系;(3)如果一个平面图形有20个顶点和11个区域,求这个平面图形的边数.【答案】(1)见表格解析;(2)V+F=E+1;(3)30.【解析】【分析】(1)根据图中的四个平面图形数出其顶点数、边数、区域数得出结果;(2)根据表(1)数据总结出归律;(3)根据题(2)的公式把20个顶点和11个区域代入即可得平面图形的边数.【详解】(1)结和图形我们可以得出:图①有4个顶点、6条边、这些边围成3个区域;图②有7个顶点、9条边、这些边围成3个区域;图③有8个顶点、12条边、这些边围成5个区域;图④有10个顶点、15条边、这些边围成6区域.(2)根据以上数据,顶点用V表示,边数用E表示,区域用F表示,他们的关系可表示为:V+F=E+1;(3)把V=20,F=11代入上式得:E=V+F﹣1=20+11﹣1=30.故如果平面图形有20个顶点和11个区域,那么这个平面图形的边数为30.【点睛】本题考查了图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题.66.一个正方体6个面分别写着1,2,3,4,5,6.根据下列摆放的三种情况,那么每个数对面上的数是几?【答案】1对4,2对5,3对6;或1对5,2对4,3对6.【解析】【分析】根据正方体的特征知,相邻的面一定不是对面,所以面“1”与面“4”相对,面“2”与面“5”相对,“3”与面“6”相对;或面“1”与面“5”相对,面“2”与面“4”相对,“3”与面“6”相对.【详解】根据正方体的特征知,相邻的面一定不是对面,所以面“1”与面“4”相对,面“2”与面“5”相对,“3”与面“6”相对;或面“1”与面“5”相对,面“2”与面“4”相对,“3”与面“6”相对.故答案为1对4,2对5,3对6;或1对5,2对4,3对6.【点睛】注意正方体的空间图形,从相对面入手,分析及解答问题.67.如图是一个正方体的展开图,每个面内都标注了字母,请根据要求回答下列问题:(1)如果面F在正方体的底部,那么哪一面会在上面?(2)如果面B在前面,从左面看是面C,那么哪一面会在上面?(3)如果从右面看到面D,面E在后面,那么哪一面会在上面?【答案】(1)面B;(2)面D;(3)面F.【解析】【分析】根据题意可以将多面体的展开图动手折一下,观察每个面的对面,进行转动,再找到其对面.【详解】将多面体的展开图再动手折一下,得到:A和D相对,B和F相对,C和E 相对.故(1)如果面F在正方体的底部,那么面B会在上面;(2)如果面B在前面,从左面看是面C,那么面D会在上面;(3)如果从右面看到面D,面E在后面,那么面F会在上面.【点睛】本题考查了灵活运用正方体的相对面解答问题,立意新颖,是一道不错的题.68.如图是一个几何体的平面展开图.(1)这个几何体是____;(2)求这个几何体的体积.(π取3.14)【答案】(1)圆柱;(2)1570cm3【解析】【分析】(1)根据几何体的展开图侧面是矩形,两底面是圆形,可得几何体;(2)根据圆柱的体积公式,可得答案.【详解】解:(1)几何体的展开图侧面是矩形,两底面是圆形,几何体是圆柱.故答案为圆柱;(2)由图可知:底面直径为10cm,高为20cm,故圆柱的体积=3.14×(10÷2)2×20=1570cm3.答:这个几何体的体积是1570cm3.【点睛】本题考查了几何体的展开图,几何体的展开图侧面是矩形,两底面是圆形的几何体是圆柱.69.如图,在一次数学活动课上,张明用17个底面为正方形,且底面边长为a,高为b的小长方体达成了一个几何体,然后他请王亮用尽可能少的同样的长方体在旁边再搭一个几何体,使王亮所搭的几何体恰好可以和张明所搭的几何体拼成一个大长方体(即拼大长方体时将其中一个几何体翻转,且假定组成每个几何体的小长方体粘合在一起).(1)王亮至少还需要个小长方体;(2)请画出张明所搭几何体的左视图,并计算它的表面积(用含,a b的代数式表示);(3)请计算(1)条件下王亮所搭几何体的表面积(用含,a b的代数式表示).【答案】(1)19(2),23418.ab a(3)2+ab a3216.【解析】【分析】(1)确定张明所搭几何体所需的正方体的个数,然后确定两人共搭建几何体所需小立方体的数量,求差即可.(2)根据图形,画出左视图,计算表面积即可.(3)画出王亮所搭几何体的俯视图,即可求出表面积.【详解】(1)∵王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体,∴该长方体需要小立方体2⨯=个,4336∵张明用17个边长为1的小正方体搭成了一个几何体,∴王亮至少还需36−17=19个小立方体.(2)张明所搭几何体的左视图有三列,第一列有4个长方形,第二列有2个长方形,第三列有1个长方形:表面积为:()()22+++++=+ab a ab a101077993418.(3)王亮所搭几何体的俯视图如图所示,图中数字代表该列小正方体的个数.故王亮所搭几何体的表面积为:()()22+++++=+9977883216.ab a ab a 【点睛】本题主要考查的是由三视图判断几何体的知识,能够根据题意确定出两人所搭几何体的形状是解答本题的关键;70.如图是一正方体的展开图,若正方体相对两个面上的式子的值相等,求下列代数式的值:(1)求27x的值;(2)求32x﹣y的值.【答案】(1)8;(2)1【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,然后根据幂的乘方的性质和同底数幂的除法的运算性质分别进行计算即可得解.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“3x”与“2”是相对面,“3y”与“4”是相对面,∵正方体相对两个面上的式子的值相等,∴3x=2,3y=4,(1)27x=(3x)3=23=8;(2)32x﹣y=32x÷3y=(3x)2÷3y=22÷4=4÷4=1.【点睛】考查正方体的表面展开图,根据相对的面之间一定相隔一个正方形,确定向对面是解题的关键.三、填空题。
七年级数学图形与面积问题
解决图形面积的主要方法有:
1.观察图形,分析图形,找出图形中所包含的基本图形;
2.对某些图形,在保持其面积不变的条件下改变其形状或位置(叫做等积变形);
3.作出适当的辅助线,铺路搭桥,沟通联系;
4.把图形进行割补(叫做割补法)。
例1 你会用几种不同的方法把一个三角形的面积平均分成4等份吗?
例2 右图中每个小方格面积都是1cm2,那么六边形ABCDEF的面积是多少平方厘米?
例3 如下图所示,BD,CF将长方形ABCD分成4块,△DEF的面积是4cm2,△CED的面积是6cm2。
问:四边形ABEF的面积是多少平方厘米?
哪个大?
例5在四边形ABCD中(见左下图),线
段BC长6cm,∠ABC为直角,∠BCD为135°,而且点A到边CD的垂线段AE的长为12cm,线段ED的长为5cm,求四边形ABCD的面积。
例6正六边形ABCDEF的面积是6cm2,M,N,P分别是所在边的中点(如上图)。
问:三角形MNP的面积是多少平方厘米?
例8某开发区的大标语牌上,要画出如下图所示(图形阴影部分)的三种标点符号:句号、逗号、问号。
已知大圆半径为R,小圆半径为r,且R=2r。
若均匀用料,则哪一个标点符号的油漆用得多?哪一个标点符号的油漆用得少?
例9如图,ABCD是边长为a的正方形,分别以AB,BC,CD,DA为直径画半圆。
求这四个半圆弧所围成的阴影部分的面积。
例10如右下图所示,平行四边形的长边是6cm,短边是3cm,高是2.6cm,求图中阴影部分的面积。
例11求右图中阴影部分的面积(单位:cm)。
例12已知右图中正方形的面积是12cm2,求图中里外两个圆的面积。
例13.如右下图所示,长方形ABCD中,AB=24cm,BC=36cm,E 是BC的中点,F,G分别是AB,CD的4等分点,H为AD上任意
一点。
求阴影部分面积。
13题图14题图
例14在右图的4×7的方格纸板上画有如阴影所示的“6”字,阴影边缘是线段或圆孤。
问:阴影面积占纸板面积的几分之几?
例15在右下图中,六边形ABCDEF的面积是54,AP=2PF,CQ=2BQ,求阴影四边形CEPQ的面积。
例16在右图中,涂阴影部分的小正六角星形面积是16cm2。
问:大正六角星形面积是多少平方厘米?
例17一个周长是56cm的大长方形,按右面图1与图2所示那样,划分为4个小长方形。
在图1中小长方形面积的比是A∶B=1∶2,B∶C=1∶2。
而在图2中相应的比例是A'∶B'=1∶3,B'∶C'=1∶3。
又知,长方形D'的宽减去D的宽所得到的差,与D'的长减去D的长所得到的差之比为1∶3。
求大长方形的面积。
例18有两张正方形纸,它们的边长都是整厘米数,大的一张的面积比小的一张多44cm2。
大、小正方形纸的边长分别是少?
例19用面积为1,2,3,4的4张长方形纸片拼成如右图所示的一个大长方形。
问:图中阴影部分面积是多少?
例20(附)如图7,用一块边长为22的正方形ABCD厚纸板,按照下面的作法,做了一套七巧板:
作对角线AC,分别取AB、BC中点E、F,连结EF;作DG⊥EF于G,交AC于H;过G作GL∥BC,交AC于L,再由E作EK∥DG,交AC于K;将正方形ABCD沿画出的线剪开,现用它拼出一座桥(如图),这座桥的阴影部分的面积是()
A.8 B.6 C.4 D.5
图7 图8。