蔡氏电路中混沌现象的观察研究
- 格式:pdf
- 大小:268.73 KB
- 文档页数:6
研究生课程论文(2018-2018学年第二学期>蔡氏混沌非线性电路的研究研究生:***蔡氏混沌非线性电路的研究***摘要:本文介绍了非线性中的混沌现象,并从理论分析和仿真两个角度研究非线性电路中的典型混沌电路-蔡氏电路。
只要改变蔡氏电路中一个元件的参数,就可产生多种类型混沌现象。
利用数学软件MATLAB对蔡氏电路的非线性微分方程组进行编程仿真,就可实现双蜗卷和单蜗卷状态下的同步,并能准确地观察到混沌吸引子的行为特征。
关键词:混沌;蔡氏电路;MATLAB仿真Abstract:This paper introduces the chaos phenomenon in nonlinear circuits. Chua’scircuit was a typical chaos circuit,and theoretical analysis and simulation was made to research it.Many kinds of chaos phenomenonenwould generate as long as one component parameter was altered in Chua’s circuit.On the platform of Matlab ,mathematical model of Chua’s circuit were programmed and simulatedto realize the synchronization of dual and single cochlear volume.At the same time, behavior characteristics of chaos attractor is able to be observed correctly.Key words:chaos phenomenon;Chua’S circuit;simulation引言:混沌是一种普遍存在的非线性现象,随着计算机的快速发展,混沌现象及其应用研究已成为自然科学技术和社会科学研究领域的一个热点。
第1篇一、实验目的1. 理解混沌现象的基本概念和特性。
2. 掌握混沌波形的产生机制。
3. 通过实验观察和分析混沌波形的动力学行为。
4. 研究混沌波形在不同参数条件下的变化规律。
二、实验原理混沌现象是自然界和工程领域中普遍存在的一种非线性动力学现象。
它表现为系统在确定性条件下呈现出复杂的、不可预测的行为。
混沌波形的产生通常与非线性动力学方程有关,其中典型的混沌系统包括洛伦茨系统、蔡氏电路等。
本实验采用蔡氏电路作为混沌波形的产生模型。
蔡氏电路由三个非线性元件(电阻、电容和运算放大器)和一个线性元件(电阻)组成。
通过改变电路中的电阻和电容值,可以调节电路的参数,从而产生混沌波形。
三、实验仪器与设备1. 蔡氏电路实验板2. 数字示波器3. 函数信号发生器4. 万用表5. 计算机及数据采集软件四、实验步骤1. 搭建蔡氏电路:根据实验板上的电路图,将电阻、电容和运算放大器等元件按照电路图连接好。
2. 调节电路参数:使用万用表测量电路中各个元件的参数值,并记录下来。
3. 输入信号:使用函数信号发生器输出正弦波信号,作为蔡氏电路的输入信号。
4. 观察混沌波形:打开数字示波器,观察电路输出端的混沌波形。
调整电路参数,观察混沌波形的变化规律。
5. 数据采集:使用数据采集软件,记录混沌波形的时域和频域特性。
6. 分析结果:对采集到的数据进行处理和分析,研究混沌波形的动力学行为。
五、实验结果与分析1. 混沌波形的产生:当电路参数满足一定条件时,蔡氏电路可以产生混沌波形。
混沌波形具有以下特点:- 复杂性:混沌波形呈现出复杂的非线性结构,难以用简单的数学公式描述。
- 敏感性:混沌波形对初始条件和参数变化非常敏感,微小变化可能导致完全不同的波形。
- 自相似性:混沌波形具有自相似结构,局部结构类似于整体。
2. 混沌波形的参数调节:通过调节电路参数,可以改变混沌波形的特性。
例如,改变电容值可以改变混沌波形的周期和频率;改变电阻值可以改变混沌波形的幅度和形状。
混沌非线性电路及其研究摘要:在混沌电路的研究中,前人关于混沌电路中蔡氏电路(非线性电路)的建模已趋成熟。
所以本次实验通过研究混沌非线性电路,借助Multisims 10仿真软件对电路进行研究,从而得出蔡氏电路(非线性电路)中一些基本结论,加深对其的了解。
关键词:混沌非线性电阻特性曲线引言:混沌电路与系统理论经过3O多年的发展,在科学和工程中得到了广泛的应用。
混沌信号由于具有伪随机似噪声和宽频带特性,在保密通信领域获得了广泛的重视与研究。
在适当的电路参数范围内能够产生混沌现象,该电路结构简单、易于工程实现,因而获得了广泛的重视与研究。
蔡氏混沌电路是一个典型的非线性电路,在适当的电路参数范围内能够产生混沌现象,该电路结构简单、易于工程实现,因而获得了广泛的重视与研究是熟悉和理解混沌现象的一个基本的典型电路。
本文以蔡氏混沌电路为例进行仿真研究。
首先,借助Multisims 10仿真软件直接显示非线性电路的伏安特性曲线,再通过点测法来观察所做的图与示波器上观察到的图的吻合度来验证蔡氏电路。
其次,通过对混沌电路实验中的某几个元件进行研究,再得出其对混沌非线性电路的影响,从实验角度论证了蔡氏电路参数的非唯一性和蔡氏电路混沌状态对赋值的敏感性。
正文:非线性电路中的混沌现象是最早引起人们关注的现象之一,而迄今为止,最好的混沌实验结果也是在非线性电路中得到的.因为仿真电路实验有许多优点,如方程比较容易实现,仿真实验的条件可以以精确控制,数据精确度较高等.因此,非线性电路的仿真实验能够给出较好的定量结果,观察到比较单纯的、接近理论模式的混沌行为.因此,在混沌的研究中,仿真电路充当一个非常重要的角色.这里我们借助MULTISIM仿真软件进行仿真实验研究.蔡氏混沌电路是一个典型的非线性电路,它在一定的参数空间内,能够产生混沌信号,在实际中已获得大量应用。
本节以蔡氏电路为例,研究其产生的混沌特性。
(一)利用非线性负电阻电路,测量非线性伏安特性曲线。
仿真蔡氏电路混沌效应的教学讨论
蔡氏电路是一种混沌系统,其混沌现象在模拟电路领域非常重要。
仿真蔡氏电路的混沌效应,是电路仿真教学中的一个重要课题。
首先,混沌效应的探究是基于学生对混沌学理论的掌握和电路
仿真工具的运用。
因此,在教学过程中,应先向学生介绍混沌现象
和蔡氏电路的基本原理,让学生理解混沌是一种非周期性且不可预
测的现象,而蔡氏电路是一种具有三个不同周期的振荡器。
接着,教师可以使用仿真软件(如Multisim或LTSpice)进行
电路仿真,让学生通过仿真实验的方式来观察混沌效应。
学生可以
通过改变电路元件的参数(如电容、电阻等)来观察混沌效应的变化。
同时,学生也能够通过仿真实验来了解混沌系统的稳定性和可
控性。
在教学过程中,教师可以提供一些课堂讨论或小组讨论的环节,让学生可以对混沌效应进行深入的探究和分析。
例如,让学生讨论
如何通过改变蔡氏电路中的元件来改变电路的混沌状态,或者讨论
混沌现象在日常生活中的应用。
最后,在教学结束后,教师可以要求学生进行实验报告的书写,来总结混沌电路的基本原理、仿真过程、结果分析以及对混沌现象
的理解和探究。
通过这种方式,学生能够获得更深入的学习和理解,也能够提高其电路仿真和实验技能。
仿真蔡氏电路的混沌效应是电路仿真教学中一个重要的课题,
通过深入的探讨和分析,将有助于学生加深对混沌系统的理解和掌
握,提高其仿真和实验技能,也有助于学生将所学知识转化为现实应用。
2.6.3蔡氏电路中混沌现象的观察研究混沌是自然界客观存在的一种现象,而混沌电路是至今为止最方便有效的一种实验观察手段。
由于混沌现象对电路参数的极度敏感性,用一般电路实验手段来观察,其参数调节比较困难,相比之下在Multisim 环境下进行仿真观察是非常容易实现的。
用来实现混沌现象的混沌电路很多,其中以著名的美藉华裔学者蔡少棠1984 年提出的一种三阶非线性自治电路(称之蔡氏电路)最为典型。
该电路具有电路结构简单,混沌现象丰富等特点,因而得到了广泛的学术研究和工程应用。
蔡氏电路的理论模型如图2-70 所示。
R CLC2100nFC1 10nF17. H4mR图2-70蔡氏电路的理论模型图中,C1、C2 为两个线性电容,L 为线性电感,R C 为线性电阻,而R 则为一非线性电阻(R 习惯被称之为蔡氏二极管,Chua’s diode),具有图2-71 所示的压控特性,R 可由五段分段线性的线性电阻构成。
U R图2-71蔡氏电路非线性电阻的特性实现该非线性电阻R 的方案也很多,典型的电路之一如图2-72 所示,由双运放与 6 只线性电阻构成。
I R R3 22kΩR6 220ΩA1 LM224A1 LM224U RR1R2 22kΩR42.2kΩR5 220Ω3.3kΩ图2-72由双运放构成的蔡氏二极管将图2-70 所示电路中的R C 分成两电阻串联,R c = R1 + R2 ,即其中R2 = 1kΩ, 1 是1kΩR的可调电位器。
我们就可以在基于上述参数的蔡氏电路上,通过Multisim 的仿真,清楚的观察到倍周期分岔、阵发混沌以及奇怪吸引子等一系列混沌所特有的现象。
1.编辑原理图首先编辑非线性电阻R 构成电路,如图2-73 (a)所示。
在这个图中取用两个输入接线端,是为了把该电路设置成如图2-73 (b)所示的R 子电路。
(a)图2-73(b) Multisim 中编辑出的非线性电阻R 及其子电路子电路的创建方法是在选中图中所有的部分(按住鼠标,拖一个把该电路部分全部包围进去的方框,如电路窗口中仅有这部分电路,也可选择Edit/Select All 命令),启动Place/Replace by Subcricuit 命令,即可得。
近代物理实验——混沌电路及其在加密通信中的应用预习报告:随着计算机的普及和信息网络技术的发展,数据通信的安全性问题引起了普遍的关注。
混沌信号所具有的对初始条件的敏感性、非周期性、似随机性和连续的宽带能谱等待点,非常有利于在加密通信系统中应用。
本实验利用蔡氏电路产生混沌信号,并利用混沌信号进行加密通信实验。
此外,还可以利用计算机和网络进行基于一维时空混沌的语音加密通信实验。
蔡氏电路虽然简单,但具有丰富而复杂的混沌动力学特性,而且它的理论分析、数值模拟和实验演示三者能很好地符合,因此受到人们广泛深入的研究。
自从1990年Pecora和Carroll首次提出混沌同步的概念,研究混沌系统的完全同步以及广义同步、相同步、部分同步等问题成为混沌领域中非常活跃的课题,利用混沌同步进行加密通信也成为混沌理论研究的一个大有希望的应用方向。
我们可以对混沌同步进行如下描述:两个混沌动力学系统,如果除了自身随时间的烟花外,还有相互耦合作用,这种作用既可以是单向的,也可以是双向的,当满足一定条件时,在耦合的影响下,这些系统的状态输出就会逐渐趋于相近,进而完全相等,称之为混沌同步。
实现混沌同步的方法很多,本实验介绍利用驱动响应方法实现混沌同步。
实验电路如图1所示。
图1由图中所见,电路由驱动系统、响应系统和单向耦合电路3部分组成。
其中,驱动系统和相应系统两个参数相同的蔡氏电路,单向耦合电路由运算放大器组成的隔离器和耦合电阻构成,实现单向耦合和对耦合强度的控制。
当耦合电阻无穷大(即单向耦合电路断开)时,驱动系统和响应系统为独立的两个蔡氏电路,分别观察电容C1和电容C2上的电压信号组成的相图U c1−U c2,调节电阻R,使系统处于混沌状态。
调节耦合电阻R c,当混沌同步实现时,即U c(1)−U c(2),两者组成的相图为一条通过原点的45°直线。
影响这两个混沌系统同步的主要因素是两个混沌电路中元件的选择和耦合电阻的大小。
模电期末论文《蔡氏电路混沌特性的研究》2009013157模电期末论文——关于蔡氏电路混沌现象的研究2009013157 生医9 王颖奇*所有仿真结果均于2010年12月24日完成在上学期的大学物理教材中,混沌现象就曾经被老师提起。
书中介绍,混沌现象是指发生在确定性系统中的貌似随机的不规则运动,一个确定性理论描述的系统,其行为却表现为不确定性一不可重复、不可预测,这就是混沌现象。
进一步研究表明,混沌是非线性动力系统的固有特性,是非线性系统普遍存在的现象。
牛顿确定性理论能够充分处理的多为线性系统,而线性系统大多是由非线性系统简化来的。
因此,在现实生活和实际工程技术问题中,混沌是无处不在的。
“ 混沌”是近代非常引人注目的热点研究,它掀起了继相对论和量子力学以来基础科学的第三次革命。
科学中的混沌概念不同于古典哲学和日常语言中的理解,简单地说,混沌是一种确定系统中出现的无规则的运动。
混沌理论所研究的是非线性动力学混沌,目的是要揭示貌似随机的现象背后可能隐藏的简单规律,以求发现一大类复杂问题普遍遵循的共同规律。
那么这种现象在电路有什么应用呢?传统上,人们把信号分为两大类:确定性信号这种信号所有时刻的波形都是确定的;随机过程它的波形由概率分布确定。
然而,这样的分类忽略了另一类极为重要的信号——混沌信号。
混沌信号的波形是非常不规则的,表面上看来就象噪声,但实际上它却是由确定性的规则所产生的,这种规则有时是很简单的。
正是这种简单的规则产生出复杂的波形激发了人们对它极大的兴趣。
在图(1-2)中,我们向大家展示了由Logistic映射所生成的混沌信号与白噪声信号,从表面上我们是无法判断出噪声与混沌的。
让人兴奋的是:实践证明,在大量的物理系统和自然系统中都存在着混沌信号!虽然,混沌现象的出现使我们无法对系统的长期行为进行预测,但是我们完全可以利用混沌的规律对系统进行短期的行为预测,这样比传统的统计学方法更加有效。
在工程学中,混沌现象主要有以下两方面的应用。
蔡氏混沌电路分析研究蔡氏混沌电路分析研究摘要:众所周知,蔡氏电路是一种简单的非电子性电路设计,它可以表现出标准的混沌理论行为。
混沌是一种发生在确定系统中的不确定行为,表现为不同于平衡状态、周期状态和拟周期状态的这三种状态外的另一种状态,产生的混沌现象极为丰富。
随着社会的开展,混沌动力学以其内容丰富的特点,成为了一个被广泛研究应用的知识学科。
混沌现象是产生于确定性的状态方程中的一种相似随机的运动,在我们现实生活中较为广泛的存在。
在工程和电工电子学科上最近几年的开展前景也越来越开阔和活泼。
随着时代开展,在现实生活中,混沌应用取得了很大的成果,得到了广泛的成果研究。
尤其是混沌独电路这一局部,其中包括混沌压缩、混沌保密通信、混沌加密和混沌同步。
但是还有一些实际问题需要探讨和研究,作者通过文章来介绍蔡氏混沌电路的电路设计根底与存在的问题及其面临的挑战与机遇。
关键词:混沌电路;广泛;开展;问题文章着重介绍了蔡氏混沌电路的根本设计思路与混沌系统分析方法和混沌电路的根底设计,依据国内外对电路的研究,分析当前各种混沌系统,总结得出混沌电路的开展历史。
文章在理论根底的分析和参考文献研的前提下,对混沌电路的动力学行为的复杂性提出了一种具有多方向多漩涡吸引子的可扩展的蔡氏电路;对混沌振荡的频率那么提出了如MOS管的Colpitts振荡电路设计和同步的一种方法。
20年的时间,人们对蔡氏混沌电路的深入研究与探究,我们发现在蔡氏电路里呈现出来一种丰富的混沌力学行为。
且蔡氏混沌电路已经在保密通讯领域具备了一定的应用能力。
混沌学,是继量子论、相对论的20世纪第三次物理革命产物。
法国数学家在19世纪末期首次发现了动力学系统中的异归宿轨迹和同归宿轨迹,混沌现象作为存在在非线性动力学系统中的一种现象,虽没有复杂的运动形式,但具有普遍性的规律。
1 蔡氏混沌电路工作原理的介绍与研究意义蔡氏混沌电路由线性电感、线性电阻、非线性电阻各一个和线性电容两个组成的三阶段自治动态电路,非线性电阻的伏特安特性,是一个分段型函数,电路中电感L和电容LC振荡电路,有原型的电阻R和电容做成了一个源RC滤波电路。
2.6.3 蔡氏电路中混沌现象的观察研究
混沌是自然界客观存在的一种现象,而混沌电路是至今为止最方便有效的一种实验观察手段。
由于混沌现象对电路参数的极度敏感性,用一般电路实验手段来观察,其参数调节比较困难,相比之下在Multisim 环境下进行仿真观察是非常容易实现的。
用来实现混沌现象的混沌电路很多,其中以著名的美藉华裔学者蔡少棠1984年提出的一种三阶非线性自治电路(称之蔡氏电路)最为典型。
该电路具有电路结构简单,混沌现象丰富等特点,因而得到了广泛的学术研究和工程应用。
蔡氏电路的理论模型如图2-70所示。
R
R
L 17.4m
图2-70 蔡氏电路的理论模型
图中,C 1、C 2为两个线性电容,L 为线性电感,R C 为线性电阻,而R 则为一非线性电阻(R 习惯被称之为蔡氏二极管,Chua’s diode ),具有图2-71所示的压控特性,R 可由五段分段线性的线性电阻构成。
图2-71 蔡氏电路非线性电阻的特性
实现该非线性电阻R 的方案也很多,典型的电路之一如图2-72所示,由双运放与6只线性电阻构成。
图2-72 由双运放构成的蔡氏二极管
将图2-70所示电路中的R C 分成两电阻串联,即21R R R c +=,其中2R =Ωk 1,1R 是Ωk 1的可调电位器。
我们就可以在基于上述参数的蔡氏电路上,通过Multisim 的仿真,清楚的观察到倍周期分岔、阵发混沌以及奇怪吸引子等一系列混沌所特有的现象。
U R
1.编辑原理图
首先编辑非线性电阻R构成电路,如图2-73 (a)所示。
在这个图中取用两个输入接线端,是为了把该电路设置成如图2-73 (b)所示的R子电路。
(a) (b)
图2-73 Multisim中编辑出的非线性电阻R及其子电路
子电路的创建方法是在选中图中所有的部分(按住鼠标,拖一个把该电路部分全部包围进去的方框,如电路窗口中仅有这部分电路,也可选择Edit/Select All命令),启动Place/Replace by Subcricuit命令,即可得。
设置子电路的目的是使蔡氏电路的电路图形更加简洁。
接着编辑蔡氏电路原理图,如图2-74所示,其中就调用了前面已编辑好的子电路R。
图2-74 Multisim环境下的蔡氏电路原理图
由于蔡氏电路中混沌现象的出现对电阻R C的敏感性,故要打开R1的属性(Potentiometer)对话框,对其Value页中的Increment由5%的缺省值改为1%。
2.仿真操作
(1)混沌信号时域波形的观察
在仪表工具栏中选中示波器XSC1并连接到电路中,如图2-75所示。
图2-75 混沌信号时域波形的观察电路
根据理论计算,混沌双吸引子的大约出现在21R R R c +=等于1.7k Ω左右,所以通过<A>或<a>键可以调节R 1的大小,先把R 1设置在70%左右。
再打开示波器的面板,将Timebase 区域中的Scale 设置为2ms/Div ,Channel A 区域中的Scale 设置为2V/Div ,启动Multisim 的仿真开关,将在示波器的面板上出现如图2-76所示的混沌信号的时域波形。
图2-76 混沌信号时域波形
调节R 1大小,观察混沌时域信号的变化情况。
可以发现,随着R 1数值的减小,混沌时域信号的振幅在降低,但在30%时,混沌信号转变为正弦波信号,且振幅值激剧增大。
而随着R 1数值的增大,混沌信号上下变动的周期逐渐增长;81%时混沌信号转变为叠加一直流信号的正弦波;90%以后,该电路振幅减小,振荡慢慢消失。
所以在R C 值为1.4k Ω与1.8k Ω之间,能够观察到电路逐渐通向混沌。
做上述仿真时要注意启动仿真开关后,电路要有一个起振过程,对于某些硬件配置不高的电脑,可能要较长的时间。
(2)倍周期分岔、阵发混沌以及混沌吸引子的观察
下面来观察系统通向混沌的过程。
图2-77所示的电路可用来观察蔡氏电路所产生的吸引子相图。
图2-77 用来观察蔡氏电路所产生的吸引子相图的电路
当调节R 1为90%即21R R R c +=等于1.9k Ω时观察到的周期1吸引子如图2-78所示。
注意示波器面板的设置。
图2-78 周期1吸引子
接着随着R 1的减小,系统会出现倍周期分岔,产生周期1、2、4、8、16等一系列吸引子。
当R 1为88% 时,产生的周期2吸引子如图2-79。
图2-79 周期2吸引子
R1为85% 时,电路已经分岔出无穷多个周期,而处在混沌状态。
其螺旋吸引子如图2-80。
图2-80 螺旋吸引子
请注意由于受可调电阻1% 的变化间隔的限制,难以很好的看清倍周期分岔的过程。
有兴趣的读者不妨用虚拟器件来代替之,以便任意配置参数,从而更精确的观察到周期2、4、8等一系列吸引子。
随着R1的进一步减小,系统会在产生周期3、6等吸引子后,再次进入混沌。
R1为81% 时的单涡卷吸引子如图2-81。
图2-81 单涡卷吸引子
随着R1继续减小,逐渐出现了双吸引子。
R1为70% 即R C=1.7kΩ时典型的双涡卷吸引子,如图2-82所示。
图2-82 双涡卷吸引子。