高二期中考试理科数学试卷
- 格式:docx
- 大小:21.06 KB
- 文档页数:2
甘肃省兰州市第一中学2021-2022学年高二下学期期中考试数学理科试题说明:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.〖答案〗写在答题卡上.交卷时只交答题卡.一.选择题(共12小题,满分60分,每小题5分)1. 复数2iz=-(i为虚数单位)的共轭复数的虚部为()A. -1B. 1C. i-D. i〖答案〗B〖解析〗由题意知:2iz=+,则虚部为1.故选:B.2. 在用反证法证明“已知x,y∈R,且x y+<,则x,y中至多有一个大于0”时,假设应为()A. x,y都小于0 B. x,y至少有一个大于0C. x,y都大于0 D. x,y至少有一个小于0〖答案〗C〖解析〗“至多有一个大于0”包括“都不大于0和有且仅有一个大于0”,故其对立面为“x,y都大于0”.故选:C.3. 函数y=x2cos 2x的导数为()A. y′=2x cos 2x-x2sin 2xB. y′=2x cos 2x-2x2sin 2xC. y′=x2cos 2x-2x sin 2xD. y′=2x cos 2x+2x2sin 2x〖答案〗B〖解析〗y′=(x2)′cos 2x+x2(cos 2x)′=2x cos 2x+x2(-sin 2x)·(2x)′=2x cos 2x-2x2sin 2x.故选:B.4. 函数21ln2y x x=-的单调递减区间为()A. ()1,1-B.()1,+∞C.()0,1D.()0,∞+〖答案〗C〖解 析〗函数21ln 2y x x=-的定义域为()0,∞+, ()()21111x x x y x x x x +--=-==′,()()1100x x x x ⎧+-<⎪⎨⎪>⎩,解得01x <<,所以函数21ln 2y x x=-的单调递减区间为()0,1. 故选:C.5. 用S 表示图中阴影部分的面积,则S 的值是( )A. ()d ca f x x⎰B. ()d caf x x⎰C.()d ()d bc abf x x f x x +⎰⎰D.()d ()d cb baf x x f x x-⎰⎰〖答 案〗D〖解 析〗由定积分的几何意义知区域内的曲线与x 轴的面积代数和. 即()d ()d cbbaf x x f x x-⎰⎰,选项D 正确.故选D .6. 把3封信投到4个信箱中,所有可能的投法共有( ) A. 7种 B. 12种C. 43种D. 34种〖答 案〗D〖解 析〗由题意可得,第1封信投到信箱中有4种投法,第2封信投到信箱中有4种投法,第3封信投到信箱中有4种投法,所以由分步乘法计数原理可得共有34444⨯⨯=种投法, 故选:D.7. 设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数y =f ′(x )的图象可能是( )A. B.C.D.〖答 案〗A 〖解 析〗根据()f x 的图像可知,函数从左到右,单调区间是:增、减、增、减,也即导数从左到右,是:正、负、正、负.结合选项可知,只有A 选项符合,故本题选A. 8. 已知函数()33f x x x m=-+只有一个零点,则实数m 的取值范围是( )A.[]22-, B.()(),22,-∞-+∞C.()2,2-D.(][),22,-∞-+∞〖答 案〗B 〖解 析〗由函数()33f x x x m=-+只有一个零点,等价于函数33y x x =-+的图像与y m =的图像只有一个交点,33y x x =-+,求导233y x '=-+,令0y '=,得1x =±当1x <-时,0y '<,函数在(),1-∞-上单调递减; 当11x -<<时,0y '>,函数在()1,1-上单调递增;当1x >时,0y '<,函数在()1,+∞上单调递减;故当1x =-时,函数取得极小值2y =-;当1x =时,函数取得极大值2y =; 作出函数图像,如图所示,由图可知,实数m 的取值范围是()(),22,-∞-+∞.故选:B.9. 将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A. 120种 B. 240种 C. 360种 D. 480种〖答 案〗B〖解 析〗先将5名志愿者分为4组,有25C 种分法, 然后再将4组分到4个项目,有44A 种分法,再根据分步乘法原理可得不同的分配方案共有2454C A 240⋅=种.故选:B. 10. (1+2x 2 )(1+x )4的展开式中x 3的系数为( ) A. 12B. 16C. 20D. 24〖答 案〗A〖解 析〗由题意得x 3的系数为3144C 2C 4812+=+=,故选A . 11. 下列说法正确的是( )①设函数()y f x =可导,则()()()11lim13x f x f f x →+-'=△△△;②过曲线()y f x =外一定点做该曲线的切线有且只有一条;③已知做匀加速运动的物体的运动方程是()2s t t t=+米,则该物体在时刻2t =秒的瞬时速度是5米/秒;④一物体以速度232v t t =+(米/秒)做直线运动,则它在0=t 到2t =秒时间段内的位移为12米;⑤已知可导函数()y f x =,对于任意(),x a b ∈时,()0f x '>是函数()y f x =在(),a b 上单调递增的充要条件. A. ①③ B. ③④C. ②③⑤D. ③⑤〖答 案〗B〖解 析〗对于选项①,设函数()f x ,则()()()()001(1)1111limlim 1333x x f x f f x f f xx →→+-+-==',故①错.对于选项②,过曲线()y f x =外一定点做该曲线的切线可以有多条,故②错.对于选项③,已知做匀速运动的物体的运动方程为()2S t t t=+,则()21S t t '=+,所以()25S '=,故③正确.对于选项④,一物体以速度232v t t =+做直线运动,则它在0=t 到2t =时间段内的位移为()223220032d (| 2)1tt t t t +=+=⎰,故④正确.对于选项⑤,已知可导函数()y f x =,对于任意(),x a b ∈时,()0f x '>是函数()y f x =在(),a b 上单调递增的充分不必要条件,例如()3,'()0f x x f x =≥,故⑤错.故选B . 12. 已知()2cos f x x x=+,x ∈R ,若()()1120f t f t ---≥成立,则实数t 的取值范围是( )A. 20,3⎛⎫ ⎪⎝⎭B. 20,3⎡⎤⎢⎥⎣⎦C.()2,0,3∞∞⎛⎫-⋃+⎪⎝⎭D. 23⎛⎤-∞ ⎥⎝⎦,〖答 案〗B 〖解 析〗函数()y f x =的定义域为R ,关于原点对称,()()()2cos 2cos f x x x x x f x -=-+-=+=,∴函数()y f x =为偶函数,当0x ≥时,()2cos f x x x=+,()2sin 0f x x '=->,则函数()y f x =在[)0,∞+上为增函数,由()()1120f t f t ---≥得()()112f t f t -≥-,由偶函数的性质得()()112f t f t -≥-,由于函数()y f x =在[)0,∞+上为增函数,则112t t-≥-,即()()22112t t -≥-,整理得2320t t -≤,解得203t ≤≤,因此,实数t 的取值范围是20,3⎡⎤⎢⎥⎣⎦. 故选:B.二.填空题(共5小题,满分25分,每小题5分)13.10d ⎤=⎦⎰x x ___________.〖答 案〗142π-〖解析〗11]d d =-⎰⎰⎰x x x x x ,根据定积分的几何意义可知,⎰x 表示以()1,0为圆心,1为半径的圆的四分之一面积,所以201144ππ=⋅⋅=⎰x ,而1210011d |22⎛⎫=+= ⎪⎝⎭⎰x x x c ,所以101]d 42π=-⎰x x .故〖答 案〗为:142π-.14. 在二项式214nx x ⎛⎫- ⎪⎝⎭的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为______. 〖答 案〗243〖解 析〗因为二项式214nx x ⎛⎫- ⎪⎝⎭的展开式中,所有二项式系数的和是32, 所以232n=,故5n =,取1x =可得二项式5214x x ⎛⎫- ⎪⎝⎭的展开式中各项系数和为53,即243.故〖答 案〗为:243.15. 若函数()y f x =在区间D 上是凸函数,则对于区间D 内的任意1x ,2x ,…,n x都有()()()12121n n x x x f x f x f x f n n ++⋅⋅⋅+⎛⎫++⋅⋅⋅+≤⎡⎤ ⎪⎣⎦⎝⎭,若函数()sin f x x =在区间(0,)π上是凸函数,则在△ABC 中,sin sin sin A B C ++的最大值是______.〖答案〗〖解析〗由题设知:1(sin sin sin )sin()sin 3332A B C A B C π++++≤==,∴sin sin sin 2A B C ++≤,当且仅当3A B C π===时等号成立.故〖答案〗为:2.16. 在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是____. 〖答 案〗(e, 1).〖解 析〗设点()00,A x y ,则00ln y x =.又1y x '=,当0x x =时,01y x '=, 点A 在曲线ln y x =上的切线为0001()y y x x x -=-,即00ln 1x y x x -=-,代入点(),1e --,得001ln 1ex x ---=-,即00ln x x e =,考查函数()ln H x x x=,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()'ln 1H x x =+,当1x >时,()()'0,>H x H x 单调递增,注意到()H e e=,故00ln x x e=存在唯一的实数根0x e=,此时01y =,故点A 的坐标为(),1A e .17. 若函数()2ln f x ax x x=+有两个极值点,则实数a 的取值范围是__________.〖答 案〗12a -<<〖解 析〗2012f x xlnx ax x f x lnx ax =+'=++()(>),(). 令12g x lnx ax =++(),由于函数函数()2ln f x ax x x=+有两个极值点0g x ⇔=()在区间∞(0,+)上有两个实数根.1122axg x a x x +'=+=(),当0a ≥ 时,0g x '()> ,则函数g x () 在区间∞(0,+)单调递增,因此0g x =() 在区间∞(0,+)上不可能有两个实数根,应舍去. 当0a < 时,令0gx '=() ,解得12x a =-,令0gx '()> ,解得102x a <<-,此时函数g x ()单调递增;令0gx '()< ,解得12x a >-,此时函数g x ()单调递减.∴当12x a =-时,函数g x ()取得极大值.要使0g x =()在区间∞(0,+)上有两个实数根,则11022g ln a a ()>,⎛⎫-=- ⎪⎝⎭,解得102a -<<.∴实数a 的取值范围是(12a -<<.三.解答题(共5小题,满分65分) 18. 设i 为虚数单位,∈a R ,复数12iz a =+,243iz =-.(1)若12z z ⋅是实数,求a 的值;(2)若12z z 是纯虚数,求1z .解:(1)()()()()122i 43i 3846iz z a a a ⋅=+-=++-,因为12z z ⋅是实数,则460a -=,解得32a =.(2)()()()()122i 43i 2i 8346i 43i 43i 43i 2525a z a a a z +++-+===+--+,因为12z z 为纯虚数,则830460a a -=⎧⎨+≠⎩,解得83a =.所以1103z ==.19.>.>只要证22>,只要证1313+>+>,只要证4240>显然成立,故原结论成立.20. 数列{}n a 满足26a =,()*1111+--=∈+n n a n n a n N .(1)试求出1a ,3a ,4a ;(2)猜想数列{}n a 的通项公式并用数学归纳法证明.解:(1)26a =,()*1111+--=∈+n n a n n a n N 当1n =时,1211111a a --=+,11a ∴=,当2n =时,3212121a a --=+,315a ∴=,当3n =时,3413131a a --=+,428a ∴=,所以11a =,315a =,428a =.(2)猜想(21)n a n n =-下面用数学归纳法证明:假设n k =时,有(21)k a k k =-成立,则当1n k =+时,有()1211111112k k k a k a k k +++--+-==+++,()()()122111k k k a k a +++-=+-⎡⎤⎣⎦()()11211k a k k +∴=++-⎡⎤⎣⎦故对*,(21)=∈-n n a n n N 成立.21. 已知函数()e cos xf x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 解:(Ⅰ)因为()e cos x f x x x=-,所以()()()e cos sin 1,00x f x x x f -''=-=.又因为()01f =,所以曲线()y f x =在点()()0,0f 处的切线方程为1y =.(Ⅱ)设()()e cos sin 1x h x x x =--,则()()e cos sin sin cos 2e sin x x h x x x x x x=--=-'-.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,所以()h x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减. 所以对任意π0,2x ⎛⎤∈ ⎥⎝⎦有()()00h x h <=,即()0f x '<. 所以函数()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减.因此()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为()01f =,最小值为22f ππ⎛⎫=-⎪⎝⎭. 22. 设函数()f x ()20x ax x aa e ++=>,e 为自然对数的底数.(1)求f (x )的单调区间:(2)若ax 2+x +a ﹣e x x +e x ln x ≤0成立,求正实数a 的取值范围.解:(1)函数()()20xax x af x a e ++=>,e 为自然对数的底数,则()()11xaa x xaf xe-⎛⎫---⎪⎝⎭'=,令()0f x'=可得11x=,21111axa a-==-<,∴当1,axa-⎛⎫∈-∞⎪⎝⎭,()1,+∞时,()0f x'<,()f x单调递减;当1,1axa-⎛⎫∈ ⎪⎝⎭时,()0f x'>,()f x单调递增;∴()f x的单调增区间为1,1axa-⎛⎫∈ ⎪⎝⎭,单调减区间为1,aa-⎛⎫-∞⎪⎝⎭,()1,+∞;(2)ax2+x+a﹣e x x+e x ln x≤0成立⇔2xax x ae++≤x﹣ln x,x∈(0,+∞),由(1)可得当x=1函数y2xax x ae++=取得极大值21ae+,令g(x)= x﹣ln x,(x>0),g′(x)= 11x -,可得x=1时,函数g(x)取得极小值即最小值.∴x﹣ln x≥g(1)=1,当(]0,1a∈时,21ae+即为函数y2xax x ae++=的最大值,∴2xax x ae++≤x﹣ln x成立⇔21ae+≤1,解得a12e-≤;当()1,a∈+∞时,211ae+>,不合题意;综上所述,0<a12e-≤.甘肃省兰州市第一中学2021-2022学年高二下学期期中考试数学理科试题说明:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.〖答 案〗写在答题卡上.交卷时只交答题卡. 一.选择题(共12小题,满分60分,每小题5分) 1. 复数2i z =-(i 为虚数单位)的共轭复数的虚部为( ) A. -1 B. 1C.i -D. i〖答 案〗B〖解 析〗由题意知:2i z=+,则虚部为1.故选:B.2. 在用反证法证明“已知x ,y ∈R ,且0x y +<,则x ,y 中至多有一个大于0”时,假设应为( ) A. x ,y 都小于0 B. x ,y 至少有一个大于0 C. x ,y 都大于0D. x ,y 至少有一个小于0〖答 案〗C〖解 析〗“至多有一个大于0”包括“都不大于0和有且仅有一个大于0”,故其对立面为“x ,y 都大于0”.故选:C.3. 函数y =x 2cos 2x 的导数为( ) A. y ′=2x cos 2x -x 2sin 2x B. y ′=2x cos 2x -2x 2sin 2x C. y ′=x 2cos 2x -2x sin 2xD. y ′=2x cos 2x +2x 2sin 2x〖答 案〗B〖解 析〗y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x . 故选:B.4. 函数21ln 2y x x =-的单调递减区间为( )A.()1,1- B.()1,+∞C.()0,1D.()0,∞+〖答 案〗C〖解 析〗函数21ln 2y x x=-的定义域为()0,∞+, ()()21111x x x y x x x x +--=-==′,()()1100x x x x ⎧+-<⎪⎨⎪>⎩,解得01x <<,所以函数21ln 2y x x=-的单调递减区间为()0,1. 故选:C.5. 用S 表示图中阴影部分的面积,则S 的值是( )A. ()d ca f x x⎰B. ()d caf x x⎰C.()d ()d bc abf x x f x x +⎰⎰D.()d ()d cb baf x x f x x-⎰⎰〖答 案〗D〖解 析〗由定积分的几何意义知区域内的曲线与x 轴的面积代数和. 即()d ()d cbbaf x x f x x-⎰⎰,选项D 正确.故选D .6. 把3封信投到4个信箱中,所有可能的投法共有( ) A. 7种 B. 12种C. 43种D. 34种〖答 案〗D〖解 析〗由题意可得,第1封信投到信箱中有4种投法,第2封信投到信箱中有4种投法,第3封信投到信箱中有4种投法,所以由分步乘法计数原理可得共有34444⨯⨯=种投法, 故选:D.7. 设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数y =f ′(x )的图象可能是( )A. B.C.D.〖答 案〗A 〖解 析〗根据()f x 的图像可知,函数从左到右,单调区间是:增、减、增、减,也即导数从左到右,是:正、负、正、负.结合选项可知,只有A 选项符合,故本题选A. 8. 已知函数()33f x x x m=-+只有一个零点,则实数m 的取值范围是( )A.[]22-, B.()(),22,-∞-+∞C.()2,2-D.(][),22,-∞-+∞〖答 案〗B 〖解 析〗由函数()33f x x x m=-+只有一个零点,等价于函数33y x x =-+的图像与y m =的图像只有一个交点, 33y x x =-+,求导233y x '=-+,令0y '=,得1x =±当1x <-时,0y '<,函数在(),1-∞-上单调递减; 当11x -<<时,0y '>,函数在()1,1-上单调递增;当1x >时,0y '<,函数在()1,+∞上单调递减;故当1x =-时,函数取得极小值2y =-;当1x =时,函数取得极大值2y =; 作出函数图像,如图所示,由图可知,实数m 的取值范围是()(),22,-∞-+∞.故选:B.9. 将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A. 120种 B. 240种 C. 360种 D. 480种〖答 案〗B〖解 析〗先将5名志愿者分为4组,有25C 种分法, 然后再将4组分到4个项目,有44A 种分法,再根据分步乘法原理可得不同的分配方案共有2454C A 240⋅=种.故选:B. 10. (1+2x 2 )(1+x )4的展开式中x 3的系数为( ) A. 12B. 16C. 20D. 24〖答 案〗A〖解 析〗由题意得x 3的系数为3144C 2C 4812+=+=,故选A . 11. 下列说法正确的是( )①设函数()y f x =可导,则()()()11lim13x f x f f x →+-'=△△△;②过曲线()y f x =外一定点做该曲线的切线有且只有一条;③已知做匀加速运动的物体的运动方程是()2s t t t=+米,则该物体在时刻2t =秒的瞬时速度是5米/秒;④一物体以速度232v t t =+(米/秒)做直线运动,则它在0=t 到2t =秒时间段内的位移为12米;⑤已知可导函数()y f x =,对于任意(),x a b ∈时,()0f x '>是函数()y f x =在(),a b 上单调递增的充要条件. A. ①③ B. ③④C. ②③⑤D. ③⑤〖答 案〗B〖解 析〗对于选项①,设函数()f x ,则()()()()001(1)1111limlim 1333x x f x f f x f f xx →→+-+-==',故①错.对于选项②,过曲线()y f x =外一定点做该曲线的切线可以有多条,故②错.对于选项③,已知做匀速运动的物体的运动方程为()2S t t t=+,则()21S t t '=+,所以()25S '=,故③正确.对于选项④,一物体以速度232v t t =+做直线运动,则它在0=t 到2t =时间段内的位移为()223220032d (| 2)1tt t t t +=+=⎰,故④正确.对于选项⑤,已知可导函数()y f x =,对于任意(),x a b ∈时,()0f x '>是函数()y f x =在(),a b 上单调递增的充分不必要条件,例如()3,'()0f x x f x =≥,故⑤错.故选B . 12. 已知()2cos f x x x=+,x ∈R ,若()()1120f t f t ---≥成立,则实数t 的取值范围是( )A. 20,3⎛⎫ ⎪⎝⎭B. 20,3⎡⎤⎢⎥⎣⎦C.()2,0,3∞∞⎛⎫-⋃+⎪⎝⎭D. 23⎛⎤-∞ ⎥⎝⎦,〖答 案〗B 〖解 析〗函数()y f x =的定义域为R ,关于原点对称,()()()2cos 2cos f x x x x x f x -=-+-=+=,∴函数()y f x =为偶函数,当0x ≥时,()2cos f x x x=+,()2sin 0f x x '=->,则函数()y f x =在[)0,∞+上为增函数,由()()1120f t f t ---≥得()()112f t f t -≥-,由偶函数的性质得()()112f t f t -≥-,由于函数()y f x =在[)0,∞+上为增函数,则112t t-≥-,即()()22112t t -≥-,整理得2320t t -≤,解得203t ≤≤,因此,实数t 的取值范围是20,3⎡⎤⎢⎥⎣⎦. 故选:B.二.填空题(共5小题,满分25分,每小题5分)13.10d ⎤=⎦⎰x x ___________.〖答 案〗142π-〖解析〗11]d d =-⎰⎰⎰x x x x x ,根据定积分的几何意义可知,⎰x 表示以()1,0为圆心,1为半径的圆的四分之一面积,所以201144ππ=⋅⋅=⎰x ,而1210011d |22⎛⎫=+= ⎪⎝⎭⎰x x x c ,所以101]d 42π=-⎰x x .故〖答 案〗为:142π-.14. 在二项式214nx x ⎛⎫- ⎪⎝⎭的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为______. 〖答 案〗243〖解 析〗因为二项式214nx x ⎛⎫- ⎪⎝⎭的展开式中,所有二项式系数的和是32, 所以232n=,故5n =,取1x =可得二项式5214x x ⎛⎫- ⎪⎝⎭的展开式中各项系数和为53,即243.故〖答 案〗为:243.15. 若函数()y f x =在区间D 上是凸函数,则对于区间D 内的任意1x ,2x ,…,n x都有()()()12121n n x x x f x f x f x f n n ++⋅⋅⋅+⎛⎫++⋅⋅⋅+≤⎡⎤ ⎪⎣⎦⎝⎭,若函数()sin f x x =在区间(0,)π上是凸函数,则在△ABC 中,sin sin sin A B C ++的最大值是______.〖答案〗〖解析〗由题设知:1(sin sin sin )sin()sin 3332A B C A B C π++++≤==,∴sin sin sin 2A B C ++≤,当且仅当3A B C π===时等号成立.故〖答案〗为:2.16. 在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是____. 〖答 案〗(e, 1).〖解 析〗设点()00,A x y ,则00ln y x =.又1y x '=,当0x x =时,01y x '=, 点A 在曲线ln y x =上的切线为0001()y y x x x -=-,即00ln 1x y x x -=-,代入点(),1e --,得001ln 1ex x ---=-,即00ln x x e =,考查函数()ln H x x x=,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()'ln 1H x x =+,当1x >时,()()'0,>H x H x 单调递增,注意到()H e e=,故00ln x x e=存在唯一的实数根0x e=,此时01y =,故点A 的坐标为(),1A e .17. 若函数()2ln f x ax x x=+有两个极值点,则实数a 的取值范围是__________.〖答 案〗12a -<<〖解 析〗2012f x xlnx ax x f x lnx ax =+'=++()(>),(). 令12g x lnx ax =++(),由于函数函数()2ln f x ax x x=+有两个极值点0g x ⇔=()在区间∞(0,+)上有两个实数根.1122axg x a x x +'=+=(),当0a ≥ 时,0g x '()> ,则函数g x () 在区间∞(0,+)单调递增,因此0g x =() 在区间∞(0,+)上不可能有两个实数根,应舍去. 当0a < 时,令0gx '=() ,解得12x a =-,令0gx '()> ,解得102x a <<-,此时函数g x ()单调递增;令0gx '()< ,解得12x a >-,此时函数g x ()单调递减.∴当12x a =-时,函数g x ()取得极大值.要使0g x =()在区间∞(0,+)上有两个实数根,则11022g ln a a ()>,⎛⎫-=- ⎪⎝⎭,解得102a -<<.∴实数a 的取值范围是(12a -<<.三.解答题(共5小题,满分65分) 18. 设i 为虚数单位,∈a R ,复数12iz a =+,243iz =-.(1)若12z z ⋅是实数,求a 的值;(2)若12z z 是纯虚数,求1z .解:(1)()()()()122i 43i 3846iz z a a a ⋅=+-=++-,因为12z z ⋅是实数,则460a -=,解得32a =.(2)()()()()122i 43i 2i 8346i 43i 43i 43i 2525a z a a a z +++-+===+--+,因为12z z 为纯虚数,则830460a a -=⎧⎨+≠⎩,解得83a =.所以1103z ==.19.>.>只要证22>,只要证1313+>+>,只要证4240>显然成立,故原结论成立.20. 数列{}n a 满足26a =,()*1111+--=∈+n n a n n a n N .(1)试求出1a ,3a ,4a ;(2)猜想数列{}n a 的通项公式并用数学归纳法证明.解:(1)26a =,()*1111+--=∈+n n a n n a n N 当1n =时,1211111a a --=+,11a ∴=,当2n =时,3212121a a --=+,315a ∴=,当3n =时,3413131a a --=+,428a ∴=,所以11a =,315a =,428a =.(2)猜想(21)n a n n =-下面用数学归纳法证明:假设n k =时,有(21)k a k k =-成立,则当1n k =+时,有()1211111112k k k a k a k k +++--+-==+++, ()()()122111k k k a k a +++-=+-⎡⎤⎣⎦()()11211k a k k +∴=++-⎡⎤⎣⎦故对*,(21)=∈-n n a n n N 成立.21. 已知函数()e cos x f x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 解:(Ⅰ)因为()e cos x f x x x =-,所以()()()e cos sin 1,00x f x x x f -''=-=. 又因为()01f =,所以曲线()y f x =在点()()0,0f 处的切线方程为1y =.(Ⅱ)设()()e cos sin 1x h x x x =--,则()()e cos sin sin cos 2e sin x x h x x x x x x=--=-'-. 当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,所以()h x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减. 所以对任意π0,2x ⎛⎤∈ ⎥⎝⎦有()()00h x h <=,即()0f x '<. 所以函数()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减.因此()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为()01f =,最小值为22f ππ⎛⎫=- ⎪⎝⎭. 22. 设函数()f x ()20x ax x a a e ++=>,e 为自然对数的底数.(1)求f (x )的单调区间:(2)若ax 2+x +a ﹣e x x +e x ln x ≤0成立,求正实数a 的取值范围.解:(1)函数()()20x ax x a f x a e ++=>,e 为自然对数的底数,则()()11xaa x xaf xe-⎛⎫---⎪⎝⎭'=,令()0f x'=可得11x=,21111axa a-==-<,∴当1,axa-⎛⎫∈-∞⎪⎝⎭,()1,+∞时,()0f x'<,()f x单调递减;当1,1axa-⎛⎫∈ ⎪⎝⎭时,()0f x'>,()f x单调递增;∴()f x的单调增区间为1,1axa-⎛⎫∈ ⎪⎝⎭,单调减区间为1,aa-⎛⎫-∞⎪⎝⎭,()1,+∞;(2)ax2+x+a﹣e x x+e x ln x≤0成立⇔2xax x ae++≤x﹣ln x,x∈(0,+∞),由(1)可得当x=1函数y2xax x ae++=取得极大值21ae+,令g(x)= x﹣ln x,(x>0),g′(x)= 11x -,可得x=1时,函数g(x)取得极小值即最小值.∴x﹣ln x≥g(1)=1,当(]0,1a∈时,21ae+即为函数y2xax x ae++=的最大值,∴2xax x ae++≤x﹣ln x成立⇔21ae+≤1,解得a12e-≤;当()1,a∈+∞时,211ae+>,不合题意;综上所述,0<a12e-≤.。
包头一中2020-2021学年度第一学期期中考试高二年级数学试题(理科)一、选择题(每小题5分,共60分,每题只有一个正确选项) 1、双曲线x 23-y 2=1的焦点坐标是( ) A .(-2,0),(2,0) B .(-2,0),(2,0) C .(0,-2),(0,2)D .(0,-2),(0,2)2、已知命题0:0p a ∃∈+∞(,),200230a a ->-,那么命题p 的否定是( )A .()20000230a a a ∃∈+∞≤--,,B .()20000230a a a ∃∈-∞≤--,, C .()20230a a a ∈∞-∀+-≤,,D . ()20230a a a ∈≤-∀-∞-,, 3、已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为( )A.x 236+y 232=1B.x 29+y 28=1C.x 29+y 25=1D.x 216+y 212=14、圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( ) A .相交 B .外切 C .相离D .内切5、下列有关命题的说法正确的是( )A. 命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”B. “1x =-”是“2560x x --=”必要不充分条件C. 命题“x R ∃∈,使210x x +-<”的否定是:“x R ∀∈均有210x x +->”D. 命题“若x y =,则sin sin x y =”的逆否命题为真命题6、过原点且倾斜角为60︒的直线被圆2240x y y +-=所截得的弦长为( ) A. 3 B .2 C. 6 D .237、过点A (1,-1),B (-1,1)且圆心在直线x +y -2=0上的圆的方程是( )A .(x -3)2+(y +1)2=4B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=48、椭圆x 225+y 29=1上一点M 到焦点F 1的距离为2,N 是MF 1的中点,则|ON |等于( )A .2B .4C .8 D.329、直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( )A .相交B .相切C .相离D .不确定10、若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( )A .±1B .±24C .±2D .±3211、如图,椭圆x 2a 2+y 24=1(a >2)的左、右焦点分别为F 1,F 2,点P 是椭圆上的一点,若∠F 1PF 2=60°,那么△PF 1F 2的面积为( )A.233 B.332 C.334D.43312、已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A.23B.12C.13D.14 二、填空题(每小题5分,共20分)13、已知椭圆()222104x y a a +=>与双曲线22193x y -=有相同的焦点,则a 的值为__________.14、圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得的弦长为23,则圆C 的标准方程为____________________.15、已知M ,N 是圆A :x 2+y 2-2x =0与圆B :x 2+y 2+2x -4y =0的公共点,则线段MN 的长度为________.16、椭圆22142x y +=的左、右焦点分别为12,F F ,过焦点1F 的直线交椭圆于,A B 两点,则2ABF △的周长为__________;若,A B 两点的坐标分别为()11,x y 和()22,x y ,且212y y -=,则2ABF △的内切圆半径为____________.三、解答题(17题10分,18-22题每题12分,要求有必要的计算过程或文字说明)17、求下列曲线的标准方程(1)求焦点在x 轴上,焦距为2,过点)23,1(的椭圆的标准方程;(2)求与双曲线2212x y -=有公共焦点,且过点的双曲线标准方程.18、已知命题:p 方程22113x y m m+=+-表示焦点在y 轴上的椭圆,命题:q 关于x 的不等式03222>+++m mx x 恒成立;(1)若命题q 是真命题,求实数m 的取值范围(2)若“p q ∧”为假命题,“p q ∨”为真命题.求实数m 的取值范围19、已知圆C 经过点(0,1)且圆心为C (1,2). (1)写出圆C 的标准方程;(2)过点P (2,-1)作圆C 的切线,求该切线的方程及切线长.20、已知点P 在圆C :x 2+y 2-4x -2y +4=0上运动,A 点坐标为(-2,0) (1)求线段AP 中点的轨迹方程(2)若直线l :x -2y -5=0与坐标轴交于MN 两点,求PMN ∆面积的取值范围21、已知点()0,2A -,椭圆2222:1(0)x y E a b a b +=>>的离心率为2F 是椭圆E 的右焦点,直线AF 的斜率为2,O 为坐标原点.(1)求E 的方程;(2)设过点(0P 且斜率为k 的直线l 与椭圆E 交于不同的两M N 、,且||MN =k 的值. 22、已知椭圆2222:1(0)x y C a b a b +=>>的两个焦点是12(1,0),(1,0)F F -,且离心率1e 2=.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)过点()0,t 作椭圆C 的一条切线l 交圆22:4O x y +=于,M N 两点,求OMN △面积的最大值.参考答案一选择题、BCBAD;DCBAB;DD 二、填空题 13、4;14、4)1()2(22=-+-y x ; 15、2;16、8,22 三解答题17(1)由题意知c =1,2a =⎝ ⎛⎭⎪⎫322+ ⎝ ⎛⎭⎪⎫322+22=4,解得a =2, 故椭圆C 的方程为x 24+y 23=1.(2)双曲线2212x y -=双曲线的焦点为(), 设双曲线的方程为22221),(0x y a b a b -=>,可得223a b +=,将点代入双曲线方程可得, 22221a b -=,解得1,a b ==,即有所求双曲线的方程为:2212y x -=.18(1)关于x 的不等式03222>+++m mx x 恒成立; 则判别式244(23)0m m ∆=-+<,即2230m m --<,得13m -<< (2)∵方程22113x y m m+=+-表示焦点在轴上的椭圆.∴013m m <+<-,解得: 11m -<<,∴若命题p 为真命题,求实数m 的取值范围是(1,1)-;若关于x 的不等式03222>+++m mx x 恒成立,则判别式244(23)0m m ∆=-+<,即2230m m --<,得13m -<<,若“p q ∧”为假命题,“p q ∨”为真命题,则,p q 为一个真命题,一个假命题,若p 真q 假,则11{3,1m m m -<<≥≤-,此时无解,若p 假q 真,则13{1,1m m m -<<≥≤-,得13m ≤<.综上,实数m 的取值范围是[)1,3. 19解:(1)由题意知,圆C 的半径r =(1-0)2+(2-1)2=2,所以圆C 的标准方程为(x -1)2+(y -2)2=2.(2)由题意知切线斜率存在,故设过点P (2,-1)的切线方程为y +1=k (x -2),即kx -y -2k -1=0,则|-k -3|1+k2=2, 所以k 2-6k -7=0,解得k =7或k =-1,故所求切线的方程为7x -y -15=0或x +y -1=0.由圆的性质易得所求切线长为PC 2-r 2=(2-1)2+(-1-2)2-2=2 2.20、(1)已知点P 在圆C :x 2+y 2-4x -2y +4=0上运动,A 点坐标为(-2,0)设AP 的中点为M (x ,y ),),(0y x P o ,由中点坐标公式可知,⎪⎪⎩⎪⎪⎨⎧=-=22200y y x x所以⎩⎨⎧=+=y y x x 22200带入圆C :x 2+y 2-4x -2y +4=0中,故线段AP 中点的轨迹方程为022=-+y y x(2)圆C :x 2+y 2-4x -2y +4=0化为(x -2)2+(y -1)2=1,圆心C (2,1),半径为1,圆心到直线l 的距离为|2-2-5|12+22=5,则圆上一动点P 到直线l 的距离的最小值是5-1,最大值是5+1 ,又255=MN ,所以面积]455425,455425[+-∈S21、(1)由离心率c e a ==,则a =,直线AF 的斜率()022k c --==-,则1c =, a =2221b a c =﹣=,∴椭圆E 的方程为2212x y +=;(2)设直线:l y kx =()()1122,M x y N x y ,,,则2212y kx x y ⎧=-⎪⎨+=⎪⎩,整理得: ()221240k x ++=-,()22()44120k =--⨯⨯+>△,即21k >,∴12x x +=, 122412x x k =+,∴1212MN x k =-==+,即421732570k k --=,解得:23k =或1917-(舍去)∴k = 22、(1)由已知11,e 2c ca ===,所以2,a b =所以椭圆C 的标准方程22143x y +=.(2)由已知切线l 的斜率存在,设其方程为y kx t =+, 联立方程22143y kx t x y =+⎧⎪⎨+=⎪⎩,消去y 得222(34)84120k x ktx t +++-=,由相切得 222(8)4(34)(412)0kt k t =-+-=△,化简得 2234t k =+,又圆心O 到切线l 的距离d =,所以 ||MN =所以1||2OMNS MN d ===△把 2234t k =+ 代入得OMNS =△,记 21u k =+,则11,01u u ≥<≤,所以OMN S ==△所以,11u=时,OMN △。
高二第二学期期中考试数学试题(理科)一、选择题(每小题5分,共60分)1、复数1ii -的共轭复数的虚部为()A .1B .1-C .12D .12-2、若2133adx a a =-+⎰,则实数a =()A .2B .2-3、化简(为()4、函数),a b 内的A .1个B 56A .157A .0B 8、4 A .129A .2-10A.6011、已知函数()f x 是定义在R 上的奇函数,且当(],0x ∈-∞时,()2x f x e ex a -=-+,则函数()f x 在1x =处的切线的方程是()12、函数()f x 满足()00f =,其导函数()f x '的图象如右图 所示,则()f x 的图象与x 轴所围成的封闭图形的面积是()A.1B.43C.2D.83二、填空题(每小题5分,共20分)13、若()102100121021x a a x a x a x -=++++,则3a =.14、若()2120x i x i m ++++=有实数根,i 是虚数单位,则实数m 的值为. 15、若函数()()3261f x x ax a x =++++有极值,则实数a 的取值范围是 16、函数()()f x x R ∈满足()11,f =且()f x 在R 上的导函数()12f x '>,则不等式()12x f x +<的解集是.三、解答题(共计70分)17、(10n2倍.(1)求(218、(12(1)求(2)若19、(12((20、(12(1)求(2(321、(1222、(12分)已知a R ∈,函数()ln 1.af x x x =+-(1)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (2)求()f x 在区间(]0,e 上的最小值.高二第二学期期中考试数学试题(理科)答案一、选择题(每小题5分,共60分)CBCACADBADBB二、填空题(每小题5分,共20分)13、1680-;14、2-;15、36a a <->或16、(),1-∞ 三、解答题(共6个小题,总计70分) 17、(1)83n =分;01288888822565C C C C ++++==分.(2)848k k k --18、312分.19、6分;(212分. 20、(2)312x x =-令f '故(f 所以(33 ⎪⎝⎭3 ⎪⎝⎭故()f x 在223x x =-=或处取得最大值,又23f ⎛⎫-= ⎪⎝⎭2227c +,()22f c =+,所以()f x 的最大值为2c +.因为()2f x c <在[]1,2-上恒成立,所以22,c c >+所以12c c <->或12分.21、(1)若两名老师傅都不选派,则有44545C C =种;…3分(2)若两名老师傅只选派1人,则有13414325425460C C C C C C +=种;…7分 (3)若两名老师傅都选派,则有224242233254254254120C C C C C C A C C ++=种. 故共有5+60+120=185种选派方法.……………………………12分22、(1)当1a =时,()()1ln 1,0,,f x x x x=+-∈+∞所以()()22111,0,.x f x x x x x -'=-+=∈+∞又f (2令f 若a 7若],a e 时,若a e 时,函(]0,e 上分。
高二期中考试数学(理科)试题总分:120分 总时量:120分钟 一. 选择题:(每小题4分,共40分)题号 1 2 3 4 5 答案题号 6 7 8 9 10 答案1、“a + b > 2c ”的一个充分条件是 ( )(A ) a > c 且b >c (B ) a > c 且b <c(C ) a > c 或b > c (D ) a >c 或b <c2、若a 、b 、c ∈R ,且|a-c |<|b |,下式中一定正确的是 ( )(A)|a |>|b |+|c | (B)a<b+c (C)|a |<|b |+|c | (D)a>c-b3、下列命题中,正确的是 ( )(A ) 若x 2> x , 则 x >0 (B ) 若x < 0, 则x 2> x(C ) 若x < 0, 则x 2< x (D ) 若x 2> x , 则x <04、 c <0, 在下列不等式中,成立的一个是 ( )(A ) c >2c (B ) c >(c )21 (C ) 2c <(c )21 (D ) 2c >(c)215、设全集I =R ,集合M = { x | lg | x + 1|≤0}, 则M C I 等于 ( )(A ) (-∞,-2)∪{-1} (B ) (0,+ ∞)∪{-1}(C ) (-∞,-2)∪(0,+∞) (D ) (-∞,-2)∪(0,+ ∞)∪{-1}6、已知直线l 的倾斜角为α,且21=αsin ,则直线l 的斜率是 ( )(A )33(B )33- (C )33± (D )37、已知A(2,3),B(1,5)则直线AB 的倾斜角是 ( )(A) arctan2 (B) arctan(-2) (C) 2π+arctan2 (D) 21arctan 2+π8、m=2是两直线(2-m)x+my+3=0 ;x -my -3=0互相垂直的 ( )(A)充分非必要条件 (B)必要非充分条件(C)充要条件 (D)既非充分亦非必要条件9、已知一条直线的斜率)0(,sin k π<α≤α=,则这条直线的的倾斜角的取值范围是( )(A )),0[π (B )]4,0[π (C ))4,0[π (D )]4,0[π),43[ππ10、已知两点A(2,2)、B(-2,5),点P 在y 轴上,且∠APB=90°,则点P 的坐标为 ( )(A)(0,6) (B)(0,1) (C)(0,-1) (D)(0,1)或(0,6)二、填空题:(每小题4分,共20分)11.已知直线L 1:y=33x+2,直线L 2过点P(-2,1),且L 1到L 2的角为6π,则L 2的方程为 。
高2021级数学 第1 页 共 4 页 高2021级数学 第 2页 共 4 页高2021级高二下学期期中质量检测 2023.04.25理科数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、考号填写在答题卷规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卷上对应题号的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔将答案书写在答题卷规定的位置上.4.考试结束后,将答题卷交回.第一部分(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数−=+z 1i2i,则=z ( ) A .1BCD2.数学必修一、二和政治必修一、二共四本书中任取两本书,那么互斥而不对立的两个事件是( )A .至少有一本政治与都是数学B .至少有一本政治与都是政治C .至少有一本政治与至少有一本数学D .恰有1本政治与恰有2本政治 3.已知复数=+∈∈z a b a b i R,R )(,且+=−z 12i 1i )(,则−=a b ( )A .52B .51C .−52D .−514.从甲、乙等6名专家中任选2人前往某地进行考察,则甲、乙2人中至少有1人被选中的概率为( ) A .54B .32C .52D .535.命题p :“∀∈−+>x x mx R,102”,命题q :“<m 2”,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 6.命题“∃∈+∞a 0,)[,>a a sin ”的否定形式是( )A .∈+∞∀a 0,)[,≤a a sinB .∃∈+∞a 0,)[,≤a a sinC .∀∈−∞a ,0)(,≤a a sinD .∃∈−∞a ,0)(,>a a sin7.)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列a n }{称为“斐波那契数列”,则=a 7( ) A .8B .13C .18D .23. B . C . .9.地铁让市民不再为公交车的拥挤而烦恼,地下交通的容量大、速度快、准点率高等特点弥补了 单一地面交通的不足.成都地铁9号线每5分钟一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过3分钟的概率是( )A .0.6B .0.8C .0.4D .0.210.已知命题∀∈p x :R ,>−x sin 1;命题∃∈+=+q x y x y x y :,R,sin sin sin )(,则下列命题是真命题的是( ) A .∧p q B .∧⌝p q )( C .∨⌝p q )( D .⌝∧p q )(11.已知−=x a x 012在∈+∞x 0,)(上有两个不相等的实数根,则实数a 的取值范围是( )A .⎝⎦⎥ ⎛⎤e 20,1B .⎝⎭⎪⎛⎫2e 0,1C .⎝⎦⎥ ⎛⎤1,e 2e 1D .⎝⎭⎪⎛⎫1,e 2e 112.函数=f x x ln 2)(的图象与函数=−+−−xg x x x x 2e e 1)(的图象交点的横坐标x 0,则e x xln 200= ( ) A .−ln 2B .-21C .21D .ln 2高2021级数学 第3 页 共 4 页 高2021级数学 第4页 共 4 页第二部分(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分。
上学期期中考试高二理科数学试卷第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的•* 21.设集合U^ { x | x ::: 5 , N }, M = { x| x —5x 6 = 0},则?U M=().A. {1,4}B. {1,5}C. {2,3}D. {3,4}2•某样开设A类选修课4门,B类选修课2门,一位同学从中选3门,若要求两类课程中各至少选一门,则不同的选法种数为().A. 12B. 16 C . 18 D . 203. 已知三条不重合的直线m,n,l和两个不重合的平面〉,:,有下列命题:① m//n, n :一侧m//:;②若I Irml且I _ m则I \:-③若I _ n, m _ n,则I //m④若x . W := m, n - , n _ m,贝V n I .工其中正确命题的个数为().A. 4 B . 3 C . 2 D . 14. 一个几何体的三视图如图所示,那么此几何体的侧面积(单位:cm)为().A . 48B . 64俯视图C. 80D . 1205. 如果函数f (x)=cos(wx •—)(w 0)的相邻两个零点之4间的距离为.,则,的值为()6A . 3B . 6C . 12 D. 246 .阅读如图所示的程序框图,输出的S值为().A . 0B . 1+ 2C . 1 + 了D. 2—14x - y T0 乞0,7.设实数x,y满足条件x-2y,8_0,,若目标函数ax by (a 0,b 0)的最大值x - 0, y - 0数的正整数的个数是f (x )在 R 是单调函数;②函数 f (x )的最小值是-2 ;③方程f (x ) = b 恒有两个不等实根;④对任意x <:0,x 2 :0且为=x 2,恒有f (' 立)f (x 2)成立.其中正确结论 2 2的个数为( ).A . 1B . 2C. 3D . 4[来源:]、填空题:(本大题共4小题,每小题5分。
高二(下)期中数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集是实数集R ,2{|2730}A x x x =-+≤,2{|0}B x x a =+<,若()R C A B B =,则实数a 的取值范围是( )A .1(,)4-+∞ B .1(,]4-∞- C .1[,)4-+∞ D .1(,)4-∞- 2.设复数122iz i-=-(其中i 为虚数单位),则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.已知a ,b 都是实数,则“4a b +≥”是“224a b +≥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分不必要条件 D . 既不充分也不必要条件 4.设1sin cos 2x x +=-(其中(0,)x π∈),则cos 2x 的值为( )A B .5.已知l 、m 为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( ) A .若l m ,l α,则m α B .若αβ⊥,l α,则l β⊥ C.若l β⊥,αβ⊥,则l α D .若l m ⊥,l α⊥,且m β⊥,则αβ⊥6.若某空间几何体的三视图如图所示,则该几何体的体积是( )A .36128π+B .128π C.36 D .3664π+7.某程序框图如图所示,若输入的100N =,该程序运行后输出的结果为( )A .50B .1012 C.51 D .10328.某会议室第一排有9个座位,现安排4人就座,若要求每人左右均有空位,则不同的坐法种数为( ) A .8 B .16 C.24 D .609.定义在R 上的函数()f x 是奇函数且满足3()()2f x f x -=,(2)3f -=-,(2)3f -=-,数列{}n a ,满足11a =-,且2n n S a n =+(其中n S 为{}n a 的前n 项和),则56()()f a f a +=( ) A .-2 B .3 C.-3 D .210.如图为函数()f x =01x <<)的图象,其在点(,())M t f t 处的切线为l ,l 与y 轴和直线1y =分别交于点P 、Q ,点(0,1)N ,若PQN ∆的面积为b 时的点M 恰好有两个,则b 的取值范围为( )A .110,427⎡⎤⎢⎥⎣⎦B .110(,]227 C.110(,]227 D .18(,)427 11.设点P 是椭圆22221x y a b+=(0a b >>)上一点,1F ,2F 分别是椭圆的左、右焦点,l 为12PF F ∆的内心,若11122IPF IPF IF F S S S ∆∆∆+=,则该椭圆的离心率是( )A .12 B.2C.2 D .14 12.在直三棱柱111A B C ABC -中,2BAC π∠=,11AB AC AA ===,已知G 和E 分别为11A B 和1CC 的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点),若GD EF ⊥,则线段DF 的长度的取值范围为( ) A.,1)5 B.5C.(5 D.[5第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题5分,共20分 13.设4(1)x -的展开式中2x 的系数为A ,则A = .14.设a ,b 为两非零向量,且满足||||2a b +=,222a b a b ⋅=⋅,则两向量a ,b 的夹角的最小值为 .15.已知正数x ,y 满足1910x y x y+++=,则x y +的最大值为 . 16.设点(,)M x y 的坐标满足不等式组001x y x y ≥⎧⎪≤⎨⎪-≤⎩,点(,)m n 在点(,)M x y 所在的平面区域内,若点(,)N m n m n +-所在的平面区域的面积为S ,则S 的值为 .三、解答题 :共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 在ABC ∆中,角A 、B 、C 的所对边的长分别为a 、b 、c,且a =3b =,sin 2sin C A =. (I )求c 的值; (II )求sin(2)3A π-的值.18. 设函数()kx f x x e =⋅(0k ≠)(1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)求函数()f x 的单调区间.19. 已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (I )求n a 及n S ; (II )令211n n b a =-(*n N ∈),求数列{}n b 的前n 项和n T .20. 如图(1)在等腰ABC ∆中,D ,E ,F 分别是AB ,AC 和BC 边的中点,120ACB ∠=︒,现将ABC ∆沿CD 翻折成直二面角A DC B --.(如图(2))(I )试判断直线AB 与平面DEF 的位置关系,并说明理由; (II )求二面角E DF C --的余弦值;(III )在线段BC 是否存在一点P ,但AP DE ⊥?证明你的结论.21. 已知焦点在x 轴上的椭圆C 过点(0,1),且离心率为2,Q 为椭圆C 的左顶点. (I )求椭圆C 的标准方程;(II )已知过点5(,0)6-的直线l 与椭圆C 交于A ,B 两点. (i )若直线l 垂直于x 轴,求AQB ∠的大小;(ii )若直线l 与x 轴不垂直,是否存在直线l 使得QAB ∆为等腰三角形?如果存在,求出直线l 的方程;如果不存在,请说明理由.22. 已知函数2()ln()f x x ax =(0a >)(1)若2'()f x x ≤对任意的0x >恒成立,求实数a 的取值范围; (2)当1a =时,设函数()()f x g x x =,若1x ,21(,1)x e∈,121x x +<,求证41212()x x x x <+.试卷答案一、选择题1-5:CDAAD 6-10:AACBD 11、12:AA 二、填空题 13.6 14.3π15.8 16.1 三、解答题17.解:(I )∵a =sin 2sin C A =,∴根据正弦定理sin sin c a C A =得:sin 2sin Cc a a A===(II )∵a =3b =,c =∴由余弦定理得:222cos 2c b a A bc +-==, 又A 为三角形的内角,∴sin 5A ==, ∴4sin 22sin cos 5A A A ==,223cos 2cos sin 5A A A =-=,则4sin(2)sin 2coscos 2sin33310A A A πππ--=-=. 18.解:(1)'()(1)kx kx kxf x e kxe kx e =+=+(x R ∈),且'(0)1f =,∴切线斜率为1, 又(0)0f =,∴曲线()y f x =在点(0,(0))f 处的切线方程为0x y -=.(2)'()(1)kxf x kx e =+(x k ∈),令'()0f x =,得1x k=-, ○1若0k >,当1(,)x k ∈-∞-时,'()0f x <,()f x 单调递减;当1(,)x k ∈-+∞时,'()0f x >, ()f x 单调递增.○2若0k <,当1(,)x k ∈-∞-时,'()0f x >,()f x 单调递增;当1(,)x k∈-+∞时,'()0f x <, ()f x 单调递减.综上所述,0k >时,()f x 的单调递减区间为1(,)k -∞-,单调递增区间为1(,)k-+∞; 0k <时,()f x 的单调递增区间为1(,)k -∞-,单调递减区间为1(,)k-+∞19.解:(I )设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所有有112721026a d a d +=⎧⎨+=⎩,解得13a =,2d =,所有32(1)21n a n n =+-=+;2(1)3222n n n S n n n -=+⨯=+. (II )由(I )知21n a n =+,所以221111111()1(21)14(1)41n n b a n n n n n ===⋅=--+-++, 所以数列{}n b 的前n 项和11111111(1)(1)42231414(1)n n T n n n n =-+-++-=-=+++, 即数列{}n b 的前n 项和4(1)n nT n =+.20.解:(I )如图1在ABC ∆中,由E ,F 分别是AC ,AB 中点,得EF AB ,又AB ⊄平面DEF ,EF ⊂平面EDF ,∴AB 平面DEF .(II )∵AD CD ⊥,BD CD ⊥,∴ADB ∠是二面角A CD B --的平面角,∴AD BD ⊥, ∴AD ⊥平面BCD , 取CD 的点M ,使EMAD ,∴EM ⊥平面BCD ,过M 作MN DF⊥于点N ,连接EN ,则EN DF ⊥, ∴MNE ∠是二面角E DF C --的平面角.设CD a =,则2AC BC a ==,AD DB ==, 在DFC ∆中,设底边DF 上的高为h 由Rt EMN ∆中,122EM AD ==,124MN h ==,∴tan 2MNE ∠= 从而cos 5MNE ∠=(III )在线段BC 上不存在点P ,使AP DE ⊥,证明如下:在图2中,作AG DE ⊥,交DE 于G 交CD 于Q 由已知得120AED ∠=︒,于是点G 在DE 的延长线上,从而Q 在DC 的延长线上,过Q 作PQ CD ⊥交BC 于P , ∴PA ⊥平面ACD ,∴PQ DE ⊥,∴DE ⊥平面APQ ,∴AP DE ⊥. 但P 在BC 的延长线上.图1图221.解:(I )设椭圆C 的标准方程为22221x y a b+=(0a b >>),且222a b c =+.由题意,椭圆C 过点(0,1)1b =,c a =. 所以24a =.所以,椭圆C 的标准方程为2214x y +=. (II )由(I )得(2,0)Q -.设11(,)A x y ,22(,)B x y .(i )当直线l 垂直于x 轴时,直线l 的方程为65x =-. 由226514x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,解得6545x y ⎧=-⎪⎪⎨⎪=±⎪⎩即64(,)55A -,64(,)55B --(不妨设点A 在x 轴上方). 则直线AQ 的斜率1,直线BQ 的斜率1-.因为直线AQ 的斜率与直线BQ 的斜率的乘积为1-,所以AQ BQ ⊥,所以2AQB π∠=.(ii )当直线l 与x 轴不垂直时,由题意可设直线AB 的方程为6()5y k x =+(0k ≠)由226()514y k x x y ⎧=+⎪⎪⎨⎪+=⎪⎩消去y 得:2222(25100)2401441000k x k x k +++-=. 因为点6(,0)5-在椭圆C 的内部,显然0∆>.212221222402510014410025100k x x k k x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩因为11(2,)QA x y =+,22(2,)QB x y =+,116()5y k x =+,226()5y k x =+, 所以22212121212636(2)(2)(1)(2)()4525QA QB x x y y k x x k x x k ⋅=+++=++++++ 2222222144100624036(1)(2)()402510052510025k k k k k k k -=+⨯++-++=++ ∴QA QB ⊥.所以QAB ∆为直角三角形.假设存在直线l 使得QAB ∆为等腰三角形,则||||QA QB =. 取AB 的中点M ,连接QM ,则QM AB ⊥. 记点6(,0)5-为N .另一方面,点M 的横坐标2224520M k x k =-+,所以点M 的纵坐标26520M ky k=-+. 所以22222222101666660132(,)(,)0520520520520(520)k k k k QM QN k k k k k ++⋅=⋅=≠+++++所以QM 与NM 不垂直,矛盾.所以当直线l 与x 轴不垂直时,不存在直线l 使得QAB ∆为等腰三角形.22.解:(1)'()2ln()f x x ax x =+ 2'()2ln()f x x ax x x =+≤,及2ln()1ax x +≤在0x >上恒成立 设()2ln()1u x ax x =+-,2'()10u x x=-=,2x =,2x >时,单调减,2x <单调增,所以2x =时,()u x 有最大值(2)u(2)0u ≤,2ln 212a +≤,所以02a <≤(2)当1a =时,()()ln f x g x x x x ==,'()1ln 0g x x =+=,1x e=, 所以在1(,)e +∞上()g x 是增函数,1(0,)e 上是减函数因为11211x x x e<<+<,所以121212111()()ln()()ln g x x x x x x g x x x +=++>=即121121ln ln()x x x x x x +<+ 同理122122ln ln()x x x x x x +<+ 所以1212121212122121ln ln ()ln()(2)ln()x x x x x xx x x x x x x x x x +++<++=+++ 又因为122124x x x x ++≥,当且仅当“12x x =”时,取等号11 又1x ,21(,1)x e ∈,121x x +<,12ln()0x x +< 所以12121221(2)ln()4ln()x x x x x x x x +++≤+ 所以1212ln ln 4ln()x x x x +<+ 所以:41212()x x x x <+。
高二理科数学试卷
考生注意:
1.本试卷为试题卷,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.请将答案写在答题卡上,写在试题卷上无效.
2.本试卷满分150分,考试时间为120分钟.
第Ⅰ卷(选择题)
一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设全集U=R,集合A ={x|x≤-1,或x≥3},B={ x|x2≤2},则(∁U A)∩B=
A.{x|-≤x3}B.{x|-1x≤ }
C.{x|-≤x≤ }D.{x|-1 x3}
2.已知三个数:a=21.3,b=()—0.7,c=2log72,则a、b、c的大小关系是
A.bca B.cab C.bac D. cba
3.“a”是“a22”的
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
4.若将函数y=3sin2x的图象向左平移个单位长度,则平移后所得图象的一条对称轴可以是
A. B.C.D.
5.在直三棱柱ABC-A1B1C1中,若 =,=, =,则 =
A. + B. + C. + D.
6.下列命题中,真命题的是
A.x0∈R,≤0B.x∈R,
C.a+b=0的充要条件是 =-1 D.“a”是“a”的充分条件
7.双曲线(ab0)的左、右顶点分别是M、N,左、右焦点分别是F1、F2,若MF1MNF1N成等比数列,则此双曲线的离心率为
A.3B.C.2D.
8.函数(x+1)(a1
,则a的值为
A.B.2 C.D.4
9.设z=2x+y,其中变量x、y满足条件,则z的取值范围是
A.[5,12]B.[5,10]C.[3,12]D.[3,10]
10.双曲线渐近线方程的是
A.B.C.D.
11.已知一个物体的运动方程为s=t-+1,其中s的单位是m,t的单位是s,那么物体在4s的瞬时速度是A.B.1 C.D.
12.正四面体S-ABC中,D为SC的中点,则BD与SA所成的角的余弦值为
A.B.C.D.
第Ⅱ卷(非选择题)
本卷包括填空题和解答题两部分,第1316题是选择题,第1722题是解答题.
二、填空题:本大题共4小题,每小题5分.把答案填在答题卡中的横线上.
13.已知向量=(4,-3,1),=(2,0,3),=(0,1,2),则=__ △__;
14.在△ABC中,AB=2,∠C=,AC:BC=,则△ABC的面积等于_ △__;
15.已知,且则__ △ __;
16.直线l:y=x-1与抛物线y2=4x交于A、B两点,则=_ △__.
三、解答题:本大题共6.
17.(10分)已知命题p:关于x q:函数y =(3-a)x+b (a,b∈R)是减函数,若命题pq是真命题,求实数a的取值范围.
18.(12分)(1)以“若x2=9,则x=3”为原命题,写出它的逆命题、否命题、逆否命题,并分别指出这四个命题的真假. (2)已知双曲线的焦点在x轴上,实轴长是4,经过点(-6,2),求该双曲线的标准方程和焦点坐标.
19.(12分)已知数列是等差数列,数列是等比数列,且a1=b1=1,a3-a2=2,b3=2b2.
(1)求数列和的通项公式;(2)设,求数列的前项和.
20.(12分)如图,ABCD是矩形,PA⊥平面ABCD,PA=AD=2AB=2,M、N分别是PC、AB的中点。
(1)求证:MN∥平面PAD;(2)求三棱锥P-ACD的体积;(3)求证:MN⊥平面PCD.
21. (12分)已知向量=(m+1,0,m),=(6,2n-1,2),且.(1)求实数m及n的值;(2)若=(-4,2,3),求及+.22.(12分)已知椭圆C:(ab0),F1、F2分别是它的左、右焦点,其离心率为,点P是椭圆C上的任意一点,且.(1)求椭圆C的标准方程;(2)设直线l:y=kx+m(m≠0)与椭圆C交于M、N两点.①当k=1,m=-时,
求弦MN的长;②若直线OM、MN、ON的斜率依次成等比数列,求k的值及m的取值范围.。