XXXX西安市标准化考试文科数学试题及答案
- 格式:docx
- 大小:2.43 MB
- 文档页数:9
西安中学高2024届高三模拟考试(一)数学学科(文科)(满分:150分时间:120分钟)一、单选题:本题共12小题,每小题5分,共60分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若),(12R b a bi a i∈+=+,则=+20242023b a ( )A. −1B. 0C. 1D. 22.在用反证法证明“已知0,,<+∈y x R y x ,则y x ,中至多有一个大于0”时,假设应为( )A. x ,y 都小于0B. x ,y 至少有一个大于0C. x ,y 都大于0D. x ,y 至少有一个小于3.如图1的矩形长为5、宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为( )A. 235B. 2350C. 10D. 不能估计4.与双曲线14522=-y x 的焦点相同,且长轴长为43的椭圆的标准方程为( )A. 14522=+y x B. 131222=+y x C. 171622=+y x D. 1364822=+y x 5.已知y x ,满足⎩⎨⎧-≤-≤-≤+≤2442y x y x ,则y x -2的取值范围是( )A. []0,6-B. []1,5--C. []1,6--D. []0,5-6.已知点P 是ΔABC 的重心,则AP =( )A. AP =16AB +16AC B. AP =14AB +14AC C. AP =23AC +13BC D. AP =23AB +13BC7.如图2是计算39151311++++值的一个程序框图,其中判断框内应填的是( )A. i >10B. i <10C. i >20D. i <20图1图28.某四面体的三视图如图3所示,该四面体四个面的面积中最大的是( )A. 8B. 62 C. 10 D. 829.三角函数值sin 1,sin 2,sin 3的大小顺序是( )A. sin 1>sin 2>sin 3 B. sin 2>sin 1>sin 3C. sin 1>sin 3>sin 2D. sin 3>sin 2>sin 110.四面体ABCD 外接球球心在CD 上,且2CD =,AB =13.已知曲线1ln +=x y ,则斜率为3的切线方程为.14.过点(1,3)P ,在x 轴上的截距和在y 轴上的截距相等的直线方程为.15.已知m ba==72,2111=+b a ,则=m.图316.平面上动点M 到定点F (3,0)的距离比M 到y 轴的距离大3,则动点M 满足的方程为.三、解答题:本题共7小题,共70分。
一、单选题二、多选题1. 若,,,则( )A.B.C.D.2. 已知椭圆的上顶点为B ,O 为坐标原点,点,线段与交于点,点在线段上,且,若直线与圆相交,则的离心率的取值范围为( )A.B.C.D.3. 在中,内角A ,B ,C 所对应的边分别是a ,b ,c,若的面积是,则( )A.B.C.D.4. 计算的值为( )A .2B .4C .8D .165.已知复数,则a =( )A .1B .0C .2D .±16. 已知为锐角,且,则的值是A.B.C.D.7.已知随机变量满足,,,若,则( )A .随着的增大而增大,随着的增大而增大B .随着的增大而减小,随着的增大而增大C .随着的增大而减小,随着的增大而减小D .随着的增大而增大,随着的增大而减小8. 已知函数,给出下列四个命题:①为奇函数;②的最小正周期是;③在区间上是增函数;④的图象关于直线对称;其中正确的命题为( )A .①②④B .①③④C .②③D .③④9. 已知直线a ,b ,c两两异面,且,,下列说法正确的是( )A .存在平面α,β,使,,且,B .存在平面α,β,使,,且,C .存在平面γ,使,,且D .存在唯一的平面γ,使,且a ,b 与γ所成角相等10.定义在上的偶函数满足,当时,.设函数,则下列结论正确的是( )A.的图象关于直线对称B.的图象在处的切线方程为C.陕西省西安中学2024届高三模拟考试(一)数学(文科)试题陕西省西安中学2024届高三模拟考试(一)数学(文科)试题三、填空题四、解答题D .的图象与的图象所有交点的横坐标之和为1011. 如图,某种地砖ABCD 的图案由一个正方形和4条抛物线构成,体现了数学的对称美.,,,,点M 为AB 与x 轴的交点.已知正方形ABCD 的面积为64,则下列说法正确的是()A .抛物线的方程为B .连接的焦点,线段分别交于点G ,H,则C .过的焦点的直线交于R ,S 两点,若R ,S均在地砖内部(包含边界),则D .过点M的直线交于P ,Q 两点,则以PQ 为直径的圆过定点12. 设函数,且函数在上是单调的,则下列说法正确的是( )A.若是奇函数,则的最大值为3B.若,则的最大值为C.若恒成立,则的最大值为2D.若的图象关于点中心对称,则的最大值为13. 若的内角的对边分别为,,,点在边上,且的面积为,则______.14.在中,已知,,则的值为______.15.在平面直角坐标系中,以直线为渐近线,且经过抛物线焦点的双曲线的方程是___________.16. 目前,改编自刘慈欣的《三体》动漫版正在 B 站热播中,受到了广大学生和科幻迷的热烈追捧,南宁某中学对一年级的全体学生共400人,其中男生200人,女生200人是否观看进行了问卷调查,得到各班观看人数如下表所示:1班2班3班4班5班6班7班8班9班10班男生56151212141410248女生467171113138813(1)根据表格完成下列列联表;观看没观看合计男生女生合计(2)判断是否有95%的把握认为观看该影片与性别有关.附:,0.100.050.0102.7063.841 6.63517. 为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效的改良玉米品种,为农民提供技术支.现对已选出的一组玉米的茎高进行统计,获得茎叶图如右图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.(1)完成列联表,并判断是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?(2)(i )按照分层抽样的方式,在上述样本中,从易倒伏和抗倒伏两组中抽取9株玉米,设取出的易倒伏矮茎玉米株数为,求的分布列(概率用组合数算式表示);(ii )若将频率视为概率,从抗倒伏的玉米试验田中再随机抽取出50株,求取出的高茎玉米株数的数学期望和方差.0.0250.0100.0055.0246.6357.879(,其中)18. 某市调研机构对该市工薪阶层对“楼市限购令”态度进行调查,抽调了50名市民,他们月收入频数分布表和对“楼市限购令”赞成人数如表:月收入(单位:百元),,,,,,频数51055频率0.10.20.10.1赞成人数4812521(1)若所抽调的50名市民中,收入在,的有15名,求,,的值,并完成频率分布直方图.(2)若从收入(单位:百元)在,的被调查者中随机选取2人进行追踪调查,选中的2人中恰有人赞成“楼市限购令”,求的分布列与数学期望.(3)从月收入频率分布表的6组市民中分别随机抽取3名市民,恰有一组的3名市民都不赞成“楼市限购令”,根据表格数据,判断这3名市民来自哪组的可能性最大?请直接写出你的判断结果.19. 某服装厂拟在2022年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)m万件与年促销费用x(0≤x≤10)万元满足.已知2022年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的促销价格定为每件产品年平均成本的2倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).(1)将2022年该产品的利润y元表示为年促销费用x万元的函数;(2)该服装厂2022年的促销费用投入多少万元时,利润最大?20. 已知函数.(1)设,讨论函数的单调性;(2)当时,,求实数a的取值范围.21. “中国科学十大进展”遴选活动由科学技术部高技术研究发展中心牵头举办,旨在激励广大科技工作者的科学热情和奉献精神,开展基础研究科学普及,促进公众理解、关心和支持基础研究,在全社会营造良好的科学氛围.2021年2月,科技部高技术研究发展中心(基础研究管理中心)发布了2020年度中国科学十大进展.某校为调查本校中学生对2020年度中国科学十大进展的了解与关注情况,从该校高中年级在校生中,按高一、高二年级,高三年级分成两个年级段,随机抽取了200名学生进行调查,其中高一、高二年级共调查了120人,高三年级调查了80人,以说出10项科学进展的名称个数为标准,统计情况如下.假设以能至少说出四项科学进展的名称为成绩优秀.说出科学进展名称个012345个及以上数频数(高一、高二年级)5253030255频数(高三年级)010********(1)根据频数分布表完成列联表,并回答是否有95%的把握认为成绩优秀与否与年级分段有关?成绩不优秀成绩优秀合计高一、高二年级高三年级合计(2)按分层抽样的方法,在被调查且成绩优秀的学生中抽取6名同学,再在这6名同学中随机抽取4名同学组成“2020科技展”宣讲队,求至少有2名高三年级的同学入选宣讲队的概率.附:,其中.。
西安市2020届高三年级第三次质量检测文科数学注意事项:1.本卷考试时间120分钟.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束,将本试题和答题卡一并交回.一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的, 1.已知集合{}2,1,0,1,2A =-,()(){}120B x x x =-+>,则A B 的子集个数为( )A .2B .4C .6D .82.已知复数2ii z -=(其中i 是虚数单位),那么z 的共轭复数是( ) A .12i -B .12i +C .12i -D .12i -+3.已知向量()1,0i =,向量()1,1f =,则34i f -的值为( ) A .17B .5CD .254.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( ) A .众数B .平均数C .中位数D .标准差5.九连环是我国从古至今广泛流传的一种益智游戏,它用九个圆环相连成串,以解开为胜.据明代杨慎《丹铅总录》记载:“两环互相贯为一,得其关捩,解之为二,又合面为一”.在某种玩法中,用n a 表示解下n (9n ≤,n *∈N )个圆环所需的移动最少次数,若11a =,且1121,22,n n n a n a a n ---⎧⎪=⎨+⎪⎩为偶数为奇数,则解下5个环所需的最少移动次数为( ) A .7B .13C .16D .226.已知ln3a =,3log b e =,log c e π=(注:e 为自然对数的底数).则下列关系正确的是( ) A .b a c <<B .c b a <<C .b c a <<D .a b c <<7.函数()cos xf x e x =的图象在点()()0,0f 处的切线的傾斜角为( ) A .6πB .4π C .3π D .23π8.函数()24412f x x x-+=的大致图象是( ) A .B .C .D .9.已知直线m ,n ,平面α,β,给出下列命题:①若m α⊥,n β⊥,且m n ⊥,则αβ⊥;②若//m α,//n β,且//m n ,则//αβ ③若m α⊥,//n β,且//m n ,则αβ⊥;④若m α⊥,//n β,且m n ⊥,则//αβ 其中正确的命题是( ) A .①③B .②④C .③④D .①②10.已知函数()sin cos x a x f x =+(a ∈R )图象的一条对称轴是6x π=,则a 的值为( )A .5BC .3D11.已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若OP OF =,则OPF△的面积为( ) A .32B .52C .72D .9212.定义域和值域均为[],a a -(常数0a >)的函数()y f x =和()y g x =的图象如图所示,方程()0g f x =⎡⎤⎣⎦解得个数不可能的是( )A .1B .2C .3D .4二、填空题(本题共4小题)13.甲、乙、丙三名同学站成一排,甲站在中间的概率是______. 14.设等差数列{}n a 的前n 项和为n S .若51310a a -=,则13S =______.15.函数()2tan 1tan xf xx =-的最小正周期是______.16.如图,圆锥形容器的高为2圆锥内水面的高为1,若将圆锥形容器倒置,水面高为h ,则h 等于_______.三、解答题(解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.) (一)必考题:17.某中学举行电脑知识竞赛,现将高一参赛学生的成绩进行整理后分成五组绘制成如图所示的频率分布直方图.(1)求高一参赛学生的成绩的众数、中位数; (2)求高一参赛学生的平均成绩.18.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,满足22cos 1cos cos cos 2CA B A B =-⋅+. (1)求cos B 的值;(2)设ABC △外接圆半径为R ,且()sin sin 1R A C +=,求b 的取值范围.19.如图,菱形ABCD 的边长为4,60ABC ∠=°,E 为CD 中点,将ADE △沿AE 折起使得平面ADE ⊥平面ABCE ,BE 与AC 相交于点O ,H 是棱DE 上的一点且满足2DH HE =.(1)求证://OH 平面BCD ; (2)求四面体ABDH 的体积. 20.已知函数()ln f x xx=.(1)求函数()f x 的极值;(2)令()()2h x x f x =,若对1x ∀≥都有()1h x ax ≥-,求实数a 的取值范围.21.已知椭圆C :22221x y a b+=(0a b >>y x =交椭圆C 于A 、B 两点,椭圆C左焦点为F ,已知4FA FB +=. (1)求椭圆C 的方程;(2)若直线y kx m =+(0k ≠,0m ≠)与椭圆C 交于不同两点M 、N ,且定点10,2Q ⎛⎫-⎪⎝⎭满足MQ NQ =,求实数m 的取值范围.(二)选考题:请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4-4:坐标系与参数方程]在平面直角坐标系中,直线l 的方程为tan (2)y x α=-,以原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为:4cos 2πρθ⎛⎫=-⎪⎝⎭. (1)写出曲线C 的直角坐标方程和直线l 的参数方程;(2)设直线l 与曲线C 相交于P ,Q 两点,设()2,0M ,若MP MQ +=l 的斜率. 23.[选修4-5:不等式选讲]已知函数()g x x b x a =++-,a ∈R ,b ∈R 且0b a +>. (1)若函数()g x 的最小值为2,试证明点(),a b 在定直线上;(2)若3b =,[]0,1x ∈时,不等式()5g x x ≤+恒成立,求实数a 的取值范围.西安市2020届高三年级第三次质量检测文科数学参考答案一、选择题1.B (由已知得,{}2,1,0,1,2A =--,()(){}{}12021B x x x x x =-+>=-<<,{}2,1A B =-,所以子集个数:224=个.故应选B .)2.A (复数()2i i 2i 21i 2i i z ---==+,z 的共轭复数是12i -.故应选A .)3.C (由题意可得()()()343,04,41,4i f -=-=--,因此,()2341i f -=-=C .)4.D (由方差意义可知,选D .故应选D .)5.C (依题意,()35411222212881616a a a a a =+=-+=+==.故应选C .) 6.B (3ln 31log log e a b c e π=>>=>=,∴a b c >>.故应选B .) 7.B (()cos sin xxe x x e xf =-',则()01k f '==,则倾斜角为4π.故应选B .) 8.D (函数()24412f x x x -+=是偶函数,排除选项B 、C ;当2x =时,()150223f =-<,对应点在第四象限,排除A .故应选D .)9.A (①若m n ⊥,m α⊥,则在平面α内必有一条直线l 使//l n ,又n β⊥,即l β⊥,则αβ⊥.故正确;②若//m α,//n β,且//m n ,α与β可平行可相交.故错误; ③若//m n ,m α⊥,即n α⊥,又//n β,则αβ⊥,故正确; ④若m α⊥,//n β,且m n ⊥,α与β可平行可相交.故错误. 所以①③正确,②④错误.故应选A .)10.D (函数()()cos sin a x x x x f θ=+=+,其中tan a θ=,,22ππθ⎛∈-⎫⎪⎝⎭,其图象关于直线6x π=对称,所以62ππθ+=,3πθ=,所以tan a θ==.故应选D .)11.B (设点()00,P x y ,则2020145y x -=.①又3OP OF +==,∴22009x y +=,② 由①②得20259y =, 即053y =, ∴0115532232OPF S OF y =⋅=⨯⨯=△.故应选B .)12.D (方程()0g f x =⎡⎤⎣⎦对应的()f x 有一个解;从图中可知,()()0,f x a ∈可能有1,2,3个解.故应选D .) 二、填空题13.13(三名同学站成一排的基本事件有:甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲,共6个; 甲站在中间的事件包括:乙甲丙、丙甲乙、共2个. ∴甲站在中间的概率:2163P ==.) 14.65(在等差数列中,由31310a a -=,可得()123410a d a +-=. 即121210a d +=,即2165a d a +==. ∴()113713721313225136a a a S a+=⨯=⨯==.)15.2π(由题意得()212tan 1tan 221tan 2x x x f x =⋅=-,所以两数的最小正周期为2π.)16S ,则未倒置前液面的面积为14S ,所以水的体积为()111722133412SV S S =⨯-⨯⨯-=.设倒置后液面面积为S ',则22S S h ⎛'⎫= ⎪⎝⎭,所以24S Sh '=,所以水的体积为21731212Sh SV S h '===,解得h =)三、解答题17.(I )用频率分布直方图中最高矩形所在的区间的中点值作为众数的近似值,得出众数为65. 又因为第一个小矩形的面积为0.3,设第二个小矩形底边的一部分长为x ,则0.040.2x ⨯=,解得5x =, 所以中位数为60565+=.(2)依题意,利用平均数的计算公式,可得平均成绩为:550.3650.4750.15850.1950.0567⨯+⨯+⨯+⨯+⨯=,所以参赛学生的平均成绩为67分.18.(1)由条件可得cos cos cos cos C A B A B +=,所以()cos cos cos cos A B A B A B -++=,即sin sin cos A B A B =,因为sin 0A ≠,所以sin 0B B =>. 又因为22sin cos 1B B +=, 解得1cos 3B =. (2)∵2sin a R A =,2sin c R C =, ∴2a c +=,可得2c a =-, 由余弦定理可得()()()2222222222842cos 2213333b ac ac B a c ac a a a a a =+-=+-=+---=-+.∵02a <<,∴23b ≤<.所以b 的取值范围为2⎫⎪⎪⎣⎭. 19.(1)证明:由题意知//CE AB ,2AB CE =,所以:1:2OE OB =. 又2DH HE =,所以//OH BD ,又BD ⊂平面BCD ,OH ⊄平面BCD . 所以//OH 平面BCD .(2)因为平面ADE ⊥平面ABCE ,平面ADE 平面ABCE AE =,AE CE ⊥,所以CE ⊥平面ADE ,因为//CE AB ,所以AB ⊥平面ADE ,所以四面体ABDH 的体积111443323ABDH B ADH ADH S AB V V -⋅⋅=⨯⨯⨯===△. 20.(1)由题意,函数()ln x f x x =,则()21ln xf x x-'=, 当()0,x e ∈时,()0f x '>,函数()f x 单调递增, 当(),x e ∈+∞时,()0f x '<,函数()f x 单调递减, 所以当x e =时,()f x 取得极大值1e,没有极小值; (2)()()2ln h x x f x x x ==,对1x ∀≥,有ln 1x x ax ≥-.即ln 11ln x x a x x x+≤=+. 令()1ln g x x x =+,则()22111x x x x xg '-=-=.当1x >时,()0g x '>,故()g x 是()1,+∞上的增函数,所以()()max 11g x g ==. ∴1a ≤,即实数a 的取值范围是(],1-∞.21.(1)∵设椭圆右焦点为D ,由椭圆对称性得24FA FB FA AD a +=+==, ∴2a =.又c a =,∴c = ∴2221b a c =-=,∴椭圆C 的方程为2214x y +=. (2)由2214y kx m x y =+⎧⎪⎨+=⎪⎩消去y 整理得:()222418440x km k x m ++-+=,∵直线与椭圆交于不同的两点M ,N , ∴()()222264441440k m k m ∆=-+->, 整理得2241k m >-. 设()11,M x y ,()22,N x y , 则122841kmx x k -+-+,又设MN 中点D 的坐标为(),D D x y ,∴1144241D x x kmx k +-==+,22244141D D k m m y kx m m k k -=+=+=++.∵MQ NQ =,∴DQ MN ⊥,即112D D y x k+=-, ∴2614m k -=,∴2616110m m m ->-->⎧⎨⎩,解得166m <<,∴实数m 的取值范围1,66⎛⎫ ⎪⎝⎭.22.(1)曲线C 的极坐标方程为4sin ρθ=,所以24sin ρρθ=. ∴曲线C 的直角坐标方程为()2224x y +-=.直线l 的参数方程为sin 2cos y t x t αα==+⎧⎨⎩(t 为参数,0απ≤<),(2)把直线l 的参数方程带入()2224x y +-=得()24cos sin 40t t αα+-+=,设此方程两根为1t ,2t ,∵定点M 在圆C 外切在直线l 上, 所以1112t t M MQ t P t =+=++,∴4cos sin αα-=∴cos sin 4πααα⎛⎫-=-= ⎪⎝⎭,[)0,απ∈,可得34απ=.∴1k =-,所以直线l 的斜率为1-.23.(1)()g x x b x a x b x a b a =++-≥+-+=+. ∵()g x 最小值为2, ∴2b a +=.又0b a +>,∴2b a +=, ∴点(),a b 满足直线2y x +=. 即(),a b 在定直线20x y +-=上.(2)当[]0,1x ∈时,()33g x x x a x x a =++-=++-,55x x +=+, 由()5g x x ≤+,得35x a x x -++≤+,即2x a -≤,即22a x a -≤≤+.据题意,[][]0,12,2a a ⊆-+,则2021a a -≤⎧⎨+≥⎩,解得12a -≤≤.所以实数a 的取值范围是[]1,2-.。
2019-2020学年度高二第二学期期末考试数学试题(文科)一、选择题:(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数2(1)(1)z x x i =-+-为纯虚数,则实数x 的值为( )A .-1B .0C .1D .-1或12.已知集合{lg(1)0}A x x =-≤,{13}B x x =-≤≤,则A B =I ( )A .[1,3]-B .[1,2]-C .(1,3]D .(1,2]3.在△ABC 中,“A B >”是“sin sin A B >”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分又不必要条件4.设[]x 表示不超过x 的最大整数,对任意实数x ,下面式子正确的是( )A . []x = |x|B .[]x ≥2xC .[]x >-xD .[]x > 1x -5.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B .422+ C.442+ D .462+6. 某程序框图如图所示,若3a =,则该程序运行后,输出的x 的值为( )A. 33 B .31 C .29 D .277.命题p :若1y x <<,01a <<,则 11x y a a<,命题q :若1y x <<,0a <,则a a x y <.在命题①p 且q ②p 或q ③非p ④非q 中,真命题是( ).A .①③B .①④C .②③D .②④8.设函数()()(2)(3)f x x x k x k x k =++-,且(0)6f '=,则k =( )A . 0B .-1C .3D .-69.若两个正实数y x ,满足141=+y x ,且不等式m m y x 342-<+ 有解,则实数m 的取值范围是( ) A.)1,4(- B.)4,1(- C.),4()1,(+∞⋃--∞ D .),3()0,(+∞⋃-∞10.已知函数212log ,0()log (),0x x f x x x >⎧⎪=⎨-<⎪⎩,若0)(>-a af ,则实数a 的取值范围是( ) A.(1,0)(0,1)-⋃ B.(,1)(1,)-∞-⋃+∞C.(1,0)(1,)-⋃+∞D.(,1)(0,1)-∞-⋃ 11.已知定义在R 上的函数()y f x =对任意x 都满足()()1f x f x +=-,且当01x ≤<时, ()f x x =,则函数()()ln ||g x f x x =-的零点个数为( )A .2B .3 C.4 D .512.定义在R 上的函数()y f x =,满足(3)()f x f x -=,3()'()02x f x -<,若12x x <, 且123x x +>,则有( )A.12()()f x f x <B.12()()f x f x >C.12()()f x f x =D.不确定 二、填空题(共4小题,每小题5分,共20分.)13.函数y f x =()的定义域为(]-∞,1,则函数y f x =-[log ()]222的定义域是__14.数列{}n a 的前n 项和n S ,若1(1)n a n n =+,则5S =_________. 15.已知向量45(2sin ,cos )36a ππ=r ,(),1b k =r .若//a b r r ,则k = . 16.定义在(,0)(0,)-∞+∞U 上的函数()f x ,如果对于任意给定的等比数列{}n a ,{()}n f a 仍是等比数列,则称()f x 为“等比函数”.现有定义在(,0)(0,)-∞+∞U 上的如下函数:①()2xf x =;②2()log f x x =;③2()f x x =;④()ln 2x f x =,则其中是 “等比函数”的()f x 的序号为三、解答题 (共6小题,共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)17.(12分)已知函数2()2cos sin 2f x x x =-.(1)求函数()f x 的最小正周期和值域;(2)已知ABC ∆的内角,,A B C 所对的边分别为,,a b c ,若2,2a b ==()12A f =,求ABC ∆的面积18.(12分)如图,已知三棱锥A BPC -中,,AP PC AC BC ⊥⊥,M 为AB 中点,D 为PB 中点,且PMB ∆为正三角形.(1)求证:平面ABC ⊥平面APC ;(2)若4,20BC AB ==,求三棱锥D BCM -的体积.19.(本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2. (Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为5,定点(2,0)M ,椭圆短轴的端点是12,B B ,且12MB MB ⊥.(1)求椭圆C 的方程;(2)设过点M 且斜率不为0的直线交椭圆C 于,A B 两点,试问x 轴上是否存在异于M的定点P ,使PM 平分APB ∠?若存在,求出点P 的坐标;若不存在,说明理由.21.(12分)已知m R ∈,函数1()ln m f x mx x x -=--,1()ln g x x x=+ (1)求()g x 的最小值;(2)若()()y f x g x =-在[1,)+∞上为单调增函数,求实数m 的取值范围; (3)证明:2ln 2ln3ln 4ln 2342(1)n n n n ++++<+L (*n N ∈) 选考题:请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.作答时请写清题号.22. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos :sin x t C y t αα=⎧⎨=⎩,(t 为参数,且0t ≠),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:23cos C C ρθρθ==.(1)求2C 与3C 交点的直角坐标;(2)若1C 与2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值.23.(本小题满分10分)选修4-5:不等式选讲 已知函数()223,()12f x x a x g x x =-++=-+.(Ⅰ)解不等式:()5g x <;(Ⅱ)若对任意的1x R ∈,都有2x R ∈,使得12()()f x g x =成立,求实数a 的取值范围.2019-2020学年度高二第二学期期末考试数学试题(文科)答案一、 选择题:ADCDC,BCB CA,,BB二、填空题 13.(][)2,22,2--⋃ 14. 56 15. 2 16.(3)(4) 三.解答 17.(1)2()2cos sin 2f x x x =-1cos2sin 2x x =+- 2cos(2)14x π=++ 所以函数()f x 的最小正周期22T ππ==,值域为[21,21]-++∵2,2a b ==,由正弦定理得 ∴22sin sin 4B π=,∴1sin 2B =. ∵a b >,∴A B >∴6B π=,∴712C A B ππ=--= ∴1172613sin 222221242ABC S ab C π∆+==⨯== 18.证明:(1)由已知得, MD 是ABP ∆的中位线,∴//MD AP ,∵MD ⊄面APC ,AP ⊂面APC∴//MD 面APC ;(2)∵PMB ∆为正三角形,D 为PB 的中点,∴MD PB ⊥,∴AP PB ⊥,又∵AP PC ⊥,PB PC P =I ,∴AP ⊥面PBC ,∵BC ⊂面PBC ,∴AP BC ⊥又∵BC AC ⊥,AC AP A =I ,∴BC ⊥面APC ,∵BC ⊂面ABC ,∴平面ABC ⊥平面APC ,(3)由题意可知,三棱锥A BPC -中,,AP PC AC BC ⊥⊥,M 为AB 中点,D 为PB 中点,且PMB ∆为正三角形.MD ⊥面PBC ,4,20,10,53BC AB MB DM ====,10,10016221PB PC ==-=, ∴MD 是三棱锥D BCM -的高,11422122122BCD S ∆=⨯⨯⨯=, ∴115322110733M DBC V Sh -==⨯⨯=19、(本小题满分12分)解:(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2………………………..2分其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =………………..6分 (II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =………………………………………….. 12分 20.解:(1)由222222519a b a e a b -===-,得23b a =又12MB MB ⊥,知12MB B ∆是等腰直角三角形,从而2,3b a ==,所以椭圆C 的方程是22194x y +=. (2)设11(,)A x y ,22(,)B x y ,直线AB 的方程为2x my =+ 由222194x my x y =+⎧⎪⎨+=⎪⎩得22(49)16200m y my ++-=, 所以1221649m y y m -+=+ ①,1222049y y m -=+② 若PM 平分APB ∠,则直线,PA PB 的倾斜角互补,所以0PA PB k k +=,设(,0)P n ,则有12120y y x n x n+=--, 将112x my =+,222x my =+代入上式,整理得12122(2)()0my y n y y +-+=,将①②代入得(29)0n m -+=,由于上式对任意实数都成立,所以92n =. 综上,存在定点9(,0)2P ,使平分PM 平分APB ∠.21.(1)函数()g x 的定义域为(0,)+∞,'22111()x g x x x x -=-+=. 当(0,1)x ∈,'()0g x <,当(1,)x ∈+∞,'()0g x >,∴1x =为极小值点,极小值(1)1g =.(2)∵112ln 2ln m m y mx x mx x x x x -=---=--. ∴'220m y m x x =+-≥在[1,)+∞上恒成立,即221x m x ≥+在[1,)x ∈+∞上恒成立. 又222111x x x x=≤++,所以1m ≥,所以,所求实数m 的取值范围为[1,)+∞. (3)由(2),取1m =,设1()()()2ln (1)0h x f x g x x x h x =-=--≥=, 则12ln x x x ≤-,即2ln 11(1)2x x x ≤-,于是2ln 11(1)2n n n≤-*()n N ∈. ∴2232ln1ln 2ln 3ln 1111111111[()][()]12321232122334(1)n n n n n n n ++++≤-++++<-++++•••+L L L211111111[(1)](1)22231212(1)n n n n n n n =--+-++-=-+=+++L . 所以2ln 2ln3ln 4ln 2342(1)n n n n ++++<+L *()x N ∈. 22. (1)曲线2C 的直角坐标方程2220x y y +-=,曲线3C的直角坐标方程为220x y +-=,联立两方程解得,00x y =⎧⎨=⎩或32x y ⎧=⎪⎪⎨⎪=⎪⎩,所以2C 与3C 交点的直角坐标(0,0),3)22. (2)曲线1C 极坐标方程为θα=(,0)R ρρ∈≠,其中0απ≤<,因此点A 的极坐标为(2sin ,)αα,点B的极坐标为,)αα,所以2sin 4sin()3AB πααα=-=-,当56πα=时AB 取得最大值,最大值为4. 23.(本小题满分10分)解:(Ⅰ)由125x -+<得5125x -<-+< 713x ∴-<-< 得不等式的解为24x -<<……………………5分 (Ⅱ)因为任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立, 所以{|()}{|()}y y f x y y g x =⊆=, 又()223|(2)(23)||3|f x x a x x a x a =-++≥--+=+, ()|1|22g x x =-+≥,所以|3|2a +≥,解得1a ≥-或5a ≤-,所以实数a 的取值范围为1a ≥-或5a ≤-.……………………10分。
2020-2021学年陕西省西安市长安一中高三(上)第一次质检数学(文科)试题一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知z1=sinθ﹣i,z2=﹣cosθi,若z1﹣z2是纯虚数,则tanθ=()A.B.C.D.2.(5分)若集合A={1,3,x},B={1,x2},A∪B={1,3,x},则满足条件的实数x的个数有()A.1个B.2个C.3个D.4个3.(5分)已知平面向量满足||=3,||=2,,的夹角为60°,若,则实数m的值为()A.1 B.C.2 D.34.(5分)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y﹣5=0 B.2x+y+=0或2x+y﹣=0C.2x﹣y+5=0或2x﹣y﹣5=0 D.2x﹣y+=0或2x﹣y﹣=05.(5分)重庆市2013年各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()A.19 B.20 C.21.5 D.236.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.7.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.8.(5分)如果执行如图的程序框图,输入x=﹣2,h=0.5,那么输出的各个数的和等于()A.3 B.3.5 C.4 D.4.59.(5分)已知sin2α=,则cos2(α+)=()A.B.C.D.10.(5分)随机地向半圆0<y<(a为正常数)内掷一点,点落在圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x轴的夹角小于的概率为()A.B.C.D.11.(5分)设F1,F2是双曲线的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的离心率为()A.B.C.D.12.(5分)已知f(x)=x2+3x+1,g(x)=+x,若h(x)=f(x)﹣g(x)恰有两个零点,则实数a 的取值为()A.1 B.C.1或D.二、填空题:(本大题共4小题,每小题5分,共20分.)13.(5分)已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,若f(2﹣a2)>f(a),则实数a的取值范围是.14.(5分)已知△ABC中,角A,B,C所对的边的长分别为a,b,c,若asinA+bsinB<csinC,则△ABC的形状是.15.(5分)若函数f(x)=2sin(x+)(2<x<10)的图象与x轴交于点A,过点A的直线l与f(x)的图象交于B、C两点,O为坐标原点,则(+)•= .16.(5分)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是.三、解答题:(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且a2+c2=b2﹣ac.(1)求B的大小;(2)设∠BAC的平分线AD交BC于D,AD=2,BD=1,求cosC的值.18.(12分)在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:表1:男生表2:女生等级优秀合格尚待改进等级优秀合格尚待改进频数15 x 5 频数15 3 y(1)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;(2)由表中统计数据填写下边2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.男生女生总计优秀非优秀总计参考数据与公式:K2=,其中n=a+b+c+d.临界值表:P(K2>k0)0.05 0.05 0.01k0 2.706 3.8416.63519.(12分)如图1,四边形ABCD为矩形,PD⊥平面ABCD,AB=1,BC=PC=2作如图2折叠;折痕EF∥DC,其中点E,F分别在线段PD,PC上,沿EF折叠后点P叠在线段AD上的点记为M,并且MF⊥CF.(1)证明:CF⊥平面MDF;(2)求三棱锥M﹣CDE的体积.20.(12分)已知椭圆C:+=1(a>b>0),离心率是,原点与C直线x=1的交点围成的三角形面积是.(1)求椭圆方程;(2)若直线l过点(,0)与椭圆C相交于A,B两点(A,B不是左右顶点),D是椭圆C的右顶点,求∠ADB是定值.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.[选修4-4;坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(Ⅰ)求C的普通方程和l的倾斜角;(Ⅱ)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|.[选修4-5:不等式选讲]23.已知实数m,n满足:关于x的不等式|x2+mx+n|≤|3x2﹣6x﹣9|的解集为R(1)求m,n的值;(2)若a,b,c∈R+,且a+b+c=m﹣n,求证:++.2020-2021学年陕西省西安市长安一中高三(上)第一次质检数学(文科)试题参考答案一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知z1=sinθ﹣i,z2=﹣cosθi,若z1﹣z2是纯虚数,则tanθ=()A.B.C.D.【分析】z1﹣z2=﹣i是纯虚数,可得sinθ﹣=0,﹣cosθ≠0,再利用同角三角函数基本关系式即可得出.【解答】解:z1﹣z2=﹣i是纯虚数,∴sinθ﹣=0,﹣cosθ≠0,∴sinθ=,cosθ=,则tanθ==﹣.故选:B.【点评】本题考查了纯虚数的定义、三角函数求值,考查了推理能力与计算能力,属于基础题.2.(5分)若集合A={1,3,x},B={1,x2},A∪B={1,3,x},则满足条件的实数x的个数有()A.1个B.2个C.3个D.4个【分析】由A∪B={1,3,x}得到集合B是集合A的真子集,所以得到x2,等于3或x,分别求出x的值,经检验即可得到满足题意x的个数.【解答】解:因为A∪B={1,3,x},A={1,3,x},B={1,x2},所以x2=3或x2=x,解得x=±或x=0,x=1(舍去),即满足条件的有3个.故选C.【点评】此题考查学生掌握并集的定义,以及理解集合元素的互异性,是一道基础题.3.(5分)已知平面向量满足||=3,||=2,,的夹角为60°,若,则实数m的值为()A.1 B.C.2 D.3【分析】由两个向量的数量积的定义求出,再由可得=0可求m【解答】解:∵||=3,||=2,,的夹角为60°∴=||||cos60°=3×2cos60=3又∵∴==9﹣3m=0∴m=3故选D【点评】本题考查两个向量的数量积的定义,数量积公式的应用,两个向量垂直的性质.4.(5分)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y﹣5=0 B.2x+y+=0或2x+y﹣=0C.2x﹣y+5=0或2x﹣y﹣5=0 D.2x﹣y+=0或2x﹣y﹣=0【分析】设出所求直线方程,利用圆心到直线的距离等于半径,求出直线方程中的变量,即可求出直线方程.【解答】解:设所求直线方程为2x+y+b=0,则,所以=,所以b=±5,所以所求直线方程为:2x+y+5=0或2x+y﹣5=0故选:A.【点评】本题考查两条直线平行的判定,圆的切线方程,考查计算能力,是基础题.5.(5分)重庆市2013年各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()A.19 B.20 C.21.5 D.23【分析】根据中位数的定义进行求解即可.【解答】解:样本数据有12个,位于中间的两个数为20,20,则中位数为,故选:B【点评】本题主要考查茎叶图的应用,根据中位数的定义是解决本题的关键.比较基础.6.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【分析】判断三视图对应的几何体的形状,利用三视图的数据,求解几何体的体积即可.【解答】解:由三视图可知,几何体是组合体,左侧是三棱锥,底面是等腰三角形,腰长为,高为1,一个侧面与底面垂直,并且垂直底面三角形的斜边,右侧是半圆柱,底面半径为1,高为2,所求几何体的体积为:=.故选:A.【点评】本题考查三视图与直观图的关系,组合体的体积的求法,判断几何体的形状是解题的关键.7.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.【分析】先根据函数y=3cos(2x+φ)的图象关于点中心对称,令x=代入函数使其等于0,求出φ的值,进而可得|φ|的最小值.【解答】解:∵函数y=3cos(2x+φ)的图象关于点中心对称.∴∴由此易得.故选A【点评】本题主要考查余弦函数的对称性.属基础题.8.(5分)如果执行如图的程序框图,输入x=﹣2,h=0.5,那么输出的各个数的和等于()A.3 B.3.5 C.4 D.4.5【分析】按照程序框图的流程,判断出x的值是否满足判断框中的条件,求出所有输出的y值,再将各值加起来.【解答】解:第一次输出y=0;第二次输出y=0;第三次输出0;第四次输出y=0;第经过第五次循环输出y=0;第六次输出y=0.5;第七次输出y=1;第八次输出y=1;第九次输出y=1各次输出的和为0+0+0+0+0+0.5+1+1+1=3.5故选B【点评】本题考查解决程序框图的循环结构,常用的方法是求出前几次循环的结果找规律.9.(5分)已知sin2α=,则cos2(α+)=()A.B.C.D.【分析】所求式子利用二倍角的余弦函数公式化简,再利用诱导公式变形,将已知等式代入计算即可求出值.【解答】解:∵sin2α=,∴cos2(α+)=[1+cos(2α+)]=(1﹣sin2α)=×(1﹣)=.故选A【点评】此题考查了二倍角的余弦函数公式,以及诱导公式的作用,熟练掌握公式是解本题的关键.10.(5分)随机地向半圆0<y<(a为正常数)内掷一点,点落在圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x轴的夹角小于的概率为()A.B.C.D.【分析】因为点落在圆内任何区域的概率与区域的面积成正比,【解答】解:半圆0<y<(a为正常数)内掷一点,原点与该点的连线与x轴的夹角小于的区域如图:点落在圆内任何区域的概率与区域的面积成正比,则;故选A.【点评】本题考查了几何概型的概率求法,首先正确画出满足条件的区域,利用面积比求概率是关键.11.(5分)设F1,F2是双曲线的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的离心率为()A.B.C.D.【分析】利用双曲线的定义和已知即可得出|PF1|,|PF2|,进而确定最小内角,再利用余弦定理和离心率计算公式即可得出.【解答】解:不妨设|PF1|>|PF2|,则|PF1|﹣|PF2|=2a,又|PF1|+|PF2|=6a,解得|PF1|=4a,|PF2|=2a.则∠PF1F2是△PF1F2的最小内角为30°,∴﹣,∴(2a)2=(4a)2+(2c)2﹣,化为=0,解得.故选C.【点评】熟练掌握双曲线的定义、离心率计算公式、余弦定理是解题的关键.12.(5分)已知f(x)=x2+3x+1,g(x)=+x,若h(x)=f(x)﹣g(x)恰有两个零点,则实数a 的取值为()A.1 B.C.1或D.【分析】问题转化为a=x3+x2﹣x(x≠1)的交点问题,令h(x)=x3+x2﹣x,(x≠1),画出函数h(x)的图象,结合图象求出a的值即可.【解答】解:联立y=f(x)和y=g(x)得 x2+3x+1=+x,整理可得 a=x3+x2﹣x,且 x≠1.令函数h(x)=x3+x2﹣x,可得函数h(x)的极值点在﹣1和处,画出h(x)的草图,如图示:当x=﹣1时,h(x)=1;当x=时,h(x)=﹣,故当a=1时,y=a和y=h(x)1个交点,因为(1,1)不在h(x)上,不满足条件.故当a=﹣时,结合图象可得y=a和y=h(x)恰有2个交点.综上,只有当a=﹣时,才能满足y=a和y=h(x)恰有2个j交点,故选:B.【点评】本题考查了函数的交点问题,考查数形结合思想以及转化思想,是一道中档题.二、填空题:(本大题共4小题,每小题5分,共20分.)13.(5分)已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,若f(2﹣a2)>f(a),则实数a的取值范围是(﹣2,1).【分析】题意可先判断出f(x)=x2+2x=(x+1)2﹣1在(0,+∞)上单调递增,根据奇函数的对称区间上的单调性可知,f(x)在(﹣∞,0)上单调递增,从而可比较2﹣a2与a的大小,解不等式可求a的范围.【解答】解:∵f(x)=x2+2x=(x+1)2﹣1在(0,+∞)上单调递增,又∵f(x)是定义在R上的奇函数,根据奇函数的对称区间上的单调性可知,f(x)在(﹣∞,0)上单调递增,∴f(x)在R上单调递增.∵f(2﹣a2)>f(a),∴2﹣a2>a,解不等式可得,﹣2<a<1,故答案为:(﹣2,1).【点评】本题主要考查了奇函数在对称区间上的单调性相同(偶函数对称区间上的单调性相反)的性质的应用,一元二次不等式的求解,属于基础试题.14.(5分)已知△ABC中,角A,B,C所对的边的长分别为a,b,c,若asinA+bsinB<csinC,则△ABC的形状是钝角三角形.【分析】利用正弦定理化简已知不等式可得a2+b2<c2,进而利用余弦定理可求cosC<0,结合C的范围即可判断得解.【解答】解:△ABC中,由正弦定理可得>0,∴sinA=,sinB=,sinC=.∵asinA+bsinB<csinC,∴+<,即a2+b2<c2.∴cosC=<0.∵0<C<π,∴<C<π.∴角C为钝角.∴△ABC的形状是钝角三角形.故答案为:钝角三角形.【点评】本题主要考查了正弦定理,余弦定理,余弦函数的图象和性质在解三角形中的应用,熟练掌握正弦定理和余弦定理是解题的关键,属于基础题.15.(5分)若函数f(x)=2sin(x+)(2<x<10)的图象与x轴交于点A,过点A的直线l与f(x)的图象交于B、C两点,O为坐标原点,则(+)•= 32 .【分析】根据“f(x)=2sin(x+)(2<x<10)的图象与x轴交于点A”求出A点坐标,设B(x1,y1),C(x2,y2),由正弦函数的对称性可知B,C 两点关于A对称即x1+x2=8,y1+y2=0,代入向量的数量积的坐标表示即可求解【解答】解:由f(x)=2sin(x+)=0,可得x+=kπ,∴x=6k﹣2,k∈Z∵2<x<10∴x=4即A(4,0)设B(x1,y1),C(x2,y2)∵过点A的直线l与函数的图象交于B、C两点∴B,C 两点关于A对称即x1+x2=8,y1+y2=0∴(+)•=(x1+x2,y1+y2)•(4,0)=4(x1+x2)=32故答案为:32.【点评】本题主要考查了向量的数量积的坐标表示,解题的关键正弦函数对称性质的应用.16.(5分)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是(﹣∞,2﹣2]∪[2+2,+∞).【分析】由圆的标准方程找出圆心坐标和半径r,由直线与圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关系式,整理后利用基本不等式变形,设m+n=x,得到关于x的不等式,求出不等式的解集得到x的范围,即为m+n的范围.【解答】解:由圆的方程(x﹣1)2+(y﹣1)2=1,得到圆心坐标为(1,1),半径r=1,∵直线(m+1)x+(n+1)y﹣2=0与圆相切,∴圆心到直线的距离d==1,整理得:m+n+1=mn≤()2,设m+n=x,则有x+1≤,即x2﹣4x﹣4≥0,∵x2﹣4x﹣4=0的解为:x1=2+2,x2=2﹣2,∴不等式变形得:(x﹣2﹣2)(x﹣2+2)≥0,解得:x≥2+2或x≤2﹣2,则m+n的取值范围为(﹣∞,2﹣2]∪[2+2,+∞).故答案为:(﹣∞,2﹣2]∪[2+2,+∞).【点评】此题考查了直线与圆的位置关系,涉及的知识有:点到直线的距离公式,基本不等式,以及一元二次不等式的解法,利用了转化及换元的思想,当直线与圆相切时,圆心到直线的距离等于圆的半径,熟练掌握此性质是解本题的关键.三、解答题:(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且a2+c2=b2﹣ac.(1)求B的大小;(2)设∠BAC的平分线AD交BC于D,AD=2,BD=1,求cosC的值.【分析】(1)利用余弦定理可得:cosB=﹣,B∈(0,π),可得B.(2)在△ABD中,由正弦定理可得:=,解得sin∠BAD.cos∠BAC=cos2∠BAD=1﹣2sin2∠BAD.可得sin∠BAC=.可得cosC=cos(60°﹣∠BAC).【解答】解:(1)在△ABC中,∵a2+c2=b2﹣ac,即a2+c2﹣b2=﹣ac.∴cosB==﹣=﹣,B∈(0,π),可得B=.(2)在△ABD中,由正弦定理可得:=,解得sin∠BAD==.cos∠BAC=cos2∠BAD=1﹣2sin2∠BAD=1﹣×2×=.∴sin∠BAC===.∴cosC=cos(60°﹣∠BAC)=+=.【点评】本题考查了正弦定理余弦定理、和差公式、同角三角函数基本关系式、角平分线的性质,考查了推理能力与计算能力,属于中档题.18.(12分)在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:表1:男生表2:女生等级优秀合格尚待改进等级优秀合格尚待改进频数15 x 5 频数15 3 y(1)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;(2)由表中统计数据填写下边2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.男生女生总计优秀非优秀总计参考数据与公式:K2=,其中n=a+b+c+d.临界值表:P(K2>k0)0.05 0.05 0.01k0 2.706 3.8416.635【分析】(1)由题意可得非优秀学生共5人,记测评等级为合格的3人为a,b,c,尚待改进的2人为A,B,则从这5人中任选2人的所有可能结果为10个,设事件C表示“从表二的非优秀学生5人中随机选取2人,恰有1人测评等级为合格”,则C的结果为6个,根据概率公式即可求解.(2)由2×2列联表直接求解即可.【解答】解:(1)设从高一年级男生中抽出m人,则=,m=25,∴x=25﹣20=5,y=20﹣18=2,表2中非优秀学生共5人,记测评等级为合格的3人为a,b,c,尚待改进的2人为A,B,则从这5人中任选2人的所有可能结果为:(a,b)(a,c)(b,c)(A,B)(a,A),(a,B),(b,A)(,b,B),(c,A)(c,B),共10种.设事件C表示“从表二的非优秀学生5人中随机选取2人,恰有1人测评等级为合格”,则C的结果为:(a,A),(a,B),(b,A)(,b,B),(c,A)(c,B),共6种.∴P(C)==,故所求概率为.男生女生总计优秀15 15 30非优秀10 5 15总计25 20 45(2)∵1﹣0.9=0.1,p(k2>2.706)=0.10,而K2====1.125<2.706,所以没有90%的把握认为“测评结果优秀与性别有关”.思路点拨(1)由题意可得非优秀学生共5人,记测评等级为合格的3人为a,b,c,尚待改进的2人为A,B,则从这5人中任选2人的所有可能结果为10个,设事件C表示“从表二的非优秀学生5人中随机选取2人,恰有1人测评等级为合格”,则C的结果为6个,根据概率公式即可求解.(2)由2×2列联表直接求解即可.【点评】本考查了独立检验思想在实际问题中的应用,属于中档题.19.(12分)如图1,四边形ABCD为矩形,PD⊥平面ABCD,AB=1,BC=PC=2作如图2折叠;折痕EF∥DC,其中点E,F分别在线段PD,PC上,沿EF折叠后点P叠在线段AD上的点记为M,并且MF⊥CF.(1)证明:CF⊥平面MDF;(2)求三棱锥M﹣CDE的体积.【分析】(1)要证CF⊥平面MDF,只需证CF⊥MD,且CF⊥MF即可;由PD⊥平面ABCD,得出平面PCD⊥平面ABCD,即证MD⊥平面PCD,得CF⊥MD;(2)求出△CDE的面积S△CDE,对应三棱锥的高MD,计算它的体积V M﹣CDE.【解答】解:(1)证明:∵PD⊥平面ABCD,PD⊂平面PCD,∴平面PCD⊥平面ABCD;又平面PCD∩平面ABCD=CD,MD⊂平面ABCD,MD⊥CD,∴MD⊥平面PCD,CF⊂平面PCD,∴CF⊥MD;又CF⊥MF,MD、MF⊂平面MDF,MD∩MF=M,∴CF⊥平面MDF;(2)∵CF⊥平面MDF,∴CF⊥DF,又∵Rt△PCD中,DC=1,PC=2,∴∠P=30°,∠PCD=60°,∴∠CDF=30°,CF=CD=;∵EF∥DC,∴=,即=,∴DE=,∴PE=,∴S△CDE=CD•DE=;MD===,∴V M﹣CDE=S△CDE•MD=××=.【点评】本题考查了空间中的垂直关系的应用问题,解题时应结合图形,明确线线垂直、线面垂直以及面面垂直的相互转化关系是什么,几何体的体积计算公式是什么,是中档题.20.(12分)已知椭圆C:+=1(a>b>0),离心率是,原点与C直线x=1的交点围成的三角形面积是.(1)求椭圆方程;(2)若直线l过点(,0)与椭圆C相交于A,B两点(A,B不是左右顶点),D是椭圆C的右顶点,求∠ADB是定值.【分析】(1)由椭圆的离心率公式e===,点P(1,y)(y>0),根据三角形的面积公式即可求得y值,代入椭圆方程,即可求得a和b的值,求得椭圆方程;(2)当l斜率不存在时,,;当l斜率存在时,设直线方程,代入椭圆方程,利用韦达定理y1+y2及y1•y2,求得=(x1﹣2,y1),=(x2﹣2,y2),•=x1•x2﹣2(x1+x2)+y1•y2+4=0,,∠ADB是定值..【解答】解:(1)由题意可知:e===,整理得:a2=b2,由直线x=1与椭圆相交,交点P(1,y)(y>0),由题意可知:•1•2y=,解得:y=,将P(1,)代入椭圆方程,,解得b2=3,a2=4,∴椭圆的方程为:,.(2)当l斜率不存在时,,∴,∴;当l斜率存在时,设直线,由得(196+147m2)y2+84my﹣576=0,∵l与C有两个交点A(x1,y1),B(x2,y2),∴△>0,且,∴,∵=(x1﹣2,y1),=(x2﹣2,y2),•=x1•x2﹣2(x1+x2)+y1•y2+4,=+,==0,∴,综上.【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理及向量数量积的坐标表示,考查计算能力,属于中档题.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.【分析】(Ⅰ)求出f(x)的导数,讨论当a≥0时,a<﹣时,a=﹣时,﹣<a<0,由导数大于0,可得增区间;由导数小于0,可得减区间;(Ⅱ)由(Ⅰ)的单调区间,对a讨论,结合单调性和函数值的变化特点,即可得到所求范围.【解答】解:(Ⅰ)由f(x)=(x﹣2)e x+a(x﹣1)2,可得f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①当a≥0时,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1,即有f(x)在(﹣∞,1)递减;在(1,+∞)递增;②当a<0时,若a=﹣,则f′(x)≥0恒成立,即有f(x)在R上递增;若a<﹣时,由f′(x)>0,可得x<1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).即有f(x)在(﹣∞,1),(ln(﹣2a),+∞)递增;在(1,ln(﹣2a))递减;若﹣<a<0,由f′(x)>0,可得x<ln(﹣2a)或x>1;由f′(x)<0,可得ln(﹣2a)<x<1.即有f(x)在(﹣∞,ln(﹣2a)),(1,+∞)递增;在(ln(﹣2a),1)递减;(Ⅱ)①由(Ⅰ)可得当a>0时,f(x)在(﹣∞,1)递减;在(1,+∞)递增,且f(1)=﹣e<0,x→+∞,f(x)→+∞;x→﹣∞,f(x)→+∞.f(x)有两个零点;②当a=0时,f(x)=(x﹣2)e x,所以f(x)只有一个零点x=2;③当a<0时,若a<﹣时,f(x)在(1,ln(﹣2a))递减,在(﹣∞,1),(ln(﹣2a),+∞)递增,又当x≤1时,f(x)<0,所以f(x)不存在两个零点;当a≥﹣时,f(x)在(1,+∞)单调递增,又x≤1时,f(x)<0,所以f(x)不存在两个零点.综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).【点评】本题考查导数的运用:求单调区间,考查函数零点的判断,注意运用分类讨论的思想方法和函数方程的转化思想,考查化简整理的运算能力,属于难题.[选修4-4;坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(Ⅰ)求C的普通方程和l的倾斜角;(Ⅱ)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|.【分析】解法一:(Ⅰ)由参数方程消去参数α,得椭圆的普通方程,由极坐标方程,通过两角和与差的三角函数转化求解出普通方程即可求出直线l的倾斜角.(Ⅱ)设出直线l的参数方程,代入椭圆方程并化简,设A,B两点对应的参数分别为t1,t2,利用参数的几何意义求解即可.解法二:(Ⅰ)同解法一.(Ⅱ)利用直线l的普通方程与椭圆的方程联立,设A(x1,y1),B(x2,y2),利用韦达定理以及弦长公式求解即可.【解答】解法一:(Ⅰ)由消去参数α,得,即C的普通方程为.(2分)由,得ρsinθ﹣ρcosθ=2,…(*)(3分)将代入(*),化简得y=x+2,(4分)所以直线l的倾斜角为.(5分)(Ⅱ)由(Ⅰ)知,点P(0,2)在直线l上,可设直线l的参数方程为(t为参数),即(t为参数),(7分)代入并化简,得.(8分).设A,B两点对应的参数分别为t1,t2,则,所以t1<0,t2<0,(9分)所以.(10分)解法二:(Ⅰ)同解法一.(5分)(Ⅱ)直线l的普通方程为y=x+2.由消去y得10x2+36x+27=0,(7分)于是△=362﹣4×10×27=216>0.设A(x1,y1),B(x2,y2),则,,所以x1<0,x2<0,(8分)故.(10分)【点评】本小题考查直线的极坐标方程和参数方程、椭圆的参数方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想等[选修4-5:不等式选讲]23.已知实数m,n满足:关于x的不等式|x2+mx+n|≤|3x2﹣6x﹣9|的解集为R(1)求m,n的值;(2)若a,b,c∈R+,且a+b+c=m﹣n,求证:++.【分析】(1)若不等式|x2+mx+n|≤|3x2﹣6x﹣9|的解集为R,故3x2﹣6x﹣9=0时,x2+mx+n=0,进而由韦达定理得到答案;(2)运用重要不等式a+b≥2,结合累加法和三个数的完全平方公式,即可得证.【解答】(1)解:∵不等式|x2+mx+n|≤|3x2﹣6x﹣9|的解集为R,令3x2﹣6x﹣9=0,得x=﹣1,或x=3,故x=﹣1,或x=3时,x2+mx+n=0,则x=﹣1和x=3为方程x2+mx+n=0的两根,故﹣1+3=2=﹣m,﹣1×3=﹣3=n,解得:m=﹣2,n=﹣3,当m=﹣2,n=﹣3时,不等式|x2+mx+n|≤|3x2﹣6x﹣9|即为|x2﹣2x﹣3|≤3|x2﹣2x﹣3|,即有|x2﹣2x﹣3|≥0,则解集为R,故m=﹣2,n=﹣3;(2)证明:若a,b,c∈R+,且a+b+c=m﹣n=1,由a+b≥2,b+c≥2,c+a≥2.累加得,2a+2b+2c≥2+2+2,两边同时加a+b+c,可得3(a+b+c)≥a+b+c+2+2+2,即有3(a+b+c)≥(++)2,即++≤=.(当且仅当a=b=c时取得等号)则++≤成立.【点评】本题考查不等式的解法和运用,主要考查不等式的恒成立转化为求函数的最值,同时考查二次方程的韦达定理的运用,运用均值不等式和累加法是证明不等式的关键.。
陕西省西安高2025届高三第一次质量检测考试数学试题(答案在最后)(时间:120分钟满分:150分命题人:)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(){}2210,log 1A x xB x x x =-≤≤=-≤,则A B = ()A.{}10x x -≤≤ B.{}10x x -<≤ C.{}10x x -≤< D.{}10x x -<<【答案】C 【解析】【分析】先根据对数函数的单调性解不等式化简集合B ,然后利用交集运算求解即可.【详解】因为()222log 1log 2x x -≤=,所以202x x <-≤,解得12x <≤或10x -≤<,故{10B x x =-≤<或}12x <≤,又{}10A x x =-≤≤,所以A B = {}10x x -≤<.故选:C2.“01a <<”是“函数()()log 2a f x a x =-在(),1-∞上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据对数函数和一次函数的单调性,再结合复合函数“同增异减”的判断法则求得对应的a 的取值范围即可得出结论.【详解】易知()()log 2a f x a x =-的定义域为(),2a -∞,且函数2y a x =-为单调递减函数;根据复合函数单调性可知若函数()()log 2a f x a x =-在(),1-∞上单调递增,可得0121a a <<⎧⎨≥⎩,解得112a ≤<;显然112a a ⎧⎫|≤<⎨⎬⎩⎭是{}|01a a <<的真子集,所以“01a <<”是“函数()()log 2a f x a x =-在(),1-∞上单调递增”的必要不充分条件.3.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的图象大致为()A.B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.4.已知521log 2,log ,2ba b a c ⎛⎫=== ⎪⎝⎭,则()A.c b a >>B.c a b>> C.a b c>> D.b c a>>【答案】B 【解析】【分析】判断出01a <<,0b <,1c >,即可求解.【详解】555log 1log 2log ,0151a a <=<∴<=< 22log log 10b a =<= ,故0b <;1122bc ⎛⎫⎛⎫=> ⎪ ⎪⎝⎭⎝⎭,故1c >,故c a b >>.5.已知定义在R 上的函数()f x 满足()()32f x f x +=,且()21f =-,则()100f =()A.1-B.1C.3- D.3【答案】C 【解析】【分析】由条件推得函数的周期为4,结合函数的周期,即可求解.【详解】由()()32f x f x +=,可得()()()342f x f x f x +==+,所以()f x 的周期为4,则()()()3100032f f f ===-.故选:C.6.已知函数()e 1,0,2,0,x x f x x x⎧-≥⎪=⎨<⎪⎩()1g x kx =-,若关于x 的方程()()f x g x =有2个不相等的实数解,则实数k 的取值范围是()A.{}e B.[)e,+∞ C.{}1,0e 8⎛⎫- ⎪⎝⎭D.{}1,e 8⎛⎫-∞- ⎪⎝⎭【答案】C 【解析】【分析】根据题意,转化为()y f x =与1y kx =-的图象有2个交点,分0k =、0k <和0k >,三种情况讨论,结合导数的几何意义与函数的图象,即可求解.【详解】由题意,关于x 的方程()()f x g x =有2个不相等的实数解,即()y f x =与1y kx =-的图象有2个交点,如图所示,当0k =,直线1y =-与2y x=的图象交于点()2,1--,又当0x ≥时,e 10x -≥,故直线1y =-与e 1x y =-(0x ≥)的图象无公共点,故当0k =时,()y f x =与1y kx =-的图象只有一个交点,不合题意;当0k >,直线1y kx =-与曲线e 1x y =-(0x ≥)相切时,此时()y f x =与1y kx =-的图象有2个交点,设切点()00,e 1xP x -,则00e x x x k y =='=,又由1y kx =-过点()0,1-,所以()000e 11e 0x x x ---=-,解得01x =,所以e =k ;当0k <时,若21kx x=-,则220kx x --=,由180k ∆=+=,可得18k =-,所以当18k =-时,直线1y kx =-与2y x=的图象相切,由图得当108k -<<时,直线1y kx =-与()y f x =的图象有2个交点.综上所述,实数k 的取值范围是{}1,0e 8⎛⎫- ⎪⎝⎭.故选:C .7.已知函数3()1f x x x =-+,则()A.()f x 有三个极值点B.()f x 有三个零点C.点(0,1)是曲线()y f x =的对称中心D.直线2y x =是曲线()y f x =的切线【答案】C 【解析】【分析】求导后判断单调性,从而求得极值点即可判断A ;利用单调性结合零点存在性定理即可判断B ;令3()h x x x =-,得到()h x 是奇函数,(0,0)是()h x 的对称中心,再结合图象的平移规律即可判断C ;由导数的几何意义求得切线方程即可判断D.【详解】对于A ,由题,()231f x x '=-,令()0f x '>得3x >或3x <-,令()0f x '<得33x -<<,所以()f x在(,3-∞-,)3+∞上单调递增,(,)33-上单调递减,所以3x =±是极值点,故A 不正确;对应B ,因323()1039f -=+>,323()1039f =->,()250f -=-<,所以,函数()f x 在3,3⎛⎫-∞ ⎪ ⎪⎝⎭上有一个零点,当3x ≥时,()03f x f ⎛≥> ⎝⎭,即函数()f x在3⎛⎫∞ ⎪ ⎪⎝⎭上无零点,综上所述,函数()f x 有一个零点,故B 错误;对于C ,令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-,则()h x 是奇函数,(0,0)是()h x 的对称中心,将()h x 的图象向上移动一个单位得到()f x 的图象,所以点(0,1)是曲线()y f x =的对称中心,故C 正确;对于D ,令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+,故D 错误.故选:C8.已知函数24,0()log ,0x x f x x x x ⎧+>⎪=⎨⎪<⎩,2()g x x ax b =++,若方程()0g f x =⎡⎤⎣⎦有且仅有5个不相等的整数解,则其中最大整数解和最小整数解的和等于()A.28- B.28C.14- D.14【答案】A 【解析】【分析】利用换元法结合一元二次方程根的分布,数形结合计算即可.【详解】先作出()f x 的大致图象,如下令()f x t =,则()20g t t at b =++=,根据()f x 的图象可知:要满足题意必须()0g t =有两个不等根()1212,t t t t <,且()1f x t =有两个整数根,()2f x t =有三个整数根,结合对勾函数和对数函数的图象与性质知,两函数14,y t y x x==+相切时符合题意,因为4424x x x x+≥⋅=,当且仅当2x =时取得等号,又()()22log log 0y x x x ==-<,易知其定义域内单调递减,即()14f x t ==,此时有两个整数根2x =或16x =-,而要满足()2f x t =有三个整数根,结合()f x 图象知必有一根小于2,显然只有1x =符合题意,当1x =时有()15f =,则25t =,解方程45x x+=得25t =的另一个正根为4x =,又()2log 5x -=⇒32x =-,此时五个整数根依次是32,16,1,2,4x =--,显然最大的根和最小的根和为()43228+-=-.故选:A二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列导数运算正确的是()A.211()x x '=-B.(e )e x x--'= C.21(tan )cos x x'=D.1(ln )x x'=【答案】ACD 【解析】【分析】利用求导公式逐项判断即可.【详解】对于A ,211(x x '=-,故A 正确;对于B ,(e )e x x --'=-,故B 错误;对于C ,2222sin cos sin 1(tan )()=cos cos cos x x x x x x x +''==,故C 正确;对于D ,()(ln ),01(ln )ln ,0x x x x x x '>⎧⎪==⎨⎡⎤-<⎪⎣⎦⎩'',故D 正确.故选:ACD10.甲乙丙等5人的身高互不相同,站成一排进行列队训练,则()A.甲乙不相邻的不同排法有48种B.甲乙中间恰排一个人的不同排法有36种C.甲乙不排在两端的不同排法有36种D.甲乙丙三人从左到右由高到矮的不同排法有20种【答案】BCD 【解析】【分析】根据排列和组合的定义、结合捆绑法逐一判断即可.【详解】A :甲乙不相邻的不同排法有3234A A 72=种,所以本选项不正确;B :甲乙中间恰排一个人的不同排法有123323C A A 36=种,所以本选项正确;C :甲乙不排在两端的不同排法有2333A A 36=种,所以本选项正确;D :甲乙丙三人从左到右由高到矮的不同排法有5533A 20A =种,所以本选项正确.故选:BCD11.已知0c b a <<<,则()A.ac b bc a +<+B.333b c a +<C.a c ab c b +<+D.>【答案】ABD 【解析】【分析】选项ABD ,利用不等式的性质计算即可,选项C ,因为b c +可正可负,所以不容易化简解决,一般当乘或除以一个不知正负的数,基本上错误,我们只需要找反例即可.【详解】因为0c b a <<<,所以ac bc ac b bc a <⇒+<+,故A 正确;因为0c b a <<<,所以333333,0b a c b c a <<⇒+<,故B 正确;因为0c b a <<<,不妨令3,2,1a b c ===-,得32,2a c a b c b +==+,此时a c ab c b +>+,故C 错误;因为0c b a <<<0>>⇒<>,故D 正确.故选:ABD三、填空题:本题共3小题,每小题5分,共15分.12.某学校组织学生参加数学测试,成绩的频率分布直方图如下,数据的分组依次是[20,40),[40,60),[60,80),[80,100],则可估计这次数学测试成绩的第40百分位数是_________.【答案】65【解析】【分析】利用百分位数的定义求解.【详解】解:成绩在[20,60)的频率是()0.0050.01200.3+⨯=,成绩在[20,80)的频率为0.30.02200.7+⨯=,所以第40百分位数一定在[60,80)内,所以这次数学测试成绩的第40百分位数是0.40.36020650.4-+⨯=,故答案为:6513.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则a =__________.【答案】ln 2【解析】【分析】先求出曲线e x y x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 214.51(2)y x y x ⎛⎫-+⎪⎝⎭的展开式中,23x y 的系数为__________.【答案】40【解析】【分析】根据二项式的通项公式进行求解即可.【详解】二项式5(2)x y +的通项公式为()515C 2rrr r T x y -+=⋅⋅,所以23x y 的系数为()233255C 21C 240⋅+-⋅⋅=,故答案为:40四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数3212()232a f x x x ax +=-+.(1)若1a =,求函数()f x 的极值;(2)讨论函数()f x 的单调性.【答案】(1)极小值为23,极大值为56(2)答案见解析【解析】【分析】(1)对()f x 求导,分析单调性,再根据极值定义即可求解;(2)()()(2)f x x a x =--',对a 分2a =,2a >和2a <讨论单调性即可.【小问1详解】3213()2,()(1)(2)32f x x x x f x x x =-+'=--.所以<1或>2时,'()0f x >,12x <<时,'()0f x <,则()f x 在(1,2)上递减,在(,1),(2,)-∞+∞递增,所以()f x 的极小值为2(2)3f =,极大值为5(1)6f =.【小问2详解】()()(2)f x x a x =--',当2a =时,'()0f x ≥,所以()f x 在(,)-∞+∞上递增,当2a >时,2x <或x a >时,'()0f x >;2x a <<时,'()0f x <,所以()f x 在(,2),(,)a -∞+∞上递增,在(2,)a 上递减,当2a <时,x a <或2x >时,'()0f x >;2a x <<时,'()0f x <,所以()f x 在(,),(2,)a -∞+∞上递增;在(,2)a 上递减.16.为践行“更快更高更强”的奥林匹克格言,落实全民健身国家战略.某校高三年级发起了“发扬奥林匹克精神,锻炼健康体魄”的年度主题活动,经过一段时间后,学生的身体素质明显提高.为了解活动效果,该年级对开展活动以来近6个月体重超重的人数进行了调查,调查结果统计如图,根据上面的散点图可以认为散点集中在曲线e bx a y +=的附近,请根据下表中的数据求出月份x123456体重超标人数y987754483227ln z y = 4.58 4.34 3.98 3.87 3.46 3.29(1)该年级体重超重人数y 与月份x 之间的经验回归方程(系数ˆ,a b的最终结果精确到0.01);(2)预测从开展活动以来第几个月份开始该年级体重超标的人数降至10人以下.附:经验回归方程:ˆˆˆy bx a =+中,1221ˆn i i i n i i x y nx yb x nx ==-⋅=-∑∑,ˆˆa y bx =-;参考数据:6123.52i i z ==∑,6177.72i i i x z ==∑,62191i i x ==∑,ln10 2.30.≈【答案】(1)0.26 4.83e x y -+=(2)从第十个月开始【解析】【分析】(1)由计算公式与参考数据,求出ˆ,a b 则可得回归方程;(2)根据经验回归方程建立不等式0.26 4.83e 10x -+<,解出不等式则可预测.【小问1详解】由e bx a y +=得ln z y bx a ==+,由题意得1(123456) 3.56x =+++++=,11123.52 3.9266n i i z z ===⨯=∑,所以6162221677.726 3.5 3.92ˆ0.26916 3.56i ii i i x z x zb x x ==-⋅-⨯⨯==≈--⨯-∑∑,ˆˆ 3.92(0.26) 3.5 4.83a z bx =-≈--⨯=,所以ˆˆln 0.26 4.83z y x ==-+,即y 关于x 的经验回归方程为0.26 4.83e x y -+=【小问2详解】令0.26 4.83ln10 2.3e 10e e x -+<=≈,所以0.26 4.83 2.3x -+<,又由于x ∈N ,所以解得10x ≥,且x *∈N ,所以从第十个月开始,该年级体重超标的人数降至10人以下.17.已知函数()log (1)a f x x =+,()()()2log 2a g x x t t =+∈R ,0a >,且 1.a ≠(1)当01a <<且1t =-时,求不等式()()f x g x ≤的解集;(2)若函数()2()21f x F x a tx t =+-+在区间(1,2]-上有零点,求t 的取值范围.【答案】(1)15|24x x ⎧⎫<≤⎨⎬⎩⎭(2)2t ≤-或224t +≥【解析】【分析】(1)当1t =-时,将不等式()()f x g x ≤转化为()()2log 1log 21a a x x +≤-,利用对数函数的单调性结合一元二次不等式求解即可;(2)解法一:分离参数,将原函数的零点问题转化为22(2x t x x +=-≠-且12)x -<≤有根,设2U x =+(14U <≤且2U ≠+,则124t U U=--+,利用对勾函数的单调性求解值域即可求解;解法二:先判断0t =时,不合题意,当0t ≠时,根据二次函数零点分布分类讨论,列不等式组求解即可.【小问1详解】当1t =-时,()()2log 1log 21a a x x +≤-,又0<<1,则+1≥(2−1)22−1>0,∴42−5≤0>12⇒12<≤54,∴不等式()()f x g x ≤的解集为15|24x x ⎧⎫<≤⎨⎬⎩⎭;【小问2详解】解法一:由题设()222F x tx x t =+-+,由()0F x =,得22(2x t x x +=-≠-且12)x -<≤,则()()222422x t x x +=-+-++,设2U x =+(14U <≤且2U ≠+,则212424U t U U U U=-=-+--,令2()U U Uϕ=+,当1U <<时,()U ϕ单调递减,当4U <<时,()U ϕ单调递增,且()()913,42ϕϕϕ===,故()92U ϕ≤≤且() 4.U ϕ≠12402U U ∴-≤--<或2044U U <--≤-t 的取值范围为:2t ≤-或2.4t ≥解法二:()222F x tx x t =+-+,若0t =,则()2F x x =+在(1,2]-上没有零点.下面就0t ≠时分三种情况讨论:①方程()0F x =在(1,2]-上有重根12x x =,则0∆=,解得24t ±=,又1212x x t ==-(]1,2∈-⇒224t +=;②在(1,2]-上只有一个零点,且不是方程的重根,则()()120F F -<,解得2t <-或1t >,经检验2t =-或1t =时,在(1,2]-上都有零点,则2t ≤-或 1.t ≥③方程()0F x =在(1,2]-上有两个相异实根,则有>0Δ>0−1<−12<2o −1)>0o2)>0或<0Δ>0−1<−12<2o −1)<0o2)<0,解得214t +<<,综上可知:t 的取值范围为2t ≤-或2.4t ≥18.某企业对某品牌芯片开发了一条生产线进行试产.其芯片质量按等级划分为五个层级,分别对应如下五组质量指标值:[45,55),[55,65),[65,75),[75,85),[85,95].根据长期检测结果,得到芯片的质量指标值X 服从正态分布()2,N μσ,并把质量指标值不小于80的产品称为A 等品,其它产品称为B 等品.现从该品牌芯片的生产线中随机抽取100件作为样本,统计得到如图所示的频率分布直方图.(1)根据长期检测结果,该芯片质量指标值的标准差s 的近似值为11,用样本平均数x 作为μ的近似值,用样本标准差s 作为σ的估计值.若从生产线中任取一件芯片,试估计该芯片为A 等品的概率(保留小数点后面两位有效数字);(①同一组中的数据用该组区间的中点值代表;②参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827,(22)0.9545P P μσξμσμσξμσ-<<+≈-<<+≈,(33)0.9973P μσξμσ-<<+≈.)(2)(i )从样本的质量指标值在[45,55)和[85,95]的芯片中随机抽取3件,记其中质量指标值在[85,95]的芯片件数为η,求η的分布列和数学期望;(ii )该企业为节省检测成本,采用随机混装的方式将所有的芯片按100件一箱包装.已知一件A 等品芯片的利润是(124)m m <<元,一件B 等品芯片的利润是ln(25)m -元,根据(1)的计算结果,试求m 的值,使得每箱产品的利润最大.【答案】(1)0.16(2)(i )分布列见解析,32;(ii )794m =【解析】【分析】(1)根据频率分布直方图求得样本平均数,然后利用正态分布的对称性求解概率.(2)(i )先求出η的取值,然后求出对应的概率,即可求出分布列,代入期望公式求解即可;(ii )先根据二项分布的期望求出()E Z 1684ln(25)m m =+-,然后构造函数()1684ln(25)(124)f x x x x =+-<<,利用导数求出最大值时的m 即可.【小问1详解】由题意,估计从该品牌芯片的生产线中随机抽取100件的平均数为:10(0.01500.025600.04700.015800.0190)69x =⨯⨯+⨯+⨯+⨯+⨯=.即69x μ≈=,11s σ≈≈,所以2(69,11)X N ~,因为质量指标值X 近似服从正态分布2)(69,11N ,所以1(69116911)(80)2P X P X --<<+≥=1()2P X μσμσ--<<+=10.68270.158650.162-≈=≈,所以从生产线中任取一件芯片,该芯片为A 等品的概率约为0.16.【小问2详解】(i )(0.010.01)1010020+⨯⨯=,所以所取样本的个数为20件,质量指标值在[]85,95的芯片件数为10件,故η可能取的值为0,1,2,3,相应的概率为:301010320C C 2(0)C 19η===P ,211010320C C 15(1)C 38η===P ,121010320C C 15(2)C 38η===P ,031010320C C 2(3)C 19η===P ,随机变量η的分布列为:η0123P 21915381538219所以η的数学期望2151523()0123193838192E η=⨯+⨯+⨯+⨯=.(ii )设每箱产品中A 等品有Y 件,则每箱产品中B 等品有(100)Y -件,设每箱产品的利润为Z 元,由题意知:(100)ln(25)(ln(25))100ln(25)Z mY Y m m m Y m =+--=--+-,由(1)知:每箱零件中A 等品的概率为0.16,所以~(100,0.16)Y B ,所以()1000.1616E Y =⨯=,所以()[(ln(25))100ln(25)]E Z E m m Y m =--+-(ln(25))100ln(25)m m EY m =--+-16(ln(25))100ln(25)m m m =--+-1684ln(25)m m =+-.令()1684ln(25)(124)f x x x x =+-<<,由84()16025f x x '=-=-得,794x =,又79(1,)4∈x ,()0f x '>,()f x 单调递增,79(,24)4∈x ,()0f x '<,()f x 单调递减,所以当79(1,24)4x =∈时,()f x 取得最大值.所以当794m =时,每箱产品利润最大.19.已知函数1()e ln (1).x f x a x a x -=+-+(1)当0a =时,求函数()f x 的单调区间;(2)当1a =时,证明:函数()f x 在(0,)+∞上单调递增;(3)若1x =是函数()f x 的极大值点,求实数a 的取值范围.【答案】(1)答案见解析(2)证明见解析(3)(,1).-∞【解析】【分析】(1)代入a 的值,求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)对函数()f x 二次求导,判断()f x 导函数的单调性,求出导函数的最小值,即可证明;(3)对()f x 求导得,11()e 1x f x a a x -'=+--,令11()e 1x h x a a x-=+--,再求导,分a 的不同取值讨论()h x 的性质,即可求出a 的取值范围.【小问1详解】当0a =时,()ln f x x x =-,且知11()1x f x x x-='-=,在(0,1)上,()0f x '>,()f x 在(0,1)上单调递增;在(1,)+∞上,()0f x '<,()f x 在(1,)+∞上单调递减;所以函数()f x 的单调增区间为(0,1),单调减区间为(1,)+∞【小问2详解】证明:因为1a =,所以1()e ln 2x f x x x -=+-,且知11()e 2x f x x-'=+-,要证函数()f x 单调递增,即证()0f x '≥在(0,)+∞上恒成立,设11()e 2x g x x-=+-,0x >,则121()e x g x x -'=-,注意1e x y -=,21y x =-在(0,)+∞上均为增函数,故()g x '在(0,)+∞上单调递增,且(1)0g '=,于是()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,()(1)0g x g ≥=,即()0f x '≥,因此函数()f x 在(0,)+∞上单调递增;【小问3详解】由11()e 1x f x a a x -'=+--,有(1)0f '=,令11()e 1x h x a a x -=+--,有121()e x h x a x -'=-,①当0a ≤时,11()e 0x xh x a x -'=-<在(0,)+∞上恒成立,因此()f x '在(0,)+∞上单调递减,注意到(1)0f '=,故函数()f x 的增区间为(0,1),减区间为(1,)+∞,此时1x =是函数()f x 的极大值点;②当0a >时,1e x y a -=与21y x=-在(0,)+∞上均为单调增函数,故()h x '在(0,)+∞上单调递增,注意到(1)1h a '=-,若(1)0h '<,即01a <<时,此时存在(1,)n ∈+∞,使()0h n '=,因此()f x '在(0,)n 上单调递减,在(,)n +∞上单调递增,又知(1)0f '=,则()f x 在(0,1)上单调递增,在(1,)n 上单调递减,此时1x =为函数()f x 的极大值点,若(1)0h '>,即1a >时,此时存在(0,1)m ∈,使()0h m '=,因此()f x '在(0,)m 上单调递减.在(,)m +∞上单调递增,又知(1)0f '=,则()f x 在(,1)m 上单调递减,在(1,)+∞上单调递增,此时1x =为函数()f x 的极小值点.当1a =时,由(1)可知()f x 单调递增,因此1x =非极大值点,综上所述,实数a 的取值范围为(,1).-∞【点睛】关键点点睛:已知函数的极大值点,求出函数的导数,根据导数的导数121()e x h x a x -'=-分类讨论,确定函数极值点是解题的关键,据此可得符合题意的参数取值范围.。
2024-2025学年陕西省西安市高三上学期10月月考数学检测试题1、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则(){}(){}2210,1=-=-A x x B x log x x ………A B ⋂=A.B.C.D.{}10x x -……{}10x x -<…{}10x x -<…{}10x x -<<2. “”是“函数在上单调递增”的( )01a <<()log (2)a f x a x =-(,1)-∞A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 函数在区间的大致图像为( )()()2sin x x f x x e e x-=-+-[]2.8,2.8-A.B.C. D.4. 已知,,,则( )5log 2a =2log b a =1()2bc =A. B. C. D. c b a >>c a b >>a b c>>b c a>>5. 已知定义在R 上的函数满足,且,则( )()f x3(2)()f x f x +=(2)1f =-(100)f =A. 3 B. 1C. D. 1-3-6.已知函数,若关于x 的方程有2个不相等的1,0,()()12,0,x e x f x g x kx x x ⎧-⎪==-⎨<⎪⎩…()()f x g x =实数解,则实数k 的取值范围是( )A. B. C. D.{}e [,)e +∞1(,0){}8e -⋃1(,){}8e -∞-⋃7. 已知函数,则( )3()1f x x x =-+A. 有三个极值点 B. 有三个零点()f x()f xC. 直线是曲线的切线D.点是曲线的对称中心2y x =()y f x =(0,1)()y f x =8. 已知函数,,若方程有且仅有5个不相24,0(),0x x f x xlog x x ⎧+>⎪=⎨⎪<⎩2()g x x ax b =++()0g f x =⎡⎤⎣⎦等的整数解,则其中最大整数解和最小整数解的和等于( )A. B. 28C. D. 1428-14-二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列导数运算正确的是( )A. B. C.D.211(xx '=-()xxe e'--=21(tan )x cos x '=1(ln ||)x x'=10.甲乙丙等5人的身高互不相同,站成一排进行列队训练,则( )A. 甲乙不相邻的不同排法有48种B. 甲乙中间恰排一个人的不同排法有36种C. 甲乙不排在两端的不同排法有36种D. 甲乙丙三人从左到右由高到矮的不同排法有20种11. 已知,则()0c b a <<<A. B.C.ac b bc a+<+333b c a +<a c ab c b +<+>三、填空题:本题共3小题,每小题5分,共15分.12. 某班的全体学生参加化学测试,成绩的频率分布直方图如图所示,数据的分组依次为,则该班学生化学测试成绩的第40百分位数为[20,40),[40,60),[60,80),[80,100]__________.13. 若曲线在点处的切线也是曲线的切线,则__________.xy e x =+(0,1)ln(1)y x a =++a =14. 的展开式中,的系数为__________.5(1)(2)yx y x -+23x y 四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数3212()2.32a f x x x ax +=-+(1)若,求函数的极值;1a =()f x (2)讨论函数的单调性.()f x 16.为践行“更快更高更强”的奥林匹克格言,落实全民健身国家战略.某校高三年级发起了“发扬奥林匹克精神,锻炼健康体魄”的年度主题活动,经过一段时间后,学生的身体素质明显提高.为了解活动效果,该年级对开展活动以来近6个月体重超重的人数进行了调查,调查结果统计如图,根据上面的散点图可以认为散点集中在曲线的附近,请根据下表中bx ay e +=的数据求出(1)该年级体重超重人数y 与月份x 之间的经验回归方程系数a 和b 的最终结果精确到(;0.01)(2)预测从开展活动以来第几个月份开始该年级体重超标的人数降至10人以下.月份x 123456体重超标人数y987754483227ln z y= 4.58 4.37 3.983.87 3.46 3.29附:经验回归方程:中,,;参考数据:ˆˆˆy bx a =+1221ˆni ii nii x ynx y bxnx ==-⋅=-∑∑ˆˆa y bx =-,,,6123.52ii z==∑6177.72i ii x z==∑62191ii x==∑ln10 2.30.≈17. 已知函数,R ,,且()log (1)a f x x =+()2log (2)(a g x x t t =+∈)0a > 1.a ≠(1)当且时,求不等式的解集;01a <<1t =-()()f x g x …(2)若函数在区间上有零点,求t 的取值范围.()2()21f x F x a tx t =+-+(1,2]-18. 某企业对某品牌芯片开发了一条生产线进行试产.其芯片质量按等级划分为五个层级,分别对应如下五组质量指标值:根据长期检测结果,得[45,55),[55,65),[65,75),[75,85),[85,95].到芯片的质量指标值X 服从正态分布,并把质量指标值不小于80的产品称为A 等2(,)N μσ品,其它产品称为B 等品.现从该品牌芯片的生产线中随机抽取100件作为样本,统计得到如图所示的频率分布直方图.(1)根据长期检测结果,该芯片质量指标值的标准差s 的近似值为11,用样本平均数作x 为的近似值,用样本标准差s 作为的估计值.若从生产线中任取一件芯片,试估计该芯片μσ为 A 等品的概率保留小数点后面两位有效数字();①同一组中的数据用该组区间的中点值代表;②参考数据:若随机变量服从正态分布(ξ,则,,2(,)N μσ()0.6827P μσξμσ-<<+≈(22)0.9545P μσξμσ-<<+≈(33)0.9973.)P μσξμσ-<<+≈(2)(ⅰ)从样本的质量指标值在和的芯片中随机抽取3件,记其中质量指[45,55)[85,95]标值在的芯片件数为,求的分布列和数学期望;[85,95]ηηⅱ该企业为节省检测成本,采用随机混装的方式将所有的芯片按100件一箱包装.已知一件()A 等品芯片的利润是元,一件 B 等品芯片的利润是元,根据的计(124)m m <<ln(25)m -(1)算结果,试求m 的值,使得每箱产品的利润最大.19. 已知函数1()ln (1).x f x ae x a x -=+-+(1)当时,求函数的单调区间;0=a ()f x (2)当时,证明:函数在上单调递增;1a =()f x (0,)+∞(3)若是函数的极大值点,求实数a 的取值范围.1x =()f x数学答案一.选择题(本题共8小题,每小题5分,共40分)二.选择题(本题共3小题,每小题6分,共18分)三、填空题:(本题共3小题,每小题5分,共15分.)12. 6513.14. 40ln 2三、解答题:(本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分)15.(本小题满分13分)题号12345678答案CBABDCDA题号91011答案ACDBCDABD解:时,,(1)1a =3213()2,()(1)(2)32f x x x x f x x x '=-+=--所以 或 时, ; 时, 1x <2x >()0f x '>12x <<()0f x '<则 在 上递减,在 上递增,()f x (1,2)(,1),(2,)-∞+∞所以 的极小值为 ,极大值为()f x 2(2)3f =5(1)6f =...............................5分,则,当 时, ,所以3212(2)()232a f x x x ax +=-+()()(2)f x x a x '=--2a =()0f x '… 在 上递增,当 时, 或 时, ; 时,()f x (,)-∞+∞2a >2x <x a >()0f x '>2x a <<,所以 在 上递增,在 上递减,当 时, 或()0f x '<()f x (,2),(,)a -∞+∞(2,)a 2a <x a < 时, ; 时, 2x >()0f x '>2a x <<()0f x '<所以 在 上递增;在 上递减. ()f x (,),(2,)a -∞+∞(,2)a ...............................8分16.(本小题满分15分)(2)令,所以,解得,由于,所0.26 4.83ln10 2.310x ee e -+<=≈0.26 4.83 2.3x -+<9.73x >x N ∈以,10x ...所以从第十个月开始,该年级体重超标的人数降至10人以下. . (5)分17.(本小题满分15分)解: 时, ,又,,(1)1=- t ()()2log 1log 21a a x x +-…01a << 21(21)210x x x ⎧+-∴⎨->⎩…,解集为: ;2450151242x x x x ⎧-⎪∴∴<⎨>⎪⎩……∴15{|}24x x <…..............................................................6分解法一:,由得:且,(2)()222F x tx x t =+-+ ()0F x=22(2x t x x +=-≠-12)x -<…,设 且,则22(2)4(2)2x t x x +∴=-+-++2U x =+(14U <…2U ≠,212424U t U U U U =-=--+-+令,当时,时,单调递增,2()U U U ϕ=+1U <<()U ϕ4U <<()U ϕ且且或9(1)3,(4).2ϕϕϕ===9()2U ϕ∴…() 4.U ϕ≠12402U U ∴---< (2)044U U <---…t 的取值范围为:或2t -…t …解法二:,若,则在上没有零点.()222F x tx x t =+-+0t =()2F x x =+(1,2]-下面就时分三种情况讨论:0t ≠①方程在上有重根,则,解得:,又()0F x =(1,2]-12x x =0∆=t =1212x x t ==-(]1,2,∈-t ∴=②在上只有一个零点,且不是方程的重根,则有,解得:()F x (1,2]-()()120F F -<或,2t <-1t >又经检验: 或时, 在上都有零点;或2t =-1t =()F x (1,2]-2t ∴-… 1.t …③方程在上有两个相异实根,则有或,解得:()0F x =(1,2]-0,01122(1)0(2)0t t F F >∆>⎧⎪⎪-<-<⎪⎨⎪->⎪>⎪⎩0,01122(1)0(2)0t t F F <∆>⎧⎪⎪-<-<⎪⎨⎪-<⎪<⎪⎩,1t <<综上可知:t 的取值范围为或2t -…t …...............................15分 18.(本小题满分17分)由题意,估计从该品牌芯片的生产线中随机抽取100件的平均数为:(1)(1)即10(0.01500.025600.04700.015800.0190)69.x =⨯⨯+⨯+⨯+⨯+⨯=69x μ≈=,所以X ∽,因为质量指标值X 近似服从正态分布,11s σ≈≈2(69,11)N 2(69,11)N 所以1(69116911)1()(80)22P X P X P X μσμσ--<<+--<<+==…,10.68270.158650.162-≈=≈所以从生产线中任取一件芯片,该芯片为A 等品的概率约为 0.16...............................................................5分,所以所取样本的个数为20件,质量指标值在的芯(2)()(0.010.01)1010020i +⨯⨯=[85,95]片件数为10件,故可能取的值为0,1,2,3,相应的概率为:η,,3010103202(0)19C C P C η===21101032015(1)38C C P C η===,,12101032015(2)38C C P C η===0310103202(3)19C C P C η===随机变量的分布列为:ηη0123P21915381538219所以的数学期望η2151523()0123.193838192E η=⨯+⨯+⨯+⨯=...............................11分设每箱产品中A 等品有Y 件,则每箱产品中B 等品有件,设每箱产品的利润为()ii (100)Y -Z 元,由题意知:,(100)ln(25)(ln(25))100ln(25)Z mY Y m m m Y m =+--=--+-由知:每箱零件中A 等品的概率为,所以Y ∽,所以(1)0.16(100,0.16)B ,()1000.1616E Y =⨯=所以()[(ln(25))100ln(25)]E Z E m m Y m =--+-(ln(25))()100ln(25)m m E Y m =--+-,令16(ln(25))100ln(25)m m m =--+-1684ln(25)m m =+-()1684ln(25)(124)f x x x x =+-<<得,,又,,递增,84()16025f x x '=-=-794x =79(1,)4x ∈()0f x '>()f x 79;(,24)4x ∈,递减,所以当时,取得最大值.所以当时,每箱()0f x '<()f x 79(1,24)4x =∈()f x 794m =产品利润最大...............................................................17分19.(本小题满分17分)解:当时,,且知,在上,, (1)0=a ()ln =-f x x x 11()1-'=-=xf x x x (0,1)()0'>f x >在上单调递增;在上,, 在上单调递减;所以函数()f x (0,1)(1,)+∞()0'<f x ()f x (1,)+∞的单调增区间为,单调减区间为()f x (0,1)(1,)+∞ (4)分证明:因为,所以,且知,(2)1a =1()ln 2x f x ex x -=+-11()2x f x e x -'=+-要证函数单调递增,即证在上恒成立,()f x ()0f x '…(0,)+∞设,,则,11()2x g x e x -=+-0x >121()x g x e x -'=-注意,在上均为增函数,故在上单调递增,且1x y e-=21y x =-(0,)+∞()g x '(0,)+∞,(1)0g '=于是在上单调递减,在上单调递增,,即,因此函()g x (0,1)(1,)+∞()(1)0g x g =…()0f x '…数在上单调递增;()f x (0,)+∞ (10)分由,有,令,有,(3)11()1x f x ae a x -'=+--(1)0f '=11()1x h x ae a x -=+--121()x h x ae x -'=-①当时,在上恒成立,因此在上单调递减,0a …11()0x x h x ae x -'=-<(0,)+∞()f x '(0,)+∞注意到,故函数的增区间为,减区间为,此时是函数的(1)0f '=()f x (0,1)(1,)+∞1x =()f x 极大值点;②当时,与在上均为单调增函数,故在上单调递0a >1x y ae-=21y x =-(0,)+∞()h x '(0,)+∞增,注意到,若,即时,此时存在,使,(1)1h a '=-(1)0h '<01a <<(1,)n ∈+∞()0h n '=因此在上单调递减,在上单调递增,又知,()f x '(0,)n (,)n +∞(1)0f '=则在上单调递增,在上单调递减,此时为函数的极大值点,()f x (0,1)(1,)n 1x =()f x 若,即时,此时存在,使,(1)0h '>1a >(0,1)m ∈()0h m '=因此在上单调递减.在上单调递增,又知,()f x '(0,)m (,)m +∞(1)0f '=则在上单调递减,在上单调递增,此时为函数的极小值点.()f x (,1)m (1,)+∞1x =()f x 当时,由可知单调递增,因此非极大值点,1a =(1)()f x 1x =综上所述,实数 a 的取值范围为(,1).-∞ ..........................17分。
2024年陕西高考数学(文)试题及答案注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ()A.{}1,2,3,4 B.{}1,2,3 C.{}3,4 D.{}1,2,9【答案】A 【解析】【分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算.【详解】依题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x +=,则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =,于是{1,2,3,4}A B ⋂=.故选:A2.设z =,则z z ⋅=()A.-iB.1C.-1D.2【答案】D 【解析】【分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【详解】依题意得,z =,故22i 2zz =-=.故选:D3.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为()A.5B.12C.2-D.72-【答案】D 【解析】【分析】画出可行域后,利用z 的几何意义计算即可得.【详解】实数,x y 满足43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:由5z x y =-可得1155y x z =-,即z 的几何意义为1155y x z =-的截距的15-,则该直线截距取最大值时,z 有最小值,此时直线1155y x z =-过点A ,联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫⎪⎝⎭,则min 375122z =-⨯=-.故选:D.4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=()A.2-B.73C.1D.29【答案】D 【解析】【分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=,又371111222628(936)99a a a d a d a d a d +=+++=+=+=.故选:D方法二:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式,193799()9()122a a a a S ++===,故3729a a +=.故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==.故选:D5.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.23【答案】B 【解析】【分析】分类讨论甲乙的位置,得到符合条件的情况,然后根据古典概型计算公式进行求解.【详解】当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种;当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=.故选:B6.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.【答案】C 【解析】【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】设()10,4F -、()20,4F 、()6,4-P ,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.7.曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为()A.16B.32C.12D.【答案】A 【解析】【分析】先求出切线方程,再求出切线的截距,从而可求面积.【详解】()563f x x ='+,所以()03f '=,故切线方程为3(0)131y x x =--=-,故切线的横截距为13,纵截距为1-,故切线与坐标轴围成的面积为1111236⨯⨯=故选:A.8.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A. B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A、C,代入1x =可得()10f >,可排除D.【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A、C,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.9.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+B.1- C.2D.1-【答案】B 【解析】【分析】先将cos cos sin αα-α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos cos sin ααα=-,所以11tan =-α,3tan 13⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==α+ ⎪-α⎝⎭,故选:B.原10题略10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A.①③B.②④C.①②③D.①③④【答案】A 【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确;对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误;综上只有①③正确,故选:A.11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.72D.32【答案】C 【解析】【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin 2A C +=.故选:C.二、填空题:本题共4小题,每小题5分,共20分.原13题略12.函数()sin f x x x =在[]0,π上的最大值是______.【答案】2【解析】【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】()πsin 2sin 3f x x x x ⎛⎫==-⎪⎝⎭,当[]0,πx ∈时,ππ2π,333x ⎡⎤-∈-⎢⎥⎣⎦,当ππ32x -=时,即5π6x =时,()max 2f x =.故答案为:213.已知1a >,8115log log 42a a -=-,则=a ______.【答案】64【解析】【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解.【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.14.曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______.【答案】()2,1-【解析】【分析】将函数转化为方程,令()2331x x x a -=--+,分离参数a ,构造新函数()3251,g x x x x =+-+结合导数求得()g x 单调区间,画出大致图形数形结合即可求解.【详解】令()2331x x x a -=--+,即3251a x x x =+-+,令()()32510,g x x x x x =+-+>则()()()2325351g x x x x x =+-=+-',令()()00g x x '=>得1x =,当()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,x ∞∈+时,()0g x '>,()g x 单调递增,()()01,12g g ==-,因为曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,所以等价于y a =与()g x 有两个交点,所以()2,1a ∈-.故答案为:()2,1-三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的通项公式.【答案】(1)153n n a -⎛⎫= ⎪⎝⎭(2)353232n⎛⎫-⎪⎝⎭【解析】【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求n S .【小问1详解】因为1233n n S a +=-,故1233n n S a -=-,所以()12332n n n a a a n +=-≥即153n n a a +=故等比数列的公比为53q =,故1211523333533a a a a =-=⨯-=-,故11a =,故153n n a -⎛⎫= ⎪⎝⎭.【小问2详解】由等比数列求和公式得5113353523213n nn S ⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭-.16.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD的中点.(1)证明://BM 平面CDE ;(2)求点M 到ABF 的距离.【答案】(1)证明见详解;(2)31313【解析】【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD ,进而得证;(2)作FO AD ⊥,连接OB ,易证,,OB OD OF 三垂直,结合等体积法M ABF F ABM V V --=即可求解.【小问1详解】因为//,2,4,BC AD BC AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;【小问2详解】如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM 为等边三角形,O 为AM 中点,所以OB =,又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM与AFM △底边上中点O 重合,OF AM ⊥,3OF ==,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,由等体积法可得M ABF F ABM V V --=,211113323323242F ABM ABM V S FO -=⋅⋅=⋅⋅⋅⋅=△,2222222cos2FA AB FBFAB FAB FA AB +-+-∠==∠=⋅1139sin 2222FAB S FA AB FAB =⋅⋅∠=⋅⋅△,设点M 到FAB 的距离为d ,则113933322M FAB F ABM FAB V V S d d --==⋅⋅=⋅⋅=△,解得31313d =,即点M 到ABF 的距离为31313.17.已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1ex f x -<恒成立.【答案】(1)见解析(2)见解析【解析】【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当1x >时,1e 21ln 0x x x --++>即可.【小问1详解】()f x 定义域为(0,)+∞,11()ax f x a x x '-=-=当0a ≤时,1()0ax f x x -'=<,故()f x 在(0,)+∞上单调递减;当0a >时,1,x a ∞⎛⎫∈+ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递减;0a >时,()f x 在1,a ∞⎛⎫+ ⎪⎝⎭上单调递增,在10,a ⎛⎫ ⎪⎝⎭上单调递减.【小问2详解】2a ≤,且1x >时,111e ()e (1)ln 1e 21ln x x x f x a x x x x ----=--+-≥-++,令1()e 21ln (1)x g x x x x -=-++>,下证()0g x >即可.11()e 2x g x x -'=-+,再令()()h x g x '=,则121()e x h x x-'=-,显然()h x '在(1,)+∞上递增,则0()(1)e 10h x h ''>=-=,即()()g x h x ='在(1,)+∞上递增,故0()(1)e 210g x g ''>=-+=,即()g x 在(1,)+∞上单调递增,故0()(1)e 21ln10g x g >=-++=,问题得证18.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y +=(2)证明见解析【解析】【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x =-,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y -,结合韦达定理化简前者可得10Q y y -=,故可证AQ y ⊥轴.【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b =,故椭圆方程为22143x y +=.【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y,由223412(4)x y y k x ⎧+=⎨=-⎩可得()2222343264120k x k x k +-+-=,故()()422Δ102443464120k k k =-+->,故1122k -<<,又22121222326412,3434k k x x x x k k -+==++,而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=- ⎪⎝⎭-,故22223325252Q y y y x x --==--,所以()1222112225332525Q y x y y y y y x x ⨯-+-=+=--()()()12224253425k x x k x x -⨯-+-=-()222212122264123225825834342525k k x x x x k k k k x x -⨯-⨯+-++++==--2222212824160243234025k k k k k x --+++==-,故1Q y y =,即AQ y ⊥轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.【答案】(1)221y x =+(2)34a =【解析】【分析】(1)根据ρρθ⎧⎪=⎨=⎪⎩可得C 的直角方程.(2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值;法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值.【小问1详解】由cos 1ρρθ=+,将ρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+,1x =+,两边平方后可得曲线的直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+.法1:直线l 的斜率为1,故倾斜角为π4,故直线的参数方程可设为2222x s y a s ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R .将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s,则)()212121,21s s a s s a +=--=-,且()()22Δ818116160a a a =---=->,故1a <,12AB s s ∴=-=2==,解得34a =.法2:联立221y x a y x =+⎧⎨=+⎩,得22(22)10x a x a +-+-=,()22Δ(22)41880a a a =---=-+>,解得1a <,设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=-=-,则AB ==2=,解得34a =20.实数,ab 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)直接利用22222()a b a b +≥+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=≥,当a b =时等号成立,则22222()a b a b +≥+,因为3a b +≥,所以22222()a b a b a b +≥+>+;【小问2详解】222222222222()a b b a a b b a a b a b -+-≥-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+≥+-+=++-≥⨯=。
2020年陕西省西安市高考数学第三次质检试卷(文科)一、选择题(本大题共12小题,共60.0分)1.已知集合A={0,1},B={z|z=x+y,x∈A,y∈A},则B的子集个数为()A. 3B. 4C. 7D. 82.已知i为虚数单位,复数z=1−i2+i,则z的共轭复数是()A. 15+35i B. 13−i C. 15−35i D. 13+i3.若a⃗=(2,1),b⃗ =(3,−2),则|2a⃗−b⃗ |=()A. √17B. 1C. √7D. √154.在某次测量中得到A样本数据如下:82,83,84,86,86,86,88,88,88,88,89,若B样本数据恰好是A样本数据每个都加2所得数据,则A,B两样本的下列数字特征对应相同的是().A. 众数B. 平均数C. 中位数D. 标准差5.九连环是我国从古至今广泛流传的一种益智游戏,它用九个圆环相连成串,以解开为胜.据明代杨慎《丹铅总录》记载:“两环互相贯为一,得其关捩,解之为二,又合面为一”.在某种玩法中,用a n表示解下n(n≤9,n∈N∗)个圆环所需的移动最少次数,若a1=1,且a n={2a n−1−1,n为偶数2a n−1+2,n为奇数,则解下5个环所需的最少移动次数为()A. 7B. 13C. 16D. 226.设a=log2e,b=ln2,c=log1213,则()A. a<b<cB. b<a<cC. b<c<aD. c<b<a7.已知函数f(x)=cosxe x,则函数f(x)的图象在点(0,f(0))处的切线方程为()A. x+y+1=0B. x+y−1=0C. x−y+1=0D. x−y−1=08.函数f(x)=ln(x2+1)x3的大致图象是()A. B.C. D.9.设m,n是不同的直线,α,β是不同的平面,下列命题中正确的是A. 若m//α,n⊥β,m//n,则α//βB. 若m//α,n⊥β,m⊥n,则α//βC. 若m//α,n⊥β,m//n,则α⊥βD. 若m//α,n⊥β,m⊥n,则α⊥β10.函数f(x)=sinx⋅cos(x+π6)的图象的一条对称轴方程是()A. x=π12B. x=π6C. x=π4D. x=π311.已知F是双曲线C:x24−y25=1的一个焦点,点P在C上,O为坐标原点.若|OP|=|OF|,则△OPF的面积为()A. 32B. 52C. 72D. 9212.定义域和值域均为[−a,a](常数a>0)的函数y=f(x)和y=g(x)的图象如图所示,方程g[f(x)]=0解的个数不可能的是()A. 1B. 2C. 3D. 4二、填空题(本大题共4小题,共20.0分)13.甲、乙、丙、丁四位同学站成一排照相留念,已知甲、乙相邻,则甲、丙相邻的概率为______.14.已知等差数列{a n}的前n项和为S n,若a5=7,则S9=________.)的最小正周期是________.15.函数f(x)=cos(2x+π416.如图2−①,一个圆锥形容器的高为a,内装有一定量的水.如果将容器倒置,这时所形成的圆(如图2−②),则图2−①中的水面高度为______.锥的高恰为a2三、解答题(本大题共7小题,共82.0分)17.某中学举行电脑知识竞赛,现将高一参赛学生的成绩进行整理后分成五组绘制成如图所示的频率分布直方图,已知图中从左到右的第一、二、三、四、五小组的频率分别是0.30、0.40、0.15、0.10、0.05.求:(1)高一参赛学生的成绩的众数、中位数.(2)高一参赛学生的平均成绩.18.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,若cos2A+cos2C−cos2B=1−sinAsinC.(1)求角B的大小;(2)若b=√3,求2a+c的最大值.19.如图5,三角形ABC中,AC=BC=√2,A B ED是边长为1的正方2形,B E⊥底面A BC,若G、F分别是EC、BD的中点.(1)求证:GF//平面A BC;(2)求三棱锥B−AEC的体积.20.已知函数,(1)若a=1,求f(x)的极值;(2)若存在x 0∈[1,e],使得f(x 0)<g(x 0)成立,求实数a 的取值范围.21. 已知椭圆Γ:x24+y 2=1.(Ⅰ)求椭圆Γ的离心率;(Ⅱ)设直线y =x +m 与椭圆Γ交于不同两点A ,B ,若点P(0,1)满足|PA⃗⃗⃗⃗⃗ |=|PB ⃗⃗⃗⃗⃗ |,求实数m 的值.22. 在平面直角坐标系中,以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,已知直线l 过点P(1,0),斜率为√3,曲线C :ρsin 2θ=4cosθ.(1)写出直线l 的一个参数方程及曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A ,B 两点,求|PA|⋅|PB|的值.23.已知函数f(x)=|x−a2|+|x+2|,其中a∈R.(1)当a=−1时,求不等式f(x)≥6的解集;(2)若∀x∈R,使得f(x)>3a恒成立,求实数a的取值范围.-------- 答案与解析 --------1.答案:D解析:本题考查了集合的子集个数问题,元素与集合的关系,属于基础题.根据集合有n个元素,其子集有2n个,即可求出结果.解:由题意,集合A={0,1},集合B={z|z=x+y,x∈A,y∈A}={0,1,2},则B的子集个数为:23=8个,故选D.2.答案:A解析:本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.利用复数代数形式的乘除运算化简z,再由共轭复数的概念得答案.解:∵z=1−i2+i =(1−i)(2−i)(2+i)(2−i)=1−3i5=15−35i,∴z=15+35i.故选:A.3.答案:A解析:解:根据题意,a⃗=(2,1),b⃗ =(3,−2),则2a⃗−b⃗ =(1,4),则|2a⃗−b⃗ |=√12+42=√17,故选:A.根据题意,由向量a⃗、b⃗ 的坐标计算可得2a⃗−b⃗ 的坐标,进而由向量模的计算公式计算可得答案.本题考查向量的坐标运算,关键是熟悉向量坐标计算以及向量模的公式.。