南京市2007—2008学年度高三数学第一学期期末调研试卷
- 格式:doc
- 大小:629.50 KB
- 文档页数:10
2023—2024学年第一学期10月六校联合调研试题高三数学2023.10一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}|2,x A y y x ==∈R ,{}|ln(1)B x y x ==+,则A B = ( )A. (1,)-+∞B. ∅C. RD. (0,)+∞【答案】D 【解析】【分析】根据指数函数值域和对数函数定义域求出集合A ,B ,然后由交集运算可得.【详解】由指数函数性质可知,()0,A =+∞,由10x +>得1x >-,所以()1,B =-+∞,所以()()()0,1,0,A B ∞∞∞⋂=+⋂-+=+.故选:D2. 设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( )A. 12B. 24C. 30D. 32【答案】D 【解析】【分析】根据已知条件求得q 的值,再由()5678123a a a q a a a ++=++可求得结果.【详解】设等比数列{}n a 的公比为q ,则()2123111a a a a q q++=++=,()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q++=++=++==.故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题.3. 下列求导正确的是( )A. ππsin sin cos sin 66x x '⎛⎫-=- ⎪⎝⎭ B. ()()221221x x '⎡⎤+=+⎣⎦C. ()21log ln 2x x '= D. ()2222x x x x'+=+【答案】C 【解析】【分析】根据基本函数的求导公式,及导数的运算法则和复合函数的求导法则,进行运算即可判断选项.【详解】对于A ,()ππsin sin sin sin cos 66x x x ''⎛⎫⎛⎫'-=-= ⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B ,根据复合函数的求导法则,()()()()22122121421x x x x ''⎡⎤+=++=+⎣⎦,故B 错误;对于C ,()21log ln 2x x '=,故C 正确;对于D ,()()()22222ln 22x x x x x x '''+=+=+,故D 错误.故选:C.4. 已知角α终边上有一点5π5π(sin ,cos 66P ,则πα-是( )A. 第一象限角 B. 第二象限角C. 第三象限角D. 第四象限角【答案】C 【解析】【分析】根据5π6所在象限可判断点P 所在象限,然后根据对称性可得.【详解】因为5π6是第二象限角,所以5π5πsin0,cos 066><,所以点P 在第四象限,即角α为第四象限角,所以α-为第一象限角,所以πα-为第三象限角.故选:C5. 已知直线:10l x y λλ--+=和圆22:40C x y y +-=交于,A B 两点,则AB 的最小值为( )A. 2B.C. 4D. 【答案】D 【解析】【分析】求出直线l 过定点()1,1,再利用弦长公式即可得到最小值.【详解】():110l x y λ--+=,令1x =,则1y =,所以直线l 过定点()1,1,当1,1x y ==得22114120+-⨯=-<,则()1,1在圆内,则直线l 与圆必有两交点,因为圆心()0,2到直线l 的距离d ≤=,所以AB =≥故选:D .6. 已知样本数据131x +,231x +,331x +,431x +,531x +,631x +的平均数为16,方差为9,则另一组数据1x ,2x ,3x ,4x ,5x ,6x ,12的方差为( ).A.467B.477C.487D. 7【答案】C 【解析】【分析】由均值、方差性质求数据1x ,2x ,3x ,4x ,5x ,6x 的平均数、方差,应用平均数、方差公式求新数据方差.【详解】设数据1x ,2x ,3x ,4x ,5x ,6x 的平均数为x ,方差为2s ,由3116x +=,299s =,得61156i i x x ===∑,2261(56)11i i x s ==-=∑,则1x ,2x ,3x ,4x ,5x ,6x ,12的平均数为561267⨯+=,方差为()6221(6)1267ii x =-+-∑621(51)367ii x =--+=∑66211(5)2(5)16367ii i i x x ==---+⨯+=∑∑66211(5)21027ii i i x x ==--+=∑∑26261024877s x -⨯+==.故选:C7. 已知定义在R 上的偶函数()f x 满足()()11f x f x -=-+,则下列说法正确的是( )A 3522f f ⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭B. 函数()f x 的一个周期为2C. ()20230f =D. 函数()f x 的图象关于直线1x =对称【答案】C.【解析】【分析】根据已知等式判断函数的对称性,结合偶函数的性质判断函数的周期,最后逐一判断即可.【详解】()()11,f x f x -=-+∴ 函数()f x 关于点()1,0中心对称,因此选项D 不正确;又因为函数()f x 为偶函数,所以()()f x f x -=,由()()()()()()()1124f x f x f x f x f x f x f x -=-+⇒+=--=-⇒+=,所以函数()f x 的周期为4,所以选项B 不正确;因为函数()f x 是周期为4的偶函数,所以355222f f f ⎛⎫⎛⎫⎛⎫=-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此选项A 不正确;在()()11f x f x -=-+中,令0x =,得()10f =,因为函数()f x 的周期为()()()()4,20233110f f f f ∴==-==,因此选项C 正确,故选:C8. 已知点,M N 是抛物线24y x =上不同的两点,F 为抛物线的焦点,且满足23MFN π∠=,弦MN 的中点P 到直线1:16l y =-的距离记为d ,若不等式22λ≥MN d 恒成立,则λ的取值范围( )A. (-∞ B. (],2-∞C. (,1-∞+ D. (],3-∞【答案】D 【解析】【分析】令||,||MF a NF b ==,利用余弦定理表示出弦MN 的长,再利用抛物线定义结合梯形中位线定理表示出d ,然后利用均值不等式求解作答.【详解】在MFN △中,令||,||MF a NF b ==,由余弦定理得222||||||2||||cos MN MF NF MF NF MFN =+-⋅∠,则有222||MN a b ab =++,显然直线1:16l y =-是抛物线24y x =的准线,过,,M P N 作直线l 的垂线,垂足分别为,,A B C ,如图,而P 为弦MN 的中点,PB 为梯形MACN 的中位线,由抛物线定义知,11||(||||)()22d PB MA NC a b ==+=+,因此22222222||4444443222MN a b ab ab a b d a b ab a b ab b a ++=⋅=-=-≥=++++++,当且仅当a b =时取等号,又不等式22λ≥MN d 恒成立,等价于22MN dλ≤恒成立,则3λ≤,所以λ的取值范围是(,3]-∞.故选:D【点睛】方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求全部选对的得5分,有选错的得0分,部分选对的得2分.请把正确选项在答题卡中的相应位置涂黑.9. 设复数z 满足3i 1z z +=--,则下列说法错误的是( )A. z 为纯虚数B. z 的虚部为2iC. 在复平面内,z 对应的点位于第二象限D. ||z【答案】ABC 【解析】【分析】由复数的乘法和除法运算化简复数z ,再对选项一一判断即可得出答案.【详解】设复数i z a b =+,由3i 1z z +=--得()3i 1z z +=--,则()()()()22i 31i i 3i i 33i 4i 2=2i 11i 1i 1i 1i 2z -----+-====-++--,故A错误;z 的虚部为2,故B 错误;复平面内,z 对应的点为()1,2--,z 对应的点位于第三象限,故C 错误;z ==D 正确.故选:ABC .10 已知向量()1,3a =-,(),2b x = ,且()2a b a -⊥ ,则( )A. ()1,2b =B. 225a b -=C. 向量a 与向量b的夹角是45 D. 向量a 在向量b上的投影向量坐标是()1,2【答案】ACD 【解析】【分析】根据向量垂直的坐标公式求出向量b判断A ,利用向量模的坐标运算判断B ,利用数量积的夹角坐标公式求解判断C ,利用数量积的几何意义求解判断D.【详解】因为向量()1,3a =- ,(),2b x = ,所以()212,1a b x -=---,由()2a b a -⊥ 得1230x +-=,解得1x =,所以()1,2b =,故A 正确;又()23,4a b -=-r r ,所以25a =r ,故B 错误;设向量a 与向量b的夹角为θ,因为()1,3a =- ,()1,2b = ,所以cos a b a bθ⋅===⋅ ,又0180θ≤≤ ,所以45θ= ,即向量a 与向量b的夹角是45 ,故C 正确;向量a 在向量b上的投影向量坐标是()1,2a b b b b b⋅⋅==,故D 正确.故选:ACD.11.已知函数()sin (0)f x x x ωωω=+>,下列说法正确的是( )A. 函数()f x 的值域为[]22-,B. 若存在12,x x ∈R ,使得对x ∀∈R 都有()()()12f x f x f x ≤≤,则12x x -的最小值为2πωC. 若函数()f x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为10,2⎛⎤ ⎥⎝⎦.D. 若函数()f x 在区间()0,π上恰有3个极值点和2个零点,则ω的取值范围为138,63⎛⎤⎥⎝⎦【答案】ACD 【解析】【分析】化简()f x 的解析式,根据三角函数的值域、最值、周期、单调性、极值点等知识对选项进行分析,从而确定正确答案.【详解】已知函数()π2sin 3f x x ω⎛⎫=+⎪⎝⎭,可知其值域为[]22-,,故选项A 正确;若存在12,x x ∈R ,使得对x ∀∈R 都有()()()12f x f x f x ≤≤,所以12x x -的最小值为π2T ω=,故选项B 错误;函数()f x 的单调递增区间为πππ2π2π232k x k ω-≤+≤+,()5ππ2π2π66,Z k k x k ωω⎡⎤-+⎢⎥∈∈⎢⎥⎢⎥⎣⎦,所以5π2ππ66π2ππ63k k ωω⎧-⎪≤-⎪⎪⎨⎪+⎪≥⎪⎩,令0k =,则10,2ωω<≤∴的取值范围为10,2⎛⎤ ⎥⎝⎦,故选项C 正确;若函数()f x 在区间()0,π上恰有3个极值点和2个零点,πππ,π333x ωω⎛⎫+∈+ ⎪⎝⎭,由如图可得:5ππ138π3π2363ωω<+≤⇒<≤,ω∴的取值范围为138,63⎛⎤⎥⎝⎦,故选项D 正确;故选:ACD12. 已知函数()()()1ln R 1a x f x x a x +=-∈-,则下列说法正确的是( )A. 当0a >时,()f x 在(1,)+∞上单调递增B. 若()f x 的图象在2x =处的切线与直线250x y +-=垂直,则实数34a =C. 当10a -<<时,()f x 不存在极值D. 当0a >时,()f x 有且仅有两个零点12,x x ,且121=x x 【答案】ABD 【解析】【分析】对于A ,利用导数即可判断;对于B ,根据导数的几何意义可判断;对于C ,取12a =-,根据导数判断此时函数的单调性,说明极值情况,即可判断;对于D ,结合函数单调性,利用零点存在定理说明()f x 有且仅有两个零点12,x x ,继而由()0f x =可推出10f x ⎛⎫=⎪⎝⎭,即可证明结论,即可判断.【详解】因为()()()1ln R 1a x f x x a x +=-∈-,定义域为{|0x x >且1}x ≠,所以()()2121af x x x '=+-,对于A ,当0a >时,()0f x '>,所以()f x 在(01),和(1,)+∞上单调递增,故A 正确;对于B ,因为直线250x y +-=的斜率为12-,又因为()f x 的图象在2x =处的切线与直线250x y +-=垂直,故令1(2)222f a '=+=,解得34a =,故B 正确;对于C ,当10a -<<时,不妨取12a =-,则()()()222113111x x f x x x x x -+'=-=--,令()0f x '=,则有231=0x x -+,解得123322x x =-=+,当0,32x ⎛∈- ⎝时,()0f x ¢>,()f x 在0,32⎛ ⎝上单调递增;当331,22x ⎛⎫⎛∈⋃+ ⎪ ⎪ ⎝⎭⎝时,()0f x '<,()f x在33,1,22⎛⎫⎛ ⎪ ⎪ ⎝⎭⎝上分别单调递减;所以此时函数有极值,故C 错误;对于D ,由A 可知,当0a >时,()f x 在(01),和(1,)+∞上单调递增,当1x >时,22(e )10e 1e 1aa aaf a a ⎛⎫=-+=-< ⎪--⎝⎭,()()()()313131313131e 1e 12e 311e 1e 1a a a a a a a f a a ++++++--+⎛⎫=+-+-=⎪-⎝⎭()()()31313131313e 1e 12e20e 1e 1a a a a a a a a +++++--+->=>--,所以()f x 在(1,)+∞上有一个零点,又因为当01x <<时,22(e 10e 1e 1aa a af a a --⎛⎫--+=> ⎪--⎝⎭=) ,()1313313122e e311311e 11e a a a a f a a a a -+---+⎛⎫⎛⎫=---+=---+ ⎪ ⎪--⎝⎭⎝⎭()()()3131313131311e e 11e 311e 1e a a a a a a a a a ++++++-+++=---⋅=---()()31313131e e 11e a a a a a +++-++=--()3131313122e 42e01e e 1a a a a a a a ++++--=-=<--,所以()f x 在(01),上有一个零点,所以()f x 有两个零点,分别位于(01),和(1,)+∞内;设1201x x <<<,令()0f x =,则有()1ln 01a x x x +-=-,则1f x ⎛⎫= ⎪⎝⎭()11111ln ln ln 1111x a a a x x x x x x x x x x⎛⎫++⋅ ⎪+⎝⎭-=--=-+---()1[ln ]01a x x x +=--=-,所以()0f x =的两根互为倒数,所以121=x x ,故D 正确.故选:ABD【点睛】难点点睛:本题综合考查了导数知识的应用,综合性较,解答的难点在于选项D 的判断,要结合函数的单调性,利用零点存在定理判断零点个数,难就难在计算量较大并且计算复杂,证明121=x x 时,要注意推出10f x ⎛⎫=⎪⎝⎭,进而证明结论三、填空题:本大题共4小题,每小题5分,共20分.13. 在()()54+21x y -的展开式中,32x y 的系数为______.【答案】240【解析】【分析】利用二项展开式的通项公式即可.【详解】在()5+2x 的展开式中,3x 的系数为325C 2=40⋅;在()41y -的展开式中,2y 的系数为224C 1=6⋅;所以在()()54+21x y -的展开式中,32x y 的系数为32254C 2C =240⋅;故答案为:24014. 2023年杭州亚运会招募志愿者,现从某高校的6名志愿者中任意选出3名,分别担任语言服务、人员引导、应急救助工作,其中甲、乙2人不能担任语言服务工作,则不同的选法共有_______种.【答案】80【解析】分析】应用排列组合知识及计数原理可得答案.【详解】先从甲、乙之外的4人中选取1人担任语言服务工作,再从剩下的5人中选取2人分别担任人员引导、应急救助工作,则不同的选法共有1245C A 454=⨯⨯80=种.故答案为:80.15. 已知22,1()e ,1xx x f x x ->-⎧=⎨≤-⎩,若a b <,()()f a f b =,则实数2a b -的取值范围是______.【【答案】(1,3e ⎤-∞--⎥⎦【解析】【分析】作出函数图象,设()()t f a f b ==,数形结合可知t 的范围,2a b -转化为关于t 的函数,利用导数求最值即可.【详解】作函数()f x 图象,如图,设()()t f a f b ==,则10et <≤,e ,,2e 1112a b a b +<∴≤-<≤ ,又()(),e 22af a t f b b t ===-= ,()1ln 2,2a t b t ∴==+,2ln 2a b t t ∴-=--,设()()110,,1ln 21e t g t t t t g t t t -'=--<≤=-=,当10et <≤时,()0g t '>,函数()g t 为增函数,()1111ln 23e e e e g t g ⎛⎫∴≤=--=-- ⎪⎝⎭,即实数2a b -的取值范围是(1,3e ⎤-∞--⎥⎦故答案为:(1,3e ⎤-∞--⎥⎦16. 在正三棱锥A BCD -中,底面BCD △的边长为4,E 为AD 的中点,AB CE ^,则以D 为球心,AD 为半径的球截该棱锥各面所得交线长为________.π【解析】【分析】首先证明,,AC AB AD 两两垂直,再求出所对应的圆心角,则计算出其弧长,即可得到交线长.【详解】记CD 中点为F ,作AO ⊥平面BCD ,垂足为O ,由正三棱锥性质可知,O 为正三角形BCD 的中心,所以O 在BF 上,因为CD ⊂平面BCD ,所以AO CD ⊥,由正三角形性质可知,BF CD ⊥,又BF AO O ⋂=,,BF AO ⊂平面ABO ,所以CD ⊥平面ABO ,因为AB ⊂平面ABO ,所以AB CD ⊥,又,,,CE AB CE CD C CE CD ⊥⋂=⊂平面ACD ,所以AB ⊥平面ACD ,因为AC ⊂平面ACD ,所以AC AB⊥由正三棱锥性质可知,,,AC AB AD 两两垂直,且AB AC AD ==,则AD ==,如图,易知以D 为球心,AD 为半径的球截该棱锥各面所得交线,是以D 为圆心,AD 为半径的三段圆弧,则π4ADC ADB ∠=∠=,π3BDC ∠=,则其圆心角分别为πππ,,443,所以其交线长为πππ443⨯⨯+⨯=.【点睛】关键点睛:本题的关键是利用线面垂直的判定与性质得到,,AC AB AD 两两垂直,再求出所对应的三段弧长即可得到交线长.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知等差数列{}n a 的前n 项和为n S ,且满足52215a a =+,981S =.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足,3,n n n a n b n ⎧=⎨⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T .【答案】(1)21n a n =- (2)129928n n n +--+【解析】【分析】(1)利用等差数的性质,结合通项公式与前项和公式即可得解;(2)利用分组求和差,结合等差数列与等比数列的前项和公式即可得解.【小问1详解】(1)设数列等差数列{}n a 的公差为d ,因为981S =,所以()59199812a a a +==,则59a =,因为52215a a =+,即21815a =+,所以23a =,所以52932523a a d --===-,121a a d =-=,所以()112n a n =+-⨯,即21n a n =- .【小问2详解】因为,3,n n n a n b n ⎧=⎨⎩为奇数为偶数,所以21,3,n n n n b n -⎧=⎨⎩为奇数为偶数,所以()()()24221353433nn T n =++++⋅⋅⋅+-+()()2421543333n n =++⋅⋅⋅+-+++⋅⋅⋅+()231919n ⨯-=+-129928n n n +-=-+.18. 已知函数()ππsin 2cos sin 122f x x x x x ⎛⎫⎛⎫=+--+⎪ ⎪⎝⎭⎝⎭,(1)求函数()f x 的最值;(2)设ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若()2f A =,2b =,且2sin sin B C A +=,求ABC 的面积.【答案】(1)最大值为2,最小值为2-(2【解析】【分析】(1)把()f x 化为“一角一函数”的形式:先用诱导公式把角化为x ,再用二倍角公式把二次项化为一次项,同时把角化为2x ,最后用辅助角公式把函数名化为正弦,即可求出函数的最值;(2)先求出角A ,由余弦定理得到关于,a c 的方程,再由正弦定理把已知的方程化简为含,a c 的方程,联立方程组即可解出,a c 的值,再代入三角形的面积公式即可.【小问1详解】因为()sin 2cos sin 122f x x x x x ππ⎛⎫⎛⎫=+--+ ⎪ ⎪⎝⎭⎝⎭2cos 2cos 12cos 2x x x x x=-+=-2sin 26x π⎛⎫=- ⎪⎝⎭,所以()f x 的最大值为2,最小值为2-.【小问2详解】结合(1)可知()2sin 226f A A π⎛⎫=-= ⎪⎝⎭,所以sin 216A π⎛⎫-= ⎪⎝⎭.因为()0,A π∈,所以112,666A πππ⎛⎫-∈- ⎪⎝⎭,则263A A ππ-==.由余弦定理得2222241cos 242b c a c a A bc c +-+-===,化简得2224a c c =-+①.又2sin sin B C A +=,由正弦定理可得2b c +=,即4c +=②.结合①②得3a c ==或23a c ==.3c =时,1sin 2ABC S bc A == 23c =时,1sin 2ABC S bc A ==△.综上,ABC .19. 在三棱锥S ABC -中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA SC ==,M 、N 分别为AB SB 、的中点.(1)证明:AC SB ⊥;(2)求二面角N CM B --正弦值的大小.【答案】(1)证明见解析(2【解析】【分析】(1)取AC 得中点O ,得SO AC ⊥,BO AC ⊥,可知AC ⊥平面SBO ,进而得结论;(2)建立空间直角坐标系,求出平面CMN 与平面MBC 的法向量,根据向量的夹角公式求解.【小问1详解】取AC 得中点O ,连接SO ,OB ,SA SC = ,AB BC =,SO AC ∴⊥,BO AC ⊥,又SO ,BO 交于点O ,SO ⊂平面SBO ,BO ⊂平面SBO ,于是可知AC ⊥平面SBO ,又SB ⊂平面SBO ,AC SB ∴⊥;【小问2详解】∵平面SAC ⊥平面ABC ,平面SAC 平面ABC AC =,SO ⊂平面SAC ,SO AC ⊥,∴SO ⊥平面ABC ,以OA 为x 轴,OB 为y 轴,OS 为z 轴建立空间直角坐标系O xyz -,那么(00)(200)(000)(0B C S M N -,,,,,,,,,,∴(30),(10CM MN ==- ,,设(),,n x y z = 为平面CMN 的一个法向量,那么30=0CM n x MN n x ⎧⋅=+=⎪⎨⋅-+=⎪⎩ ,取1z =,那么==x y ,∴n = ,又(0,0,OS = 为平面MBC一个法向量,的1cos ,3n OS n OS n OS ⋅∴==,sin ,n OS ∴= ,即二面角N CM B --.20. 为了丰富在校学生的课余生活,某校举办了一次趣味运动会活动,学校设置项目A “毛毛虫旱地龙舟”和项目B “袋鼠接力跳”.甲、乙两班每班分成两组,每组参加一个项目,进行班级对抗赛.每一个比赛项目均采取五局三胜制(即有一方先胜3局即获胜,比赛结束),假设在项目A 中甲班每一局获胜的概率为23,在项目B 中甲班每一局获胜的概率为12,且每一局之间没有影响.(1)求甲班在项目A 中获胜的概率;(2)设甲班获胜的项目个数为X ,求X 的分布列及数学期望.【答案】(1)6481(2)分布列见解析,209162【解析】【分析】(1)记“甲班在项目A 中获胜”为事件A ,利用独立事件的乘法公式求解即可;(2)先算出“甲班在项目B 中获胜”的概率,然后利用独立事件的乘法公式得到X 的分布列,即可算出期望【小问1详解】记“甲班在项目A 中获胜”为事件A ,则()222223422221221264C C 33333333381P A ⎛⎫⎛⎫⎛⎫=⨯⨯+⨯⨯⨯+⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以甲班在项目A 中获胜的概率为6481【小问2详解】记“甲班在项目B 中获胜”为事件B ,则()34522341111C C 2222P B ⎛⎫⎛⎫⎛⎫=+⨯+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,X 的可能取值为0,1,2,则()()()()171170812162P X P AB P A P B ====⨯=,()()()()64132281281P X P AB P A P B ====⨯=,()()()111022P X P X P X ==-=-==.所以X 的分布列为X 012P 17162123281()17132209012162281162E X =⨯+⨯+⨯=.所以甲班获胜的项目个数的数学期望为20916221. 已知函数2()(1)ln 1f x a x ax =+++(1)讨论函数()f x 的单调性;(2)设1a <-.如果对任意12,(0,)x x ∈+∞,()()12124f x f x x x -≥-,求a 的取值范围.【答案】(1)当a ≥0时,()f x '>0,故f (x )在(0,+∞)单调增加;当a ≤-1时,()f x '<0, 故f (x )在(0,+∞)单调减少;当-1<a <0时,f (x )在(0,+∞)(2)a ≤-2【解析】【详解】(1) f (x )的定义域为(0,+∞),2121()2a ax a f x ax x x '+++=+=.当a ≥0时,()f x '>0,故f (x )在(0,+∞)单调增加;当a ≤-1时,()f x '<0, 故f (x )在(0,+∞)单调减少;当-1<a <0时,令()f x '=0,解得x .当x ∈(0)时,()f x '>0;x ∈,+∞)时,()f x '<0, 故f (x )在(0,+∞)单调减少.(2)不妨假设x 1≥x 2.由于a ≤-2,故f (x )在(0,+∞)单调减少.所以1212()()4f x f x x x -≥-等价于21()()f x f x -≥4x 1-4x 2,,即f (x 2)+ 4x 2≥f (x 1)+ 4x 1.令g (x )=f (x )+4x ,则1()2a g x ax x +'=++4=2241ax x a x+++.于是()g x '≤2441x x x -+-=2(21)x x--≤0.从而g (x )在(0,+∞)单调减少,故g (x 1) ≤g (x 2),即f (x 1)+ 4x 1≤f (x 2)+ 4x 2,故对任意x 1,x 2∈(0,+∞) ,1212()()4f x f x x x -≥-22. 已知双曲线2222:1(0,0)x y C a b a b -=>>过点(4,3)A,离心率e =.(1)求双曲线C 的方程;(2)过点(1,0)B 的直线l 交双曲线C 于点M ,N ,直线MA ,NA 分别交直线1x =于点P ,Q ,求||||PB QB 的值.【答案】(1)22143x y -= (2)||=1||PB QB 【解析】【分析】(1)根据已知列关于a ,b ,c 的方程组求解即可;(2)直线联立双曲线方程,写出直线MA ,NA 的方程,然后可得点P ,Q 坐标,将比值问题转化为纵坐标关系,利用韦达定理可得0P Q y y +=,然后可得.【小问1详解】由题知222221691a b c a a b c⎧-=⎪⎪⎪⎨=⎪⎪+=⎪⎩,解得24a =,23b =,27c =,22143y x ∴-=;【小问2详解】.设直线:(1)l y k x =-,1122(,),(,)M x y N x y ,联立22143(1)x y y k x ⎧-=⎪⎨⎪=-⎩,则2222(34)84120k x k x k -+--=,则2=144144k ∆-,2122834k x x k -+=-,212241234k x x k --=- ,设直线113:3(4)4y MA y x x --=--,223:3(4)4y NA y x x --=--,令1x =,113334P y y x -=--,223334Q y y x -=--,则12123363()44P Q y y y y x x --+=-+--,因为121212121233(3)(4)(4)(3)44(4)(4)y y y x x y x x x x ----+--+=----1212122(35)()8(3)=(4)(4)kx x k x x k x x -++++--222222222(412)(35)(8)8(3)(34)7272==2(412)4(8)16(34)3636k k k k k k k k k k k ---+-++--=----+--所以12123363()=044P Q y y y y x x --+=-+--,B 为PQ 的中点,所以||=1||PB QB .【点睛】本题难点在于能将所求转化为证明0P Q y y +=的问题,可以通过取特殊方程求解,然后进行合理推测,或者尽量标准作图,通过图象进行猜测,从而确定求解方向.。
江苏省南京市2025届高三学业水平调研考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={(x,y )|x 2+y 2=4},B ={(x,y )|y =2cos x },则A ∩B 的真子集个数为( )A. 5个B. 6个C. 7个D. 8个2.在复平面内,复数z 对应的点Z 在第二象限,则复数z4i 对应的点Z 1所在象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.某考生参加某高校的综合评价招生并成功通过了初试,在面试阶段中,8位老师根据考生表现给出得分,分数由低到高依次为:76,a ,b ,80,80,81,84,85,若这组数据的下四分位数为77,则该名考生的面试平均得分为( )A. 79B. 80C. 81D. 824.“tan 2α=14”是“tan 3αtan α=11”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5.若单位向量a ,b 满足⟨a ,b⟩=120∘,向量c 满足(c−a )⊥(c−b ),则a ⋅c +b ⋅c 的最小值为( )A.3−14B. 1−34C.3−12 D. 1−326.设数列{a n }的前n 项和为S n ,已知a 1=12,a n +1=2a na n +1,若S 2024∈(k−1,k),则正整数k 的值为( )A. 2024B. 2023C. 2022D. 20217.已知双曲线C:x 2−y 2b 2=1,在双曲线C 上任意一点P 处作双曲线C 的切线(x p >0,y p >0),交C 在第一、四象限的渐近线分别于A 、B 两点.当S △OPA =2时,该双曲线的离心率为( )A.17B. 32C.19D. 258.在▵ABC 中,A <B <C 且tan A,tan B,tan C 均为整数,D 为AC 中点,则BCBD 的值为( )A. 12B.22C.32D. 1二、多选题:本题共3小题,共15分。
2024届南京市六校高三数学上学期期中调研考试卷(试卷满分150分,考试时间120分钟)2023.11一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}22log 2,20A x xB x x x =≤=--<,则A B ⋃=()A .()0,2B .()1,2-C .(],4∞-D .(]1,4-2.若,a b 是夹角为60︒的两个单位向量,a b λ+ 与32a b -+ 垂直,则λ=()A .18B .14C .78D .743.用一个平行于圆锥底面的平面去截圆锥,截得的圆台上底面半径为1,下底面半径为2,且该圆台侧面积为,则原圆锥的母线长为()A .2BC .4D.4.已知,x y 取表中的数值,若,x y 具有线性相关关系,线性回归方程为0.95 2.6y x =+$,则a =()x0134ya4.34.86.7A .2.2B .2.4C .2.5D .2.65.已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点(,1)t -,若cos α=,则πtan()4α+=()A .3-B .13C .13-D .36.已知数列{}n a 通项公式为2322,7494,7n n tn n a n n ⎧-+≤=⎨+>⎩,若对任意*n ∈N ,都有1n n a a +>,则实数t 的取值范围是()A .[3,)t ∈+∞B .239[,142t ∈C .239(,142t ∈D .23[,)14t ∈+∞7.已知圆()2221:0C x y b b +=>与双曲线()22222:10,0x y C a b a b -=>>,若在双曲线2C 上存在一点P ,使得过点P 所作的圆1C 的两条切线,切点为A 、B ,且π3APB ∠=,则双曲线2C 的离心率的取值范围是()A.⎛ ⎝⎦B.2⎫+∞⎪⎢⎣⎭C.(D.)+∞8.定义在R 上的函数()f x 满足()()0f x f x -+=,()()2f x f x -=+;且当[]0,1x ∈时,()32f x x x x =-+.则方程()420f x x -+=所有的根之和为()A .6B .12C .14D .10二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求全部选对的得5分,有选错的得0分,部分选对的得2分.请把正确选项在答题卡中的相应位置涂黑.9.已知复数2i z =+,1i z x y =+(,R x y ∈)(i 为虚数单位),z 为z 的共轭复数,则下列结论正确的是()A .z 的虚部为i -B .z 对应的点在第一象限C .1z z=D .若11z z -£,则在复平面内1z 对应的点形成的图形的面积为2π10.已知0,0a b >>,21a b +=,则()A .21a b +的最小值为4B .ab 的最大值为18C .22a b +的最小值为15D .24a b+的最小值为11.函数()sin (0)f x x ωω=>在区间ππ[,]22-上为单调函数,图象关于直线2π3x =对称,则()A .34ω=B .将函数()f x 的图象向右平移2π3个单位长度,所得图象关于y 轴对称C .若函数()f x 在区间14π(,)9a 上没有最小值,则实数a 的取值范围是2π14π(,99-D .若函数()f x 在区间14π(,)9a 上有且仅有2个零点,则实数a 的取值范围是4π[,0)3-12.已知椭圆C :()222104x y b b +=>的左右焦点分别为1F 、2F,点)P 在椭圆内部,点Q 在椭圆上,椭圆C 的离心率为e ,则以下说法正确的是()A .离心率e的取值范围为⎛ ⎝⎭B.当e =时,1QF QP +的最大值为4+C .存在点Q ,使得210QF QF ⋅= D .1211QF QF +的最小值为1三、填空题:本大题共4小题,每小题5分,共20分.13.为全面推进乡村振兴,永州市举办了“村晚兴乡村”活动,晚会有《走,去永州》《扬鞭催马运粮忙》《数幸福》《乡村振兴唱起来》四个节目,若要对这四个节目进行排序,要求《数幸福》与《乡村振兴唱起来》相邻,则不同的排列种数为(用数字作答).14.设6656510(21)x a x a x a x a -=++++ ,则135a a a ++=.(用数字作答)15.现有一张正方形纸片,沿只过其一个顶点的一条直线将其剪开,得到2张纸片,再从中任选一张,沿只过其一个顶点的一条直线剪开,得到3张纸片,…,以此类推,每次从纸片中任选一张,沿只过其一个顶点的一条直线剪开,若经过8次剪纸后,得到的所有多边形纸片的边数总和为.16.如图,在直三棱柱111ABC A B C -中,AC AB ⊥,2AC =,14AA =,6AB =,点E ,F 分别是AA1,AB 上的动点,那么11C E EF FB ++的长度最小值是,此时三棱锥11B C EF -外接球的表面积为.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知正项数列{}n a 的前n 项和为n S ,222n n n a a S +=+,数列{}n b 满足3n a n n b a =⋅.(1)求数列{}n a 的通项公式;(2)求数列{}n b 的前n 项和n T .18.在ABC 中,,,A B C 所对的边分别为,,a b c ,已知2()b c a c =+.(1)若π4B =,求c a 的值;(2)若ABC22cos B C +的取值范围.19.为弘扬中国共产党百年奋斗的光辉历程,某校团委决定举办“中国共产党党史知识”竞赛活动.竞赛共有A 和B 两类试题,每类试题各10题,其中每答对1道A 类试题得10分;每答对1道B 类试题得20分,答错都不得分.每位参加竞赛的同学从这两类试题中共抽出3道题回答(每道题抽后不放回).已知某同学A 类试题中有7道题能答对,而他答对各道B 类试题的概率均为23.(1)若该同学只抽取3道A 类试题作答,设X 表示该同学答这3道试题的总得分,求X 的分布和期望;(2)若该同学在A 类试题中只抽1道题作答,求他在这次竞赛中仅答对1道题的概率.20.已知在四棱锥C ABED -中,//DE 平面ABC ,AC BC ⊥,24,2BC AC AB DE ===,DA DC =,点F 为线段BC 的中点,平面DAC ⊥平面ABC.(1)证明:EF ⊥平面ABC ;(2)若直线BE 与平面ABC 所成的角为60︒,求二面角B AD C --的余弦值.21.已知双曲线2222:1(0,0)x y C a b a b -=>>经过点()4,6P ,且离心率为2.(1)求C 的方程;(2)过点P 作y 轴的垂线,交直线:1l x =于点M ,交y 轴于点N .设点,A B 为双曲线C 上的两个动点,直线,PA PB 的斜率分别为12,k k ,若122k k +=,求MABNAB S S .22.已知函数23()e 232xa x f x x ax=---.(1)当0a =,求曲线()y f x =在点(1,(1))f 处的切线方程.(2)若()f x 在[0,)+∞上单调递增,求a 的取值范围;(3)若()f x 的最小值为1,求a .1.D【分析】解不等式可得集合,A B ,根据集合的并集运算即得答案.【详解】因为{}(]2log 20,4A x x =≤=,{}()2201,2B x x x =--<=-,所以(]1,4A B =- ,故选:D.2.B【分析】由题意先分别算出22,,a b a b ⋅ 的值,然后将“a b λ+ 与32a b -+ 垂直”等价转换为()()32a b a b λ-⋅=++ ,从而即可求解.【详解】由题意有2222111,1,cos601122a a b b a b a b ︒====⋅=⋅=⨯⨯=,又因为a b λ+ 与32a b -+垂直,所以()()()()221323232320322a a b a a b b b λλλλλ+⋅=-+-⋅+=-+⨯=--++ ,整理得1202λ-+=,解得14λ=.故选:B.3.D【分析】设圆台的母线长为l ,根据圆台的侧面积公式求出圆台的母线长,利用圆台的性质以及相似三角形即可求解.【详解】设圆台的母线长为l,因为该圆台侧面积为,则由圆台侧面积公式可得π(12)3πl l +==,所以l =设截去的圆锥的母线长为l ',由三角形相似可得12l l l '='+,则2l l ''=+l '=,所以原圆锥的母线长l l '+=+=故选:D .4.A【分析】根据线性回归方程经过样本中心,计算即可求解.【详解】由题意可知:013424x +++==, 4.3 4.8 6.715.844a a y ++++==,所以样本中心()x y 为15.82,4a +⎛⎫⎝⎭,代入回归方程有:15.80.952 2.64a +=⨯+,解得 2.2a =.故选:A .5.C【分析】先根据任意角的三角函数求出t ,再求出tan α的值,最后根据两角和的正切公式即可求出所需的值.【详解】由任意角的三角函数公式可知cosα=,解得12t=,所以tan2yxα==-,所以()πtan tanπ2114tanπ412131tan tan4ααα+-+⎛⎫+==-⎪--⨯⎝⎭-,故选:C6.C【分析】根据数列的单调性,即可根据263t n<+对{}1,2,3,4,5,6n∈恒成立,以及87a a>求解.【详解】当{}1,2,3,4,5,6n∈时,()()221312123226320n na a n t n n tn n t+-+-++--+-=+=>恒成立,所以263t n<+对{}1,2,3,4,5,6n∈恒成立,故9292t t<⇒<,又当7,Nn n>∈时,494na n=+为单调递增的数列,故要使对任意*n∈N,都有1n na a+>,则87a a>,即2489437142t⨯+>⨯-+,解得2314t>,综上可得239(,)142t∈,故选:C7.B【分析】连接OA、OB、OP,则OA AP⊥,OB BP⊥,设点(),P x y,则22222b xy ba=-,分析可得2OP b a=≥,可得出ba的取值范围,由e可求得e的取值范围.【详解】连接OA、OB、OP,则OA AP⊥,OB BP⊥,由切线长定理可知,PA PB=,又因为OA OB=,OP OP=,所以,AOP BOP ≌,所以,1π26APO BPO APB ∠=∠=∠=,则22OP OA b ==,设点(),P x y ,则22222b x y b a =-,且x a ≥,所以,2OP b a ==,所以,12b a ≥,故52c e a ==,故选:B.8.D【分析】根据题意可得()f x 为奇函数,其图象关于直线1x =对称且一个周期为4,再根据当[]0,1x ∈时,()32f x x x x=-+,求导分析单调性,从而画出简图,根据函数的性质求解零点和即可.【详解】∵()()0f x f x -+=,∴()f x 为奇函数,又∵()()2f x f x -=+,∴()f x 的图象关于直线1x =对称.当[]0,1x ∈时,()23210f x x x '=-+>,()f x 单调递增.由()()()2f x f x f x -=+=-,即有()()42f x f x +=-+,所以()()4f x f x +=,即函数()f x 的一个周期为4,由()()0f x f x -+=可得,()()40f x f x -++=,所以()f x 的图象关于()2,0中心对称.函数()f x的简图如下:其中32x =,由1()(2)4f x x =-,∴所有实根之和为()()1524344210x x x x x ++++=++=.故选:D .【点睛】本题求零点之和需要掌握的方法:(1)函数的性质运用:根据条件中函数满足的关系式推导函数的奇偶性、对称性、周期性和在区间内的单调性,并运用性质求零点和;(2)数形结合:根据给定区间的函数解析式作图,再根据函数的性质补全剩余图象;9.BC【分析】根据复数的性质和对应复平面内对应的点以及复数的几何意义依次判断即可.【详解】对于A :2i z =-,所以z 的虚部为1-,A 错误;对于B :z 对应的点为()2,1,位于第一象限,所以B 正确;对于C :z =z =1zz=,C 正确;对于D :在复平面内11z z -£表示到点()2,1距离小于等于1的所有的点,所以形成的图形为以()2,1为圆心1为半径的圆,所以面积为πS =,D 错误,故选:BC 10.BCD【分析】根据基本不等式即可求解BD ,由乘“1”法即可求解A,代换后利用二次函数的性质即可求解C.【详解】对于A ,0,0a b >>,()212142448b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4b a a b =,即11,24a b ==取等号,故A 错误,1218a b ab +=≥≤,当且仅当2a b =,即11,24a b ==取等号,故B 正确,()2222222112541555a b b b b b b ⎛⎫+=-+=-+=-+ ⎪⎝⎭,故当25b =时,取到最小值15,此时15a =,满足题意,故C 正确,24a b+≥==24a b =,即11,24a b ==时等号成立,所以D 正确故选:BCD11.ABD【分析】根据单调性及对称轴求出解析式,即可以判断选项A ,由函数的平移变换可以判断选项B ,根据函数图象的零点和最值即可判断C ,D.【详解】选项A :根据题意函数()sin (0)f x x ωω=>在区间ππ[,22-上为单调函数,可以判断为单调递增函数,则ππ22ω-≤-,ππ22ω≤,解得01ω<≤又因为图象关于直线2π3x =,则2πππ23k ω=+,Z k ∈,解得3342k ω=+,Z k ∈当0k =时,34ω=符合条件.则A 正确;选项B :由A 可知3()sin4f x x=向右平移2π3个单位长度后,解析式变成3π3()sin cos 424g x x x ⎛⎫=-=- ⎪⎝⎭,则图象关于y 轴对称.B 正确;选项C :函数()f x 在区间14π(,)9a 没有最小值,则令34t x =,14π(,)9x a ∈,则37π(,)46t a ∈,当π37π246a -≤<,即2π14π39a -≤<时,没有最小值.C 错误;选项D :函数()f x 在区间14π(,)9a 上有且仅有2个零点,因为πt =时,为函数的零点,所以另一个端点只能让函数再有一个零点即可.所以3π04a -≤<,即4π03a -≤<,D 正确.故选:ABD.12.ABD【分析】A 项中需先解出b 的范围,然后利用离心率的定义进行判断;B 项中根据椭圆定义转化为求24QF QP-+的最大值,从而进而判断;C 项中先求出点Q 的轨迹方程,再判断该轨迹图形与椭圆是否有交点,从而进行判断;D 项中根据椭圆定义得1224QF QF a +==,并结合基本不等式判断.【详解】对于A项:因为点)P在椭圆内部,所以22114b +<,得224b <<,所以得:0,c e a⎛==⎝⎭,故A 项正确;对于B 项:由椭圆定义知124QF QP QF QP+=-+,当Q 在x 轴下方时,且P ,Q ,2F 三点共线时,1QF QP +有最大值24PF +,由242c e ==,得22c =,2F ⎫⎪⎪⎝⎭,所以得2PF =,所以1QF QP+最大值4,故B 项正确;对于C 项:设(),Q x y ,若210QF QF ⋅= ,即:()(),,0c x y c x y ---⋅--=,则得222x y c +=,即点Q 在以原点为圆心,半径为c 的圆上,又由A 项知:22c e a ⎛⎫=∈ ⎪ ⎪⎝⎭,得(c ea ==∈,又因为224b <<,得)2b ∈,所以得:c b <,所以该圆与椭圆无交点,故C 项错误;对于D 项:由椭圆定义得1224QF QF a +==,所以()121212111114QF QF QF QF QF QF ⎛⎫+=⋅++ ⎪ ⎪⎝⎭21121122144QF QF QF QF ⎛⎛⎫ =++≥+= ⎪ ⎪ ⎝⎭⎝,当且仅当122QF QF ==时取等号,故D 项正确.故选:ABD.13.12【分析】利用捆绑求得正确答案.【详解】由于《数幸福》与《乡村振兴唱起来》相邻,所以两者“捆绑”,则不同的排列种数为2323A A 12=种.故答案为:1214.364-【分析】利用赋值法计算可得【详解】因为6656510(21)x a x a x a x a -=++++ ,令=1x ,则01561a a a a =++++ ①,令1x =-,则01456729a a a a a --=+++ ②,∴①-②得()1352++=728a a a -,所以135364a a a ++=-,故答案为:364-15.28【分析】根据题意,可得所有多边形纸片的边数总和是公差为3的等差数列,进而利用等差数列的通项公式算出结果.【详解】设没剪之前正方形的边数为1a ,即14a =,沿只过其一个顶点的一条直线将其剪开,得到一个三角形和一个四边形,无论是选择三角形四边形,剪一次后边数均增加3,即可得所有多边形纸片的边数总和是公差为3的等差数列,故经过8次剪纸后,得到的所有多边形纸片的边数总和为:948328a =+⨯=.故答案为:2816.44π【分析】将立体几何中线段之和最小问题,转化为平面几何中的线段之和最小问题,利用对称性求出最小值,并得到此时各线段的长度和1EF B F ⊥,由于1A E ⊥11A B ,故11,,,A E F B 四点共圆,三棱锥11B C EF -外接球即为四棱锥111C A B FE -的外接球,找到球心问题,求出半径,得到表面积.【详解】将三棱柱的侧面11ACC A 与侧面11ABB A 沿着1A A 展开到同一平面内,如下:则11C E EF FB ++长度最小值转化为11C F FB +的最小值,作点1C 关于直线BC 的对称点H ,连接1HB ,交BC 于点F ,则1HB 即为11C F FB +的最小值,也即11C E EF FB ++的最小值,其中1128C C H C ==,11628B C AB AC =+=+=,所以1B H ==此时可求出4,2BF AF ==,且145B FB ∠=︒,45AFE ∠=︒,故12,2AE AF A E ===,由勾股定理得11EF B F B E =====所以22211EF B F B E +=,由勾股定理逆定理可知,1EF B F ⊥,由于1A E ⊥11A B ,故11,,,A E F B 四点共圆,三棱锥11B C EF -外接球即为四棱锥111C A B FE -的外接球,连接1A Q ,由于四边形11A B FE 的外接圆圆心为1B E 的中点Q ,半径为112B E =1AQ 故OQ ⊥平面11A B FE ,所以OQ 平行于11C A ,取11A C 的中点W ,连接1,OW OC ,则1OW A Q=,且1OC 即为外接球半径,且1OC =,外接球的表面积为4π44π=.故答案为:44π【点睛】解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径17.(1)1n a n =+(2)2219344n n n T ++=⋅-【分析】(1)利用n S 与n a 的关系,求解通项公式;(2)利用错位相减法求解数列的前n 项和.【详解】(1)当1n =时,211122a a S +=+,即21120a a --=,12a =或11a =-(舍)当2n ≥时,211122n n n a a S ---+=+,又因为222n n n a a S +=+,两式相减得22110n n n n a a a a -----=,整理得()()1110n n n n a a a a --+--= {}n a 为正项数列,∴11n n a a --=数列{an}为等差数列,公差为1.()1111n a a n n ∴=+-⨯=+(2)()1313n a n n n b a n +=⋅=+,()()123423334313n n T n +=⨯+⨯+⨯+++⨯ ()()2345323334313n n T n +=⨯+⨯+⨯+++⨯ 两式相减得()()()122345223333313n n n T n ++-=⨯+++++⨯-+⨯ 291322n n +⎛⎫=-+⨯ ⎪⎝⎭2219344n n n T ++=⋅-.18.1(2)1,3)【分析】(1)根据余弦定理即可求解,(2)根据余弦定理得边角关系,即可利用正弦定理边角互化,结合三角恒等变换可得2B C =,即可由三角函数的性质求解.【详解】(1)在ABC 中,π4B =,据余弦定理可得222222cos b a c ac B a c =+-=+又2()b c a c =+,故2a ac =,由于0a >,故)1a c=+,得1ca =.(2)在ABC 中,据余弦定理可得2222cos b a c ac B =+-,又2()b c a c =+,故22cos a ac B ac -=,又0a >,故2cos a c B c-=据正弦定理sin sin a cA C =,可得sin 2sin cos sin A C B C -=,sin 2i [πs n cos )si (]n B C C B C =--+,sin cos cos sin 2sin cos sin B C B C C B C +-=,sin si (n )B C C =-,因为,,(0,π)A B C ∈,所以)π,π(B C -∈-,则B C C -=或πB C C -+=,即2B C =或B π=(舍)2π2cos 2cos 212sin(2)16B C C C C +=++=++,)ππ3(A B C C +==--,因为ABC 是锐角三角形,所以π0π32π022π02C C C ⎧<-<⎪⎪⎪<<⎨⎪⎪<<⎪⎩,得ππC 64<<,2ππ2πC 263<+<,故π3sin(2),162C ⎫+∈⎪⎪⎝⎭,)π2sin(211,36C ++∈)22cos 1,3B C +∈+,19.(1)分布列见解析,()21E X =(2)1990【分析】(1)根据超几何分布的概率公式求解概率,即可得分布列,利用期望公式即可求解,(2)根据相互独立事件的概率,即可求解.【详解】(1){}0102030X ∈,,,33310C 1(0)C 120P X ===,1273310C C 217(10)C 12040P X ====,2173310C C 6321(10)C 12040P X ====,37310C 357(30)C 12024P X ====所以X 的分布为X 0102030P11207402140724所以17217()010203021120404024E X =⨯+⨯+⨯+⨯=(2)记“该同学仅答对1道题”为事件M.()2127131219()C 103103390P M =⨯+⨯⋅=∴这次竞赛中该同学仅答对1道题得概率为1990.20.(1)证明见解析;【分析】(1)通过证明,EF AB EF AC ⊥⊥来证得EF ⊥平面ABC ;(2)建立空间直角坐标系,利用向量法来求得二面角B AD C --的余弦值.【详解】(1)取AC 的中点O ,连接OF 、OD ,∵//DE 平面ABC ,DE ⊂平面ABED ,平面ABED ⋂平面ABC AB =,∴//DE AB ,又∵O ,F 分别为AC ,BC 的中点,∴1//,2OF AB OF AB =∵2AB DE =∴//,OF DE OF DE =,∴四边形DEFO 为平行四边形,∴//EF DO ,∵在DAC △中DA DC =且O 为AC 中点,∴DO AC ⊥.∴由平面DAC ⊥平面ABC ,且交线为AC ,DO ⊂平面DAC ,得DO ⊥平面ABC .∵,AB AC ⊂平面ABC ,∴⊥DO AB ,DO AC ⊥,∵//EF DO ,∴EF AB ⊥,EF AC ⊥,∵AB AC A ⋂=,,AB AC ⊂平面ABC ,∴EF ⊥平面ABC .(2)∵DO ⊥平面ABC ,,AC BC ⊂平面ABC ,所以,DO AC DO BC ⊥⊥,又因为AB AC ⊥,所以,,DO AC BC 三者两两互相垂直,∴以O 为原点,OA 所在直线为x 轴,过点O 与CB 平行的直线为y 轴,OD 所在直线为z 轴,建立空间直角坐标系.则()1,0,0A ,()1,0,0C -,()1,4,0B -.∵EF ⊥平面ABC ,∴直线BE 与平面ABC 所成的角为60EBF ∠=.∴tan 60DO EF BF ===o,∴(0,0,D .平面ADC 的一个法向量为()0,1,0m =,设平面ADB 的法向量(),,n x y z =,()2,4,0AB =-,(1,0,AD =-uuu r ,则2400x y x -+=⎧⎪⎨-+=⎪⎩,取1z =,则x =y =∴()n =,∴cos ,4m n m n m n⋅<>==,由图可知二面角B AD C --为锐角,∴二面角B AD C --的余弦值为.21.(1)221412x y -=(2)32【分析】(1)根据题意求出22,a b 即可得解;(2)设()()1122,,,A x y B x y ,方法一:分直线AB 斜率存在和不存在两种情况讨论,设直线AB 方程为y kx m =+,联立方程,利用韦达定理求得1212,x x x x +,再根据122k k +=求出,k m 的关系,从而可得直线AB过定点,进而可得出答案.方法二:可设直线AB 方程为()()461m x n y -+-=,由221412x y -=可得()()2244661412x y ⎡⎤⎡⎤-+-+⎣⎦⎣⎦-=,再根据122k k +=求出m ,从而可得直线AB 过定点,进而可得出答案.【详解】(1)由题意得22222163612a b c a a b c ⎧-=⎪⎪⎪=⎨⎪+=⎪⎪⎩,解得22412a b ⎧=⎨=⎩,所以C 的方程为221412x y -=;(2)由题意,点M 坐标为()1,6,点N 坐标为()0,6,设()()1122,,,A x y B x y ,方法一:①若直线AB 斜率存在,设直线AB 方程为y kx m =+,221412x y y kx m ⎧-=⎪⎨⎪=+⎩,消去y 可得()22232120k x kmx m ----=,230k -≠且()22Δ124120m k =-+>,且2121222212,33km m x x x x k k ++==---,()()()()()()12211212121264646624444kx m x kx m x y y k k x x x x +--++----+=+==----,整理可得()()()121242228160m k x x k x x m -+++--+=,()()2222124222816033kmm m k k m k k ⎛⎫+-+⋅+-⋅--+= ⎪--⎝⎭,化简得22128122360m m k k km ---++=,即()()26460m k m k --+-=,因为直线AB 不过点()4,6P ,所以460m k +-≠,所以260m k --=,即26m k =+,所以直线AB 的方程为()26y k x =++,恒过定点()2,6Q -,②若直线AB 斜率不存在,则1212,0x x y y =+=,121212121166121224444y y y y k k x x x x --+--+=+===----,解得122x x ==-,所以直线AB 的方程为2x =-,过定点()2,6Q -,综上,直线AB 恒过定点()2,6Q -,设点M 到直线AB 的距离为1d ,点N 到直线AB 的距离为2d ,1122132122MAB NABAB d S d MQ S d NQ AB d ⋅⋅====⋅⋅ .方法二:因为直线AB 不过点()4,6P ,所以可设直线AB 方程为()()461m x n y -+-=,由221412x y -=可得()()2244661412x y ⎡⎤⎡⎤-+-+⎣⎦⎣⎦-=,即()()22(6)3(4)1262440y x y x ---+---=,()()][()()22(6)3(4)126244460y x y x m x n y ⎡⎤---+---⋅-+-=⎣⎦,得()()()()()22121(6)122446243(4)0n y m n x y m x +-+----+-=,等式左右两边同时除以2(4)x -,得()()()2661211224243044y y n m n m x x --⎛⎫++--+= ⎪--⎝⎭,()()2Δ(1224)41212430m n n m =-+++>,121212661224244121y y m n k k x x n ---+=+=-=--+,解得16m =-,所以直线AB 方程为()()14616x n y -⋅-+-=,即()()2660x n y -++-=,恒过定点()2,6Q -,下同法一.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.22.(1)2(e 1)210x y --+=(2)12a ≤(3)12a =【分析】(1)求导,利用导函数的几何意义求出切线方程;(2)参变分离,构造2e ()2x xg x x -=+,求导,得到其最小值,求出a 的取值范围;(3)注意到(0)1f =,多次求导得到()e 2xl x a '=-,从而分12a =,12a >,0a ≤与102a <<,结合函数单调性,极值和最值情况,求出答案【详解】(1)21()e ,(1)e 22xx f x f =-=-,()e ,(1)e 1xf x x f ''=-=-,所以曲线()y f x =在点(1,(1))f 处的切线方程1e (e 1)(1)2y x ⎛⎫--=-- ⎪⎝⎭,即2(e 1)210x y --+=.(2)因为2()e 20x f x ax x a =---≥'在区间[0,)+∞上恒成立,所以2min e 2x x a x ⎛⎫-≤ ⎪+⎝⎭,令2e ()2xxg x x -=+,则()()()()222e 12e 2()2xx x x xg x x⋅'-+--=+,令()()()2()e 12e 2x x h x x x x=-+--⋅,则2()e 2x h x x x '=+,当0x ≥时,()0,()h x h x '≥单调递增,()(0)0h x h ≥=,所以()0g x '≥,所以()g x 在[0,)+∞上单调递增,故min 1()(0)2g x g ==,所以12a ≤.(3)23()e 2,(0)132xa x f x x ax f =---=,2()e 2,(0)12,x f x ax x a f a =---=-''令()2()e 2x k x f x ax x a -'==--,则()e 21xk x ax '=--,令()()e 21x l x k x ax '==--,则()e 2xl x a '=-,当12a =时,2231()e ,()e 1622x x x x f x x x f x x =-----'=-,则()e 1x k x x '=--,()e 1xl x '=-,当0x <时,()0,()l x k x ''<在(,0)-∞上单调递减,当0x ≥时,()0,()l x k x ''≥在[0,)+∞上单调递增,()(0)0,()k x k k x ''≥=在(,)-∞+∞上单调递增,且(0)0k =,所以,当0x <时,()0,()0,()k x f x f x '<<在(,0)-∞上单调递减,当0x >时,()0,()0,()k x f x f x '>>在(0,)+∞上单调递增,所以min ()(0)1f x f ==.所以12a =适合,当12a >时,当0ln 2x a <<时,()0l x '<,()l x 在(0,ln 2)a 上单调递减,()(0)0l x l <=,()2()e 2x k x f x ax x a-'==--在(0,ln 2)a 上单调递减,因为()(0)120f x f a '<='-<,所以()f x 在(0,ln 2)a 上单调递减,此时()(0)1f x f <=,舍去.当0a ≤时,当0x <时,()e 210xk x ax '=--<,()f x '在(,0)-∞上单调递减,()(0)120f x f a >=-'>',()f x 在(,0)-∞上单调递增,()(0)1f x f <=,舍去;当102a <<时,当ln 20a x <<时,()e 20,()xl x a k x ''=->在(ln 2,0)a 上单调递增,()(0)0,()k x k f x ''<='在(ln 2,0)a 上单调递减,()(0)120,()f x f a f x >=->''在(ln 2,0)a 上单调递增,此时,()(0)1f x f <=,舍去.综上,12a =.【点睛】方法点睛:对于求不等式成立时的参数范围问题,一般有三个方法:一是分离参数法,使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件;二是讨论分析法,根据参数取值情况分类讨论;三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.。
江苏省南京市南京师大附中2025届数学高三第一学期期末学业质量监测试题 注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量()()1,3,2a m b ==-,,且()a b b +⊥,则m =( )A .−8B .−6C .6D .82.设等差数列{}n a 的前n 项和为n S ,若5632a a a +=+,则7S =( )A .28B .14C .7D .2 3.已知20,()1(0),{|()},{|(())()}a f x ax x x A x f x x B x f f x f x x >=-+>=≤=≤≤,若A B φ=≠则实数a 的取值范围是( )A .(0,1]B .3(0,]4 C .3[,1]4 D .[1,)+∞4.已知F 为抛物线2:8C y x =的焦点,点()1,A m 在C 上,若直线AF 与C 的另一个交点为B ,则AB =( )A .12B .10C .9D .85.已知实数x ,y 满足2212x y +≤,则2222267x y x y x +-++-+的最小值等于( ) A.5 B.7 C- D.9-6.已知x ,y 满足不等式00224x y x y t x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩,且目标函数z =9x +6y 最大值的变化范围[20,22],则t 的取值范围( ) A .[2,4] B .[4,6] C .[5,8] D .[6,7]7.为了加强“精准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参加、、A B C 三个贫困县的调研工作,每个县至少去1人,且甲、乙两人约定去同一个贫困县,则不同的派遣方案共有( ) A .24B .36C .48D .64 8.若函数()2x f x e mx =-有且只有4个不同的零点,则实数m 的取值范围是( )A .2,4e ⎡⎫+∞⎪⎢⎣⎭B .2,4e ⎛⎫+∞ ⎪⎝⎭C .2,4e ⎛⎫-∞ ⎪⎝⎭D .2,4e ⎛⎤-∞ ⎥⎝⎦ 9.已知甲盒子中有m 个红球,n 个蓝球,乙盒子中有1m -个红球,+1n 个蓝球(3,3)m n ≥≥,同时从甲乙两个盒子中取出(1,2)i i =个球进行交换,(a )交换后,从甲盒子中取1个球是红球的概率记为(1,2)i p i =.(b )交换后,乙盒子中含有红球的个数记为(1,2)i i ξ=.则( )A .1212,()()p p E E ξξ><B .1212,()()p p E E ξξC .1212,()()p p E E ξξ>>D .1212,()()p pE E ξξ<<10.当输入的实数[]230x ∈,时,执行如图所示的程序框图,则输出的x 不小于103的概率是( )A .914B .514C .37 D .92811.若i 为虚数单位,则复数22sin cos 33z i ππ=-+,则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限12.设函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 在[0,2]π上有且仅有5个零点,则ω的取值范围为() A .1229,510⎡⎫⎪⎢⎣⎭ B .1229,510⎛⎤⎥⎝⎦ C .1229,510⎛⎫⎪⎝⎭ D .1229,510⎡⎤⎢⎥⎣⎦二、填空题:本题共4小题,每小题5分,共20分。
盐城市、南京市2023—2024学年度第一学期期末调研测试高 三 数 学 2024.01注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.第 Ⅰ 卷(选择题 共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2+3i)(2-3i)=A .5B .-1C .1D .72.已知集合A ={0,1,2},B ={x |y =lg(-x 2+2x ),则A ∩B =A .{0,1,2}B .{1}C .{0}D .(0,2)3.已知x >0,y >0,则x +y ≥2是xy ≥1的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件4.下列函数中是偶函数的是A .y =e x +eB .y =e x -eC .y =e +e e -eD .y =(e x +e )(e x -e )5.从4位男同学、5位女同学中选出3位同学,男女生都要有的选法有A .140种B .44种C .70种D .252种6.已知反比例函数y =k x (k ≠0)的图象是双曲线,其两条渐近线为x 轴和y 轴,两条渐近线的夹角为π2,将双曲线绕其中心旋转可使其渐近线变为直线y =±x ,由此可求得其离心率为2.已知函数y =33x +1x的图象也是双曲线,其两条渐近线为直线y =33x 和y 轴,则该双曲线的离心率是A .3 B .23 C .233 D .4337.已知直线l 与椭圆x 9+y 3=1在第二象限交于A ,B 两点,l 与x 轴,y 轴分别交于M ,N 两点,若|AM |=|BN |,则l 的倾斜角是A .π6B .π3C .π4D .5π128.平面向量a ,b ,c 满足|a |=|b |=a ·b =2,|a +b +c |=1,则(a +c )·(b +c )的最小值是A .-3B .3-23C .4-23D .-23二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》中明确提出要创新实施文化惠民工程,提升基层综合性文化服务中心功能,广泛开展群众性文化活动.某乡镇为了考核甲、乙两村的文化惠民工程,在两村的村民中进行满意度测评,满分100分,规定:得分不低于80分的为“高度满意”,得分低于60分的为“不满意”.经统计发现甲村的评分X 和乙村的评分Y 都近似服从正态分布,其中X ~N (70,σ12),Y ~N (75,σ22),0<σ1<σ2,则A .X 对应的正态曲线比Y 对应的正态曲线更扁平B .甲村的平均分低于乙村的平均分C .甲村的高度满意率与不满意率相等D .乙村的高度满意率比不满意率大10.已知{a n }是等比数列,S n 是其前n 项和,满足a 3=2a 1+a 2,则下列说法中正确的有A .若{a n }是正项数列,则{a n }是单调递增数列B .S n ,S 2n -S n ,S 3n -S 2n 一定是等比数列C .若存在M >0,使|a n |≤M 对n ∈N *都成立,则{|a n |}是等差数列D .若存在M >0,使|a n |≤M 对n ∈N *都成立,则{S n }是等差数列11.设M ,N ,P 为函数f (x )=A sin(ωx +φ)图象上三点,其中A >0,ω>0,|φ|<π2,已知M ,N 是函数f (x )的图象与x 轴相邻的两个交点,P 是图象在M ,N 之间的最高点,若MP 2+2MN ·NP =0,△MNP 的面积是3,M 点的坐标是(-12,0),则A .A =2B .ω=π2C .φ=π4D .函数f (x )在M ,N 间的图象上存在点Q ,使得QM ·QN <012.在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AD ⊥CD ,AD =CD =2,四棱锥P -ABCD 的外接球为球O ,则A .AB ⊥BC B .V P -ABCD >2V P -ACDC .V P -ABCD =2V O -ABCD D .点O 不可能在平面PBC 内第 Ⅱ 卷(非选择题 共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.满足f (xy )=f (x )+f (y )的函数f (x )可以为f (x )= ▲ .(写出一个即可)14.tan π8-1tan π8= ▲ .15.抛物线有一条重要性质:从焦点出发的光线,经过抛物线上一点反射后,反射光线平行于抛物线的对称轴.已知点F 为抛物线C :y 2=2px (p >1)的焦点,从点F 出发的光线经抛物线上一点反射后,反射光线经过点(10,1),若入射光线和反射光线所在直线都与圆E :(x -116)2+y 2=1相切,则p 的值是 ▲ .16.若数列{a n }满足a 1=a 2=1,a n +a n +1+a n +2=n 2(n ∈N *),则a 100= ▲ .四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)17.(本小题满分10分)设数列{a n }的前n 项和为S n ,a n +S n =1.(1)求数列{a n }的通项公式;(2)数列{b n }满足a n b n =cos n π2,求{b n }的前50项和T 50.18.(本小题满分12分)在平行六面体ABCD -A 1B 1C 1D 1中,底面ABCD 为正方形,AB =AA 1=2,∠A 1AB =π3,侧面CDD 1C 1⊥底面ABCD .(1)求证:平面A 1BC ⊥平面CDD 1C 1;(2)求直线AB 1和平面A 1BC 1所成角的正弦值.(第18题图)19.(本小题满分12分)在△ABC中,角A,B,C所对的边分别是a,b,c,且c tan B=(2a-c)tan C.(1)求角B的大小;(2)若点D在边AC上,BD平分∠ABC,b=23,求BD长的最大值.20.(本小题满分12分)春节临近,为了吸引顾客,我市某大型商超策划了抽奖活动,计划如下:有A、B、C三个抽奖项目,它们之间相互不影响,每个项目每位顾客至多参加一次,项目A中奖的概率是14,项目B和C中奖的概率都是25.(1)若规定每位参加活动的顾客需要依次参加A、B、C三个项目,如果A、B、C三个项目全部中奖,顾客将获得100元奖券;如果仅有两个项目中奖,他将获得50元奖券;否则就没有奖券.求每位顾客获得奖券金额的期望;(2)若规定每位顾客等可能地参加三个项目中的一个项目.已知某顾客中奖了,求他参加的是A项目的概率.21.(本小题满分12分)已知函数f(x)=e-ln xx(m∈R).(1)当m=1时,求函数f(x)的单调区间;(2)若函数f(x)的图象与x轴相切,求证:1+ln2<m<2+ln6.22.(本小题满分12分)已知双曲线C:y2a2-x2b2=1(a>0,b>0)的两个焦点是F1,F2,顶点A(0,-2),点M是双曲线C上一个动点,且|MF12-MF22|的最小值是85.(1)求双曲线C的方程;(2)设点P是y轴上异于C的顶点和坐标原点O的一个定点,直线l过点P且平行于x轴,直线m过点P且与双曲线C交于B,D两点,直线AB,AD分别与直线l交于G,H两点.若O,A,G,H四点共圆,求点P 的坐标.。
江苏省南京市金陵中学2007—2008学年度第一学期期中考试高一数学2007.11.16一、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.将答案填在答案卷的表格内)1. 已知集合P ={x ∈N |1≤x ≤10},集合Q ={x ∈R |x 2+x -6=0},则P ∩Q 等于 (A ){1,2,3} (B ){2,3} (C ){1,2} (D ){2}2. 函数f (x )=3x 21-x +lg(3x +1)的定义域是(A )(-13,+∞)(B )(-13,1)(C )(-13,13)(D )(-∞,-13)3. 已知log 12b <log 12a <log 12c ,则 (A )2b >2a >2c(B )2a >2b >2c(C )2c >2b >2a(D )2c >2a >2b4. 函数f (x )=9-x 2x的图象关于(A )x 轴对称 (B )y 轴对称 (C )原点对称 (D )直线x -y =0对称5. 函数y =f (x )是R 上的偶函数,且在(-∞,0]上是增函数,若f (a )≤f (2),则实数a 的 取值范围是 (A )a ≤2 (B )a ≥-2 (C )-2≤a ≤2 (D )a ≤-2或a ≥26. 设f (x )=3x +3x -8,用二分法求方程3x +3x -8=0在x ∈(1,2)内近似解的过程中,计算得到f (1)<0,f (1.5)>0,f (1.25)<0,则方程的根落在区间 (A )(1,1.25) (B )(1.25,1.5) (C )(1.5,2) (D )不能确定二、填空题(本大题共8小题,每小题4分,共32分,请将答案填在答卷纸上) 7. 函数y =2x的值域为____▲____.8. 已知f (x )=|log a x |,其中0<a <1,则f (2),f (13),f (14)由大到小排列为_____▲_____.9. 若函数y =mx 2-6x +2的图像与x 轴只有一个公共点,则m 的取值集合为______▲___. 10. 若log a 23<1(a >0且a ≠1),则实数a 的取值范围是_____▲_____.11. 已知函数f (x )=ax 7+bx -2,若f (2008)=10,则f (-2008)的值为_____▲_____.12. 函数f (x )=⎩⎨⎧-2x , x ≤0,x 2+1,x >0,若f (x )=10,则x =_____▲_____.13.填写后面表格,其三个数依次为:____▲____.14.关于函数y=log2(x2-2x+3)有以下四个结论:①定义域为(-∞,-3]∪(1,+∞);②递增区间为[1,+∞);③最小值为1;④图象恒在x轴的上方.其中正确结论的序号是_______▲_______.三、解答题(本大题共5小题,共50分,解答应写出文字说明,证明过程或演算步骤)15.(本题满分8分)(1)化简:0.25-1×(32)12×(274)14;(2)已知2lg(x-2y)=lg x+lg y,求log2xy的值.16.(本题满分10分)设函数f(x)=|x2-4x-5|,x∈R.(1)在区间[-2,6]上画出函数f(x)的图像;(2)写出该函数在.R.上.的单调区间.17.(本题满分10分)某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时可全部租出;当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月效益最大?最大效益是多少?18.(本题满分10分)已知幂函数f(x)=x(2-k)(1+k)(k∈Z)满足f(2)<f(3).(1)求实数k的值,并写出相应的函数f(x)的解析式;(2)对于(1)中的函数f(x),试判断是否存在正数m,使函数g(x)=1-mf(x)+(2m-1)x,在区间[0,1]上的最大值为5.若存在,求出m的值;若不存在,请说明理由.19. (本题满分12分)已知二次函数f (x )=ax 2+bx +c .(1) 若a >b >c ,且f (1)=0,证明f (x )的图象与x 轴有2个交点;(2) 在(1)的条件下,是否存在m ∈R ,使得f (m )=-a 成立时,f (m +3)为正数,若存在,证明你的结论,若不存在,请说明理由;(3) 若对x 1,x 2∈R ,且x 1<x 2,f (x 1)≠f (x 2),方程f (x )=12[f (x 1)+f (x 2)]有两个不等实根,证明必有一个根属于(x 1,x 2).江苏省南京市金陵中学2007—2008学年度第一学期期中考试高一数学答案一、选择题:本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共8小题,每小题4分,共32分.将答案填在相应的横线上.7.[1,+∞) 8.f (14),f (13),f (2)9.{0,92}10.(0,23)∪(0,+∞)11. -14 12.3或-5 13.3,2,1 14.②③④三、解答题:本大题共5小题,共50分,解答应写出文字说明,证明过程或演算步骤. 15.(本题满分8分) (1)解:原式=4×2-12×314×2714×4-14=4×2-12×314×334×2-12=4×2-1×3=6.(2)解:根据题意,得⎩⎨⎧x >0,y >0,x -2y >0,( x -2y )2=xy ,解得⎩⎨⎧x >2y >0,x =y ,或x =4y ,因此x =4y .所以log 2 xy=log 24=4.16.(本题满分10分)22(2) 函数在(-∞,-1]上单调递减;函数在[-1,2]上单调递增; 函数在[2,5]上单调递减; 函数在[5,+∞)上单调递增.17.(本题满分10分) 解:(1)3600-3000=600(元) 600÷50=12(辆) 100-12=88(辆)答:当每辆车的月租金为3600元时,能租出88辆.(2)设每辆车的月租金定为(3000+50x )元时,租赁公司的月效益为y 元,则y =(100-x )(3000+50x -150)-50x ,其中x ∈N , 对于y =(100-x )(3000+50x -150)-50x=-50(x -21)2+307050,当x =21时,此时月租金为3000+50×21=4050(元),y max =307050(元). 答:当每辆车的月租金定为4050元时,租赁公司的月效益最大,为307050元. 18.(本题满分10分) 解:(1)对于幂函数f (x )=x (2-k )(1+k )满足f (2)<f (3), 因此(2-k )(1+k )>0, 解得-1<k <2, 因为k ∈Z , 所以k =0,或k =1, 当k =0时,f (x )=x 2,当k =1时,f (x )=x 2,综上所述,k 的值为0或1,f (x )=x 2.(2)函数g (x )=1-mf (x )+(2m -1)x=-mx 2+(2m -1)x +1,因为要求m >0,因此抛物线开口向下, 对称轴x =2m -12m,当m >0时,2m -12m =1-12m <1,因为在区间[0,1]上的最大值为5,所以⎩⎨⎧1-12m >0,g (1-12m )=5,或⎩⎪⎨⎪⎧1-12m ≤0,g (0)=5,解得m =52+6满足题意.19. (本题满分12分) 解:(1)因为f (1)=0, 所以a +b +c =0, 又因为a >b >c , 所以a >0,且c <0, 因此ac <0, 所以Δ=b 2-4ac >0, 因此f (x )的图象与x 轴有2个交点.(2)由(1)可知方程f (x )=0有两个不等的实数根, 不妨设为x 1和x 2, 因为f (1)=0, 所以f (x )=0的一根为x 1=1, 因为x 1+x 2=-b a ,x 1x 2=ca ,所以x 2=-b a -1=ca,因为a >b >c ,a >0,且c <0,所以-2<x 2<0.因为要求f (m )=-a <0, 所以m ∈(x 1,x 2), 因此m ∈(-2,1), 则m +3>1,因为函数y =f (x )在[1,+∞)上单调递增; 所以f (m +3)>f (1)=0成立.(3)构造函数g (x )=f (x )-12[f (x 1)+f (x 2)],则g (x 1)=f (x 1)-12[f (x 1)+f (x 2)]=12[f (x 1)-f (x 2)],g (x 2)=f (x 2)-12[f (x 1)+f (x 2)]=12[f (x 2)-f (x 1)],于是g (x 1)g (x 2)=14[f (x 1)-f (x 2)][f (x 2)-f (x 1)]=-14[f (x 1)-f (x 2)]2,因为f (x 1)≠f (x 2), 所以g (x 1)g (x 2)=-14[f (x 1)-f (x 2)]2<0,所以方程g (x )=0在(x 1,x 2)内有一根, 即方程f (x )=12[f (x 1)+f (x 2)]必有一根属于(x 1,x 2).。
南京市2005----2006学年度第一学期期末调研测试卷 高三数学 一、选择题(每小题5分,共60分)1、 已知集合{}2,1,0=A ,{}A a a x x B ∈==,2|,则集合=B A(A ){}0 (B ){}1,0 (C ){}3,1 (D ){}2,02、已知向量)0,1(=a ,)1,1(=b ,{}0,1-=c ,若b a cμλ+=,则μλ,的值分别为(A )1,0 (B )1,1 (C )0,1 (D )1-,0 3、如果c b a ,,成等比数列,那么关于x 的方程02=++c bx ax(A )一定有两个不同的实数根;(B )一定有两个相同的实数根; (C )一定有没有实数根; (D )以上三种情况均可出现。
4、“2=b ”是“直线b x y +=与圆222=+y x 相切”的(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分又不必要条件5、已知122)(+-=xa x f 是定义域在R 上的奇函数,则)(1x f -的值是(A )2 (B ) 53 (C )21 (D )356、如图,表示阴影区域的不等式组为(A )⎪⎩⎪⎨⎧≥≥+≥+094352y y x y x (B )⎪⎩⎪⎨⎧≥≤+≤+094352y y x y x(C )⎪⎩⎪⎨⎧≥≥+≥+094352x y x y x (D )⎪⎩⎪⎨⎧≥≥+≤+094352y y x y x7、已知函数)4(cos )4(cos )(22x x x f --+=ππ,则=)12(πf(A )21 (B )21- (C )23 (D )23- 8、若双曲线的焦点到渐近线的距离等于实轴长,,则该双曲线的离心率e = (A )2(B )3(C )5(D )259、用清水漂洗衣服,假定每次能洗去污垢的43,若要使存留的污垢不超过原有的1%,则至少要漂洗(A )3次(B )4次(C )5次(D )5次以上。
南京市2023届高三年级期末调研模拟数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}{}113,202x M x x N x =+-≤<=<≤则M N ⋂=()A.{}04x x ≤<B.{}04x x <<C.{}14x x ≤< D.{}14x x <<【答案】D 【解析】【分析】将集合,M N 分别化简,然后结合交集的运算即可得到结果.【详解】因为{}113M x x =+-≤<,则[)0,4M =,又因为{}202xN x =<≤,则(]1,4N =,所以()1,4M N ⋂=.故选:D.2.若复数z 满足||2,3z z z z -=⋅=,则2z 的实部为()A.2- B.1- C.1D.2【答案】C 【解析】【分析】设复数i,(,R)z x y x y =+∈,则i z x y =-,故根据||2,3z z z z -=⋅=可求得222,1x y ==,结合复数的乘方运算,可求得答案.【详解】设复数i,(,R)z x y x y =+∈,则i z x y =-,则由||2,3z z z z -=⋅=可得|2i |2y =且223x y +=,解得222,1x y ==,故2222(i)2i x y x y x z y =+=-+,其实部为22211x y -=-=.故选:C.3.若等差数列{}n a 的前5项和为75,422a a =,则9a =()A.40B.45C.50D.55【答案】B【解析】【分析】设等差数列{}n a 的公差为d ,根据等差数列前n 项和与基本量1a 和d 的关系将题目条件全部转化为基本量的关系,即可求解.【详解】设等差数列{}n a 的公差为d ,根据题意可得()11154575232a d a d a d ⨯⎧+=⎪⎨⎪+=+⎩,解得15a =,5d =,91845a a d ∴=+=.故选:B.4.已知随机变量X 服从正态分布()22,N σ,且()()1235P X P X -<≤=>,则()150.75P X -<≤==()A.0.5B.0.625C.0.75D.0.875【答案】C 【解析】【分析】根据正态分布的对称性,由题中条件,直接求解即可.【详解】因为()22,X N σ,()()1225P X P X -<≤=≤<并且()20.5P X ≥=又因为()()1235P X P X -<≤=>,所以()()()()2255450.5P X P X P X P X ≥=≤<+>=>=,所以()50.125P X >=所以()250.50.1250.375P X ≤<=-=,所以()150.75P X -<≤=故选:C5.若正n 边形12n A A A L 的边长为2,21121n i i i i i A A A A -+++=⋅=∑,则n =()A.6 B.8 C.10D.12【答案】D 【解析】【分析】设正n 边形的内角为θ,根据数量积公式可得1124cos i i i i A A A A θ+++⋅=-,由于21121n i i i i i A A A A -+++=⋅=∑ ()cos 22πn n n -=--,分别代入各选项的n 即可判断正误.【详解】解:设正n 边形的内角为θ,则()2πn nθ-=,()11222cos π4cos i i i i A A A A θθ+++∴⋅=⨯-=-,()2112142cos n i i i i i A A A A n θ-+++=⋅=--∑即()()()42cos cos22π2πn n n n n n--=---=⇒-,当6n =时,()262ππ21cos cos 3662-==-≠--,A 选项错误;当8n =时,()282ππ3coscos 4882-==-≠--,B 选项错误;当10n =时,()43coscos sin sin 51032102ππππ10==-->-=-,由于82-<,所以4cos 5π8-≠,C 选项错误;当12n =时,()5co 122ππs cos 6212122-==-=--,D 选项正确;故选:D.6.已知O 为坐标原点,椭圆C :2221(1)x y a a+=>,C 的两个焦点为F 1,F 2,A 为C 上一点,其横坐标为1,且|OA |2=|AF 1|·|AF 2|,则C 的离心率为()A.14B.24C.12D.22【答案】D 【解析】【分析】设()01,A y ,由220||1OA y =+,10||AF a ex =+,20||AF a ex =-,根据题意列方程可得结果.【详解】设0(1,)A y ,则20211y a +=,即:20211y a =-,∴2202211||1112OA y a a =+=+-=-.又∵10||AF a ex a e =+=+,20||AF a ex a e =-=-,∴2212||||AF AF a e =-.又∵212||||||OA AF AF =,∴22212a e a-=-.①又∵222222111c a e a a a -===-②,1a >③,∴由①②③得:22a =,212e =.又∵01e <<,∴22e =.故选:D.7.若()()sin 2sin ,sin tan 1αβαβαβ=+⋅-=,则tan tan αβ=()A.2B.32C.1D.12【答案】A 【解析】【分析】由三角恒等变换化简结合已知条件求解即可【详解】因为()()cos cos cos sin sin cos cos cos sin sin αβαβαβαβαβαβ⎧+=-⎪⎨-=+⎪⎩,所以()()1sin sin cos cos 2αβαβαβ⎡⎤=--+⎣⎦,所以()()()1sin sin cos 2cos 22αβαββα+-=-,又()()sin tan 1αβαβ+⋅-=,所以()()()sin sin 1cos αβαβαβ-+⋅=-即()()()sin sin cos αβαβαβ+-=-,所以()()1cos 2cos 2cos 2βααβ-=-,所以()()22112sin 12sin cos 2βααβ--+=-即()22sin sin cos αβαβ-=-,又sin 2sin αβ=,所以224sin sin cos cos sin sin ββαβαβ-=+,所以2224sin sin cos cos 2sin ββαββ-=+,所以2sin cos cos βαβ=,所以1sin sin cos cos 2αβαβ=即sin sin 2cos cos αβαβ=,又易知cos cos 0αβ≠,所以sin sin 2cos cos αβαβ=,即tan tan 2αβ=,故选:A8.若函数()f x 的定义域为Z ,且()()()[()()]f x y f x y f x f y f y ++-=+-,(1)0(0)(2)1f f f -===,,则曲线|()|y f x =与2log y x =的交点个数为()A.2B.3C.4D.5【答案】B 【解析】【分析】利用赋值法求出当Z x ∈,且x 依次取0,1,2,3 ,时的一些函数值,从而找到|()|y f x =函数值变化的规律,同理找到当Z x ∈,且x 依次取1,2,3--- ,时,|()|y f x =函数值变化的规律,数形结合,即可求得答案.【详解】由题意函数()f x 的定义域为Z ,且()()()[()()]f x y f x y f x f y f y ++-=+-,(1)0(0)(2)1f f f -===,,令1y =,则[]()(1)(1)()(1)1(1())f x f x f x f f x f f ++-==+-,令1x =,则2(2)(0)(1)f f f +=,即2(1)2f =,令2x =,则(3)(1)(2)(1)f f f f +=,即(3)0f =,令3x =,则(4)(2)(3)(1)f f f f +=,即(4)1f =-,令4x =,则(5)(3)(4)(1)f f f f +=,即(5)(1)f f =-,令5x =,则(6)(4)(5)(1)f f f f +=,即2(6)1(1),(6)1f f f -=-∴=-,令6x =,则(7)(5)(6)(1)f f f f +=,即(7)(1)(1),(7)0f f f f -=-∴=,令7x =,则(8)(6)(7)(1)f f f f +=,即(8)10,(8)1f f -=∴=,依次类推,可发现此时当Z x ∈,且x 依次取0,1,2,3 ,时,函数|()|y f x =的值依次为1 ,,即每四个值为一循环,此时曲线|()|y f x =与2log y x =的交点为(2,1);令=1x -,则(0)(2)(1)(1)0,(2)1f f f f f +-=-=∴-=-,令2x =-,则(1)(3)(2)(1)(1),(3)(1)f f f f f f f -+-=-=-∴-=-,令3x =-,则2(2)(4)(3)(1)(1),(4)1f f f f f f -+-=-=-∴-=-,令4x =-,则(3)(5)(4)(1)(1),(5)0f f f f f f -+-=-=-∴-=,令5x =-,则(4)(6)(5)(1)0,(6)1f f f f f -+-=-=∴-=,令6x =-,则(5)(7)(6)(1)(1),(7)(1)f f f f f f f -+-=-=∴-=,令7x =-,则2(6)(8)(7)(1)(1),(8)1f f f f f f -+-=-=∴-=,依次类推,可发现此时当Z x ∈,且x 依次取1,2,3--- ,时,函数|()|y f x =的值依次为0,11 ,,即每四个值为一循环,此时曲线|()|y f x =与2log y x =的交点为(1,0),(2,1)--;故综合上述,曲线|()|y f x =与2log y x =的交点个数为3,故选:B【点睛】难点点睛:确定曲线|()|y f x =与2log y x =的交点个数,要明确函数|()|y f x =的性质,因此要通过赋值求得|()|y f x =的一些函数值,从中寻找规律,即找到函数|()|y f x =的函数值循环的规律特点,这是解答本题的难点所在.二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知点()cos ,sin A αα,()2cos B ββ,其中[),0,2αβπ∈,则()A.点A 的轨迹方程为221x y +=B.点B 的轨迹方程为22143x y +=C.AB 1D.AB 1【答案】ABC 【解析】【分析】将,A B 点坐标代入方程,即可判断A 、B 项;根据三角形三边关系,结合图象,即可求出AB 的最小值与最大值,即可判断C 、D 项.【详解】对于A 项,将A 点坐标代入,可得22cos sin 1αα+=成立,故A 项正确;对于B 项,将B 点坐标代入,可得())22222cos cos sin 143ββββ+=+=成立,故B 项正确;对于C 项,A 点轨迹为以()0,0为圆心,1为半径的圆.B 点轨迹为椭圆.两者位置关系如下图:显然1BO AO >=,因为1AB BO AO BO ≥-=-,当且仅当,,A B O 三点共线时(如图11,A B 或22,A B ),等号成立.所以,min min 1AB BO =-,当点B 为短轴顶点时,取得最小值,即min BO b ==,所以min 1AB =,故C 项正确;对于D 项,因为1AB AO BO BO ≤+=+,当且仅当,,A B O 三点共线时(如图33,A B 或44,A B ),等号成立.所以,max max 1AB BO =+,当点B 为长轴顶点时,取得最大值,max 2BO a ==,所以max 3AB =,故D 项错误.故选:ABC.10.记函数()πcos (0)4f x x ωω⎛⎫=+> ⎪⎝⎭的最小正周期为T ,且()*2ππN 3n T n n ≤≤∈.若π6x =为()f x 的零点,则()A.23n nω≤≤B.321n ω<-C.π2x =为()f x 的零点D.7π6x =为()f x 的极值点【答案】AD 【解析】【分析】利用周期2πT ω=,计算出ω的范围;结合ππcos 0664f ωπ⎛⎫⎛⎫=+=⎪⎪⎝⎭⎝⎭计算出ω的值,结合余弦函数的零点,极值等性质可判断是否正确.【详解】2πT ω=Q ,()*22πN 3n n n ππω∴≤≤∈得23n nω≤≤,故A 正确;由题意得ππcos 0664f ωπ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,πππ,Z 642k k ωπ∴+=+∈,36,Z 2k k ω∴=+∈,又*23n N n nω≤≤∈ ,,则*1111N ,Z 3424k n k n n -≤≤-∈∈,,当2n =有唯一解0k =,则32ω=,故B 错误;()3πcos 24f x x ⎛⎫=+ ⎪⎝⎭ ,则π3πcos 12224f π⎛⎫⎛⎫=⋅+=-⎪ ⎪⎝⎭⎝⎭,故C 错误;7π37πcos 16264f π⎛⎫⎛⎫=⋅+= ⎪ ⎪⎝⎭⎝⎭,故D 正确;故选:AD11.对于伯努利数()N n B n ∈,有定义:001,C (2)nkn nkk B B B n ===∑ .则()A.216B =B.4130B =C.6142B =D.230n B +=【答案】ACD 【解析】【分析】根据伯努利数的定义以及二项式定理,将()N n B n ∈写成递推公式的形式,逐一代入计算即可判断选项.【详解】由001,C (2)nk n nkk B B B n ===∑ 得,012301230C C C C C +(2)C nk n n k n n n k nn n n B B B B B B n B ==+++⋅⋅⋅⋅⋅⋅+≥=∑,所以,0123101231C )C +C 0(2C C n n n n n n n B B B B n B --+++⋅⋅⋅⋅⋅⋅+=≥,同理,0123101213111111C )C +0(1C C C C n nn n n n n n n n n B B B B B B +++++-+-+++⋅⋅⋅⋅⋅⋅++=≥,所以,()1012311211311011+(1)C C C C C C nn n n n n n n n n B B B B n B B +++--+++=-+++⋅⋅⋅⋅⋅⋅+≥,()1012311101231111+(1)C C C C C 1n n n n n n n n B B n n B B B B ++-+++-=-+++⋅⋅⋅⋅⋅⋅+≥+其中第1m +项为111(1)(1)(2)(1)(2)C 11123123n m mm m n n n n m n n n m B B B n n m m ++--+--+=⨯=++⨯⨯⨯⋅⨯⋅⋅⋅⋅⋅⋅⋅⨯⨯⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⨯⋅⋅⋅⋅⋅⋅⨯(1)(2)(1)C 12311m mm nB B n n n m n m n m n m m ⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅--+-+=⨯⨯⨯⋅+-⨯-+即可得01201211C +C +C C C 11(1)1m m nn n n n n n n B B B B B n B n n n n m --⎛⎫=-+⋅⋅⋅⋅⋅⋅++⋅⋅⋅⋅-⋅⋅+ ⎝⎭++≥-⎪令1n =,得11002C 111B B ⎛⎫= +-=-⎪⎝⎭;令2n =,得0101222C C 31113262B B B ⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭+⎝⎭;令3n =,得012012333310C C 11C 434224B B B B ⎛⎫⎛⎫=-=--+= ⎪ ⎪⎝⎭⎝++⎭同理,可得45678910111115,0,,0,,0,,030423066B B B B B B B B =-====-===;即可得选项AC 正确,B 错误;由上述前12项的值可知,当n 为奇数时,除了1B 之外其余都是0,即210(1)n B n +=≥,也即230,N n B n +=∈;所以D 正确.故选:ACD.12.已知函数()1πsin ,(,)()(2)2ni xf xg x n f x i n ===+∑ ,则()A.(),40g x n =B.()(),42n ng x f x ++=C.()()()1,0g x nf n f x ++=D.()()(),0g x n nf n f x ++=【答案】ACD 【解析】【分析】首先理解1(,)()(2)ni g x n f x i n ==+∑,并写出(,4)g x n ,再利用函数()πsin 2xf x =的周期,结合()()()()1234f x f x f x f x +++++++的值,即可判断选项A;代特殊值,判断B ;CD 选项注意2n ≥这个条件,则可判断()nf n 中的()1f n =,则可得*41,N n k k =+∈,这样结合条件和A 的证明,即可判断CD.【详解】1(,)()(2)ni g x n f x i n ==+∑,()πsin 2x f x = ,函数的周期2π4π2T ==,()()()()1234f x f x f x f x +++++++ππππ3ππsin sin πsin sin 2π222222x x x ⎛⎫⎛⎫⎛⎫⎛⎫=+++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ππππcossin cos sin 02222x x x x =--+=,()()()()()41(,4)()1234...4ni g x n f x i f x f x f x f x f x n=∴=+=++++++++++∑00n =⨯=,故A 正确;B.当1n =时,()()()()()11,42,612...6g x g x f x f x f x +==++++++()()ππ12cos sin 22f x f x x x =+++=-,()()11ππππ,42cossin sin cos 2222g x f x x x x ∴++=-+=不恒为0,故B 错误;C.1(,)()(2)ni g x n f x i n ==+∑,()()1,g x nf n ∴+中,()1f n =,*41,N n k k =+∈,()()()()()()1,1,4123...42g x nf n g x k f x f x f x k ∴+=++=+++++++,由A 的证明过程可知,相邻四项和为0,所以()()()()π23...422sin 2f x f x f x k f x +++++++=+=-,()()()ππ1,sinsin 022g x nf n f x x x ∴++=-+=,故C 正确;D.()()(),0g x n nf n f x ++=,由C 的证明过程可知,()()(),0g x n nf n f x ++=()()()()()411412413...4141f x k f x k f x k f x k k f x =++++++++++++++++++()()()()()234...42f x f x f x f x k f x =++++++++++()()2sinsin 022f x f x x x ππ=++=-+=,故D 正确.故选:ACD【点睛】关键点点睛:本题考查函数新定义,关键是理解1(,)()(2)ni g x n f x i n ==+∑,并会展开,但重点考查三角函数的周期,利用周期求和,问题就会迎刃而解.三、填空题:本题共4小题,每小题5分,共20分.13.小颖和小星在玩抽卡游戏,规则如下:桌面上放有5张背面完全相同的卡牌,卡牌正面印有两种颜色的图案,其中一张为紫色,其余为蓝色.现将这些卡牌背面朝上放置,小颖和小星轮流抽卡,每次抽一张卡,并且抽取后不放回,直至抽到印有紫色图案的卡牌停止抽卡.若小颖先抽卡,则小星抽到紫卡的概率为__________.【答案】25##0.4【解析】【分析】小星只可能在第二次和第四次抽到紫卡,将所有情况列表排列可得答案.【详解】按照规则,两人依次抽卡的所有情形如下表所示,小颖小星小颖小星小颖情形一紫情形二蓝紫情形三蓝蓝紫情形四蓝蓝蓝紫情形五蓝蓝蓝蓝紫其中情形二和情形四为小星最终抽到紫卡,则小星抽到紫卡的概率为25.故答案为:25.14.已知O 为坐标原点,抛物线C :214y x =的焦点为F ,过点O 的直线与C 交于点A ,记直线OA ,FA 的斜率分别为k 1,k 2,且k 1=3k 2,则|FA |=__________.【答案】52##2.5【解析】【详解】首先设直线OA 为1y k x =,与抛物线方程联立,并根据123k k =,求得点A 的坐标,利用两点间距离求FA .【点睛】设过原点的直线OA 为1y k x =,联立1214y k xy x =⎧⎪⎨=⎪⎩,解得00x y =⎧⎨=⎩或12144x k y k =⎧⎨=⎩,即()2114,4A k k ,()0,1F ,所以2121414k k k -=,因为123k k =,所以21114134k k k =⨯,解得:164k =±,则32A ⎛⎫ ⎪⎝⎭,所以52FA =.故答案为:5215.在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,平面PAB ⊥平面PCD ,则P ABCD -体积的最大值为__________.【答案】43【解析】【分析】先做PE CD,PF AB ⊥⊥交,CD AB 于点,E F ,PO ⊥平面ABCD ,垂足为O ,连接,OE OF ,根据线面垂直的判定定理证明CD OE ⊥,即OE BC ∥,同理可得OF BC ∥,即EF BC ∥,且2EF BC ==,再根据面面垂直的性质定理得PE PF ⊥,再设各个长度,在直角三角形PEF 中得到等式进行化简,即可得关于OP 的式子,进而求得体积的表达式,求得最值即可.【详解】解:由题过点P 做PE CD,PF AB ⊥⊥分别交,CD AB 于点,E F ,过P 做PO ⊥平面ABCD ,垂足为O ,连接,OE OF ,画图如下:PO ⊥ 平面ABCD ,PO CD ∴⊥,,PE CD PO ⊥⊂ 平面POE ,PE ⊂平面POE ,CD \^平面POE ,CD OE ∴⊥,底面ABCD 是边长为2的正方形,,CD BC ∴⊥OE ⊂ 平面ABCD ,BC ⊂平面ABCD ,OE BC ∴ ,同理可得:OF BC ∥,故,,O E F 三点共线,且有EF BC ∥,2EF BC ==,设平面PAB ⋂平面PCD l =,,AB CD AB ⊂ ∥平面PAB ,CD ⊂平面PCD ,l AB CD ∴∥∥,,PE CD PE l ⊥∴⊥ ,平面PAB ⊥平面PCD ,平面PAB ⋂平面PCD l=PE ∴⊥平面PAB ,PF ⊂ 平面PAB,PE PF ∴⊥,不妨设(),,,2,02PE x PF y OF m OE m m ====-≤≤,224x y ∴+=①,且22222OP PF OF PE OE =-=-,即()22222y m x m -=--,化简即:2244y x m -=-②,联立①②可得:222,42y m x m ==-,22222OP y m m m ∴=-=-,∴四棱锥P ABCD -的体积1223V =⨯⨯=,()02m ≤≤,当1m =时,max 43V =,故P ABCD -体积的最大值为43.故答案为:4316.若函数()e sin x f x a x =-,()e sin x g x a x x =-,且()f x 和()g x 在[]0,π一共有三个零点,则=a __________.【答案】sin1e 或4π2e 2-【解析】【分析】考虑a<0,0a =,0a >三种情况,设()1e xF x a =,()2sin F x x =,()3e xa F x x=,求导得到导函数,根据公切线计算得到1π4x =,π4e 2a -=,再根据a 的范围讨论零点的个数,计算得到答案.【详解】当a<0时,()e sin 0xf x a x =<-,()e sin 0xg x a x x -=<,不成立;当0a =时,()sin f x x =-,()sin g x x x =-,在[]0,π上有0,π两个零点,不成立;当0a >时,()00f a =≠,(]0,πx ∈时,()e sin 0xf x a x ==-,即e sin x a x =;()00g a =≠,当(]0,πx ∈时,()e sin 0xg x a x x -==,即e sin xa x x=,设()1e xF x a =,()2sin F x x =,()3e xa F x x=,则()1e xF x a '=,()2cos F x x '=,()()32e 1x a x F x x -'=当()1e xF x a =,()2sin F x x =相切时,设切点为()11,x y ,则1111e sin e cos x x a x a x ⎧=⎨=⎩,解得1π4x =,π42e 2a -=;当[)0,1x ∈时,()30F x '<,函数单调递减;当(]1,πx ∈时,()30F x '>,函数单调递增.画出()2sin F x x =,()3e xa F x x=的简图,如图所示:()2sin F x x =,()3e xa F x x =最多有两个交点,故()g x 最多有2个零点,当π4e 2a ->时,()f x 没有零点,()g x 最多有2个零点,不成立;当π42e 2a -=时,()f x 有1个零点,π432π2e π12π2F F ⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭,()g x 有2个零点,成立;现说明π42e 1π<,即π44e π<,构造函数,()44e x h x x =-,[]3,3.5x ∈,()()334e 44e x x h x x x '=-=-,设()31e x h x x =-,()21e 3x h x x '=-,设()22e 3xh x x =-,()2e 6x h x x '=-,设()3e 6xh x x =-,()3e 60x h x '=->恒成立,故()3e 6xh x x =-单调递增,()()333e 630h x h >=-⨯>,故()22e 3xh x x =-单调递增,()() 3.52223.5e3 3.50h x h <=-⨯<,故()31e x h x x =-单调递减,()()3313e 30h x h <=-<,故()h x 函数单调递减,()()343π34e 34e 810h h <=-=-<,故π42e π<,当4π2e 20a -<<,()f x 有2零点,()g x 有2个零点,若1x =是一个零点,则有两个零点重合,满足,此时sin1ea =.综上所述:sin1e a =或π42e 2a -=故答案为:sin1e 或4π2e 2-【点睛】关键点睛:本题考查了利用导数解决函数的零点问题,意在考查学生的计算能力,转化能力和综合应用能力,解题的关键是将函数的零点问题转化为交点问题,利用公切线解决参数.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设(X ,Y )是一个二维离散型随机变量,其所有可能取值为(a i ,b j ),其中i ,j ∈N *.记p ij =P (X =a i ,Y =b j )是随机变量(X ,Y )的联合分布列.与一维的情形相似,二维分布列可以如下形式表示:Y ,求(X ,Y )的联合分布列.【答案】(),X Y 32103---182--38-1-38--018---【解析】【分析】易知(),X Y 的所有可能取值为()()()()0,3,1,2,2,1,3,0,A 盒中的卡片数一旦确定则B 盒中的卡片数就唯一确定了,利用二项分布考查A 盒中的卡片数为0,1,2,3时的概率即可.【详解】由题意,(),X Y 的所有可能取值为()()()()0,3,1,2,2,1,3,0,且330103303122131113C ,C 2828p p p p ⎛⎫⎛⎫==⨯===⨯= ⎪ ⎪⎝⎭⎝⎭,所以(),X Y 的联合分布列为:(),X Y 32103---182--38-1-38--18---18.在长方体ABCD -A 1B 1C 1D 1中,114,AC AB AC ⋅==(1)求四面体ACB 1D 1体积的最大值;(2)若二面角B -AC -D 1的正弦值为53,求ABCD -A 1B 1C 1D 1的体积.【答案】(1)23;(2)2.【解析】【分析】(1)根据数量积和余弦定理得到214AC AB a ⋅==,即2a =,然后根据1AC =得到222b c +=,最后利用不等式求四面体11ACB D 体积的最大值即可;(2)根据二面角的定义得到1DED ∠为二面角1D AC D --的平面角,然后根据二面角1B AC D --的正弦值为53列方程得到()()221100c c --=,1c =,最后求体积即可.【小问1详解】设AB a =,BC b =,1BB c =,且111cos AC AB AC AB CAB ∠⋅=⋅⋅,由余弦定理得:22211211142AC AB B CAC AB AC AB a AC AB +-⋅=⋅⋅==⋅,则2a =,又1AC ==222b c +=,且11222223323ACB Db c V bc +=⨯= ,当且仅当1b c ==时等号成立,即四面体11ACB D 23;【小问2详解】过点D 作AC 的垂线,垂足为E ,连接1D E ,因为1DD ⊥平面ABCD ,AC ⊂平面ABCD ,所以1DD AC ⊥,且AC DE ⊥,又1DE DD D =I ,1,DE DD ⊂平面1DED ,所以AC ⊥平面1DED ,且1D E ⊂平面1DED ,所以1AC D E ⊥,即1DED ∠为二面角1D AC D --的平面角,记二面角1B AC D --的平面角为θ,则二面角1D AC D --的平面角为πθ-,所以11sin 3DD D Eθ==,则()()221100c c --=,且22c <,所以1c =,且111122ABCD A B C D V bc -==,所以1111ABCD A B C D -的体积为2.19.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为直径的三个圆的面积依次为1S ,2S ,3S .已知123S S S A B +-=+.(1)若π4C =,求ABC 的面积;(2)若ABC的面积为3,求ABC 周长的最小值.【答案】(1)34(2)【解析】【分析】(1)由已知条件123S S S A B +-=+和π4C =可得到2223a b c +-=,根据余弦定理可求得2ab =,即可由面积公式求得ABC 的面积;(2)由已知得()2ππcos C ab C-=,从而可得π02C <<,由面积公式可得πtan πC S C -=,构造函数()πtan πC f C C -=确定其在π02C <<上单调性,由特殊值π33f ⎛⎫=⎪⎝⎭,即可得π3C =,83ab =,结合基本不等式得263c ≥,463a b +≥=,从而可求得ABC 周长的最小值.【小问1详解】解:记ABC 的面积为S ,因为()222123π3ππ44S S S a b c A B C +-=+-=+=-=,所以2223a b c +-=,由余弦定理得222cos 2a b c C ab +-=,所以2222cos 3a b c ab C +-===,则322ab =,所以1123sin 2224S ab C ===;【小问2详解】解:因为()222123ππ4S S S a b c A B C +-=+-=+=-,得()2224ππC a b c -+-=又由余弦定理得2222cos a b c ab C +-=,所以()2π0πcos C ab C-=>,所以cos 0C >,则π02C <<,又1πsin tan 2πC S ab C C -==,设()πtan πC f C C -=,π02C <<所以()221πsin 2tan π20ππcos πcos C CC C f C C C---=-+=>',所以()f C 在π0,2⎛⎫ ⎪⎝⎭单调递增,且ππππ3tan 3π33f -⎛⎫== ⎪⎝⎭π3C =,所以83ab =则22282cos 3ab C a b c =+-=,所以2228882333c a b ab =+-≥-=,即3c ≥,且3a b +≥=,当且仅当3a b c ===时,取等号,所以ABC 周长a b c ++的最小值2633⨯=.20.已知数列{a n },{b n }满足a 1=b 1=1,n n a b ⎧⎫⎨⎬⎩⎭是公差为1的等差数列,{}1n n b b +-是公差为2的等差数列.(1)若b 2=2,求{a n },{b n }的通项公式;(2)若2N b *∈,2n b a a ,证明:121113n b b b +++<L .【答案】(1)3222n a n n n =-+;2(1)1n b n =-+(2)证明见解析【解析】【分析】(1)根据已知求得n n a nb =,121n n b b n +-=-,通过累加法求得2(1)1n b n =-+,进而求得n a ;(2)根据已知求得n a ,构造()322222254f b b b b =-+,求导后得()20f b ' ,结合2N b *∈得21b a a,又21b a a ,从而求得21b =,进而证得结论.【小问1详解】解:因为111,n n a a b b ⎧⎫=⎨⎬⎩⎭是公差为1的等差数列,所以n na nb =,即n n a nb =,且211b b -=,所以121n n b b n +-=-,累加得211n b b n +-=,所以2(1)1n b n =-+,则3222n n a nb n n n ==-+;【小问2详解】解:因为1223n n b b n b +-=+-,累加得21122n b b n n nb +-=-+,所以()22441n b n n n b =-++-,则()322441n a n n n n n b =-++-,则23212221,254b a a b b b ==-+,令()()3222222N 254f b b b b b *=-+∈,且()222261040f b b b =-+' ,所以21b a a,且21b a a ,所以21b =,所以233n b n n =-+,且22121,3332n b b b n n n n ===-+>-+,从而()22111113333221n n b n n n n n n =<=--+-+-- ,所以()1211113331n n b b b n +++<-<- ,当1n =时,1113,2n b =<=时,121123b b +=<,所以121113nb b b +++<L .21.已知双曲线C :2221(0)y x b b-=>的准线方程为12x =±,C 的两个焦点为F 1,F 2.(1)求b ;(2)若直线l 与C 相切,切点为A ,过F 2且垂直于l 的直线与AF 1交于点B ,证明:点B 在定曲线上.【答案】(1)b =(2)证明见解析【解析】【分析】(1)由双曲线的准线方程计算c ,再求b 即可;(2)先以A 点坐标表示直线l 的方程,进而表示出直线1AF 和2BF 的方程,联立表示出B 点坐标,再表示出1AF 的长度,列出关于A 点坐标的方程,最后代换成B 点坐标表示,即可求得B 点的轨迹方程.【小问1详解】由题可知,21a =,又双曲线C 的准线方程为12x =±,所以2112a c c ==,则2c =,所以b ==【小问2详解】由(1)知22:13y C x -=,设点()()()0012,,2,0,2,0A x y F F -,首先证明:00:13y y l x x -=,并将l 斜率不存在的情况舍弃,即01x ≠±,联立2213y x -=消去x 得:22002330y y y x -+-=,且()2200Δ44330y x =--=,所以00:13y y l x x -=,即00033x y x y y =-,所以直线()()002100:2,:232y y F B y x F A y x x x =--=++,联立直线21,F B F A ,解得0000222,1212x y B x x ⎛⎫- ⎪++⎝⎭,且0022112x x -≠-+,注意到()()22221000221AF x y x =++=+,从而220000112122x y x x ⎛⎫⎛⎫+= ⎪ ⎪++⎝⎭⎝⎭+,即22000022412124x y x x ⎛⎫⎛⎫+= ⎪ ⎪++⎝⎭⎝⎭+,也即220000222241212x y x x ⎛⎫⎛⎫-++= ⎪ ⎪++⎝⎭⎝⎭所以点B 的轨迹方程为22(2)4x y ++=,其中1x ≠-,即点B 在定曲线22(2)4x y ++=上.22.已知函数()()2ln ,2ln 2a f x ax x g x x =+=+.(1)若()()f x g x ≥,求a 的取值范围;(2)记()f x 的零点为12,x x (12x x <),()g x 的极值点为0x ,证明:1024e x x x >.【答案】(1)44ln2,12ln2∞+⎡⎫+⎪⎢+⎣⎭(2)证明见解析【解析】【分析】(1)构造函数()()()h x f x g x =-,然后分类讨论,即可得到a 的取值范围(2)()f x 和()g x 分别求导,求出()g x 的极值点0x 的关系式,()f x 单调区间,()f x 零点所在区间,即可证明.【小问1详解】记()()()21ln 202a h x f x g x x ax x ⎛⎫=-=-+- ⎪⎝⎭,①当2a 时,取102h ⎛⎫< ⎪⎝⎭,不符条件;②当2a >时,()()221122122a a x ax ax x h x x x ⎛⎫--+-+-⎪⎝⎭==',令()0,()0h x h x ''<>,∴()h x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,2⎛⎫+∞ ⎪⎝⎭单调递增,所以11ln210224a a h ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,即44ln212ln2a ++ ,则a 的取值范围为44ln2,12ln2∞+⎡⎫+⎪⎢+⎣⎭;【小问2详解】∵()22a g x x='+,令()0g x '=,则00,4e e 4a x x a =-=-,且()12f x ax x '=+,令()()0,0f x f x ''><,∴()f x在⎛ ⎝单调递增,在∞⎫+⎪⎪⎭单调递减,且111ln 0222f a ⎛⎫=-+-> ⎪⎝⎭,∴102a e-<<,取1x =,则()10f a =<,∴121x x <<<<,取1e x a=-,则2111ln e e e f a a a ⎛⎫⎛⎫-=+- ⎪ ⎪⎝⎭⎝⎭,记1,02e t t a=-<<,在()ln e t t t ϕ=-中,()11e 0e e t t t t ϕ-'=-=>,∴()t ϕ在()0,e 单调递增,∴()()e e ln e 0e t ϕϕ<=-=,即222211111ln 0()e e e e e f f x x a a a a a x ⎛⎫⎛⎫-=+-<=⇒->⇒>- ⎪ ⎪⎝⎭⎝⎭∵121x x <<<<∴1221x x x >从而10221e 4e x a x x x >>-=.【点睛】本题考查构造函数,求导,考查单调区间的求法,具有很强的综合性.。
南京市协同体七校2024-2025学年第一学期期中联合考试高三数学试题考试时间:120分钟满分:150分注意事项:1.本试卷所有试题必须作答在答题卡上规定的位置,否则不给分.2.答题务必将自己妵名,准考证信息用0.5毫米黑色墨水签字笔填写在试卷答题卡上,第I 卷(选择题共58分)一、选择题:本题共8小輀,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A x∣log 2x 2 ,B x ∣x 2 ,则A B ()A. 0,2 B. 0, C. 2,D. ,2 2.若2z 1 i ,则z ()2 B.1 C.22 D.123.已知向量 0,4,3,6,1,6a b c ,若c a b ,则 ()A.73 B.53 C.13 D.234.已知0,0m n ,且1m n ,则14m n 的最小值为()A.12B.9C.6D.35.已知直径为12的球内有一内接圆柱(圆柱上下底面圆在球面上),则圆柱体积的最大值为()A.963π B.96π C.483π D.192π6.已知函数 224,,1,x x a f x x x a在R 上单调递增,则实数a 的取值范围是()A. 1,3 B. ,3 C. 3, D.,13, 7.将一枚均匀的骰子掷两次,记事件A 为“第一次出现偶数点”,事件B 为“两次出现的点数和为9”,则下列结论中正确的是()A. 19P AB B.P A B P A P BC. 13P A B ∣ D.A 与B 相互独立8.已知 f x 是定义在R 上的周期函数,周期1T ,且当 0,1x 时 2f x x ,若 g x kx b ,则下列结论中一定正确的是()A.1k 时, f x g x 可以有三个解B.12k 时, f x g x 可以有三个解C.1k 时, f x g x 可以有一个解D.12k 时, f x g x 可以有四个解二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知抛物线2:4C y x ,直线:l y kx k 与抛物线C 交于,P Q 两点,分别过,P Q 两点作抛物线准线的垂线,PM QN ,垂足分别是,M N ,下列说法正确的是()A.直线l 过抛物线C 的焦点B.当1k 时,,P Q 两点横坐标的和为5C.当1k 时,直线l 截抛物线所得的弦长为8D.以MN 为直径的圆与直线l 相切10.已知正方体1111ABCD A B C D ,点P 满足 1,0,1,0,1BP BC BB,则下列说法正确的是()A.存在唯一一点P ,使得过1,,D B P 的平面与正方体的截面是菱形B.存在唯一一点P ,使得AP 平面11B D CC.存在无穷多个点P ,使得AP ∥平面1A CDD.存在唯一一点P ,使得11D P BC 11.如果X 服从二项分布 ,B n p ,当10np 且 110n p 时,可以近似的认为X 服从正态分布 2,N ,据统计高中学生的近视率0.6P ,某校有600名高中学生.设X 为该校高中学生近视人数,且X 服从正态分布 2,N ,下列说法正确的是()(参考数据:()0.682,(22)0.9545P X P X )A.变量X 服从正态分布360,144N B. 3720.159P X C.(384)348P X P X D.(384)0.9773P X 第II 卷(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分.12.在等差数列 n a 中, *21n a n n N,则20S __________.13.已知函数 π2sin 06y x在区间π0,2上有且仅有2个零点,则实数 的取值范围是__________.__________.14.已知e 为自然对数的底数,若函数ln y x ax 的最大值与函数e x y x 的最小值相等,则实数a 的值是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分13分)在ABC 中,角,,A B C 所对的边长分别为,,a b c ,已知5,3,cos 2c b c b a C.(1)求A ;(2)若D 是BC 中点,求AD 的长度.16.(本题满分15分)已知公差不为0的等差数列 n a 的前n 项和为51413,35,,,n S S a a a 成等比数列.(1)求 n a 的通项公式;(2)若m n ,且1111,,m na a a 成等差数列,求出所有的正整数,m n .17.(本题满分15分)如图,在四棱锥P ABCD 中,PA 面ABCD ,四边形ABCD 是梯形,AB ∥,DC AC BD ,3,24PA AC DC AB .(1)求证:平面PAC 平面PBD ;(2)求二面角D PC B 的正弦值.18.(本题满分17分)已知函数 211ln ,2f x x a x a x a R .(1)若1a ,求函数 f x 在1x 处的切线方程;(2)讨论函数 f x 的单调性;(3)若函数 1y f x a x 的最小值为0,求a 的值.19.(本题满分17分)已知椭圆 2222:10x y C a b a b 的短轴长为2,离心率为22,,3A B 分别是椭圆C 的上下顶点,过A 作两条互相垂直的直线,AP AQ ,分别交椭圆C 于,P Q 两点.(1)求椭圆C 的标准方程;(2)求证:直线PQ 恒过定点;(3)求APQ 面积的最大值.南京市协同体七校2024—2025学年第一学期期中联合考试高三数学参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.B2.C3.B4.B5.A6.C7.D8.B二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.ACD 10.BD 11.ABD三、填空题:本题共3小题,每小题5分,共15分.12.40013.713,33 14.21e 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分13分)解:(1)方法一:因为cosC 2c b a ,由正弦定理得:1sin sin cos sin 2B A C C,又sin sin cos cos sin B A C A C ,所以1cos 2A,又因为在ABC 中,所以2π3A .方法二:因为cosC ,5,32c b a b c ,由余弦定理得:225935252a a a ,解得249a ,所以259491cos 2532A,又因为在ABC 中,所以2π3A .(2)方法一:在ABC 中,D 是BC 中点,所以1122AD AB AC ,222111111119||9352542442244AD AB AB AC AC ,192AD ,即AD 的长为192.方法二:由(1)方法二,知7a ,又D 是BC 中点,72BD CD ,在ABD 中由余弦定理有:22792cos 722AD ADB AD ,在ABD 中由余弦定理有:227252cos 722AD ADC AD ,因为πADB ADC ,所以cos cos ADB ADC ,即22227792522772222AD AD AD AD ,解得192AD ,即AD 的长为192.16.(本题满分15分)解:(1)51545352S a d,所以127a d又因为1413,,a a a 成等比数列,所以24113a a a ,221111312,96a d a a d d a d又因为0d ,所以132d a 所以13,2a d 所以21n a n (2)由题意:1211m na a a 所以21121321m n 方法一:2242163n m n 所以63921622n m n n ,因为m n 且*,m n N ,所以2,7m n 方法二:2111213213m n ,所以,52m ,又*m N ,所以1m 或2m ,当1m 时,1n ,与m n 矛盾,当2m 时,7n ,符合条件,所以2,7m n 17.(本题满分15分)(1)证明:因为PA 面,ABCD BD ABCD ,所以PA BD又因为,,,AC BD PA AC A PA PAC AC PAC ,所以BD PAC又因为BD PBD ,所以平面PAC 平面PBD(2)法一:作AE DC 交DC 于E ,以点A 为坐标原点AE 为x 轴,AB 为y 轴如图建立空间直角坐标系,设AC BD M ,因为AB ∥DC ,所以ABM CDM ∽,又2,4,3AB DC AC ,所以1,2AM MC ,又因为AC BD ,所以3,3BM DM 所以ππ,36BAC EAC,故 3330,0,3,,,022P C , 335,,0,0,2,022D B.所以 333331,,3,0,4,0,,,02222PC DC BC设面PDC 一个法向量为 1111,,n x y z 所以1111333302240x y z y ,所以 13n 设面PBC 一个法向量为 2222,,n x y z所以222223333022331022x y z x y ,所以21,33,23n 12124cos 70n n n n,所以3105sin 35法二:设AC BD O ,又因为AC BD ,以点O 为坐标原点,OD 为x 轴,OC 为y 轴如图建立空间直角坐标系,因为AB ∥DC ,所以ABO CDO ,又因为2,4,3AB DC AC ,所以1,2AO OC ,又因为AC BD ,所以3,3BO DO 故 0,1,3,0,2,0P C ,23,0,0,3,0,0D B 所以 0,3,3PC ,23,2,0CD ,3,2,0BC设面PDC 一个法向量为 1111,,n x y z 所以11113302320y z x y ,所以 13,3n 设面PBC 一个法向量为 2222,,n x y z 所以2222330320y z x y ,所以22,3,3n 1212cos 70n n n n ,所以3105sin 3518.(本题满分17分)解:(1)当1a 时, 2111ln ,1,22f x x x f f x x x,所以 10f ,所以切线方程为12y (2) 2111,0x a x a x x a a f x x a x x x x若0a ,则 0,1x 时 0,f x f x 单调递减, 1,x 时 0,f x f x 单调递增;若01a ,则 0,x a 时 0,f x f x 单调递增, ,1x a 时 0,f x f x 单调递减, 1,x 时 0,f x f x 单调递增若1a ,则 0,x 时 0,f x f x 单调递增若1a ,则 0,1x 时 0,f x f x 单调递增, 1,x a 时 0,f x f x 单调递减, ,x a 时 0,f x f x 单调递增(3)令 211ln 2h x f x a x x a x , 2,0,a x a h x x x x x当0a 时, 0h x ,故无最小值所以0a ,由 0h x 得x a 所以 x a 时 0,h x h x 单调递减, x a时 0,h x h x 单调递增单增,所以min 1()02h x h a a a a ,所以 ln 1,e a a .19.(本题满分17分)(1)解:因为2222,3c b a ,又222a b c 解得:3,,3a b c 故椭圆的标准方程为:2219x y (2)证明:方法一:当PQ x 轴时,,AP AQ 不可能垂直,故可设直线PQ 方程为:y kx n由2219y kx n x y ,得2221918990k x knx n ,设1122,,,P x y Q x y 则:21212221899,1919kn n x x x x kk ,所以, 1122,1,,1PA x y PQ x y ,又因为PA PB ,所以0PA PQ 即 1212110x x y y 即: 1212110x x kx n kx n ,所以, 221212121(1)0x x k x x k n x x n 代入可得:222222222222229999818(1)9(1)019191919n n k k n k k n n k n kk k k ,整理:210280n n ,所以:1n (舍)或45n ,所以直线PQ 的方程为:45y kx ,令0x ,得45y ,所以直线PQ 过定点40,5,方法二:显然,AP AQ 均不可能与坐标轴垂直,故可设 :10AP y kx k 由22119y kx x y ,得2219180k x kx 设1122,,,P x y Q x y 所以:211221819,1919k k x y kk ,因为,AP AQ 互相垂直,同理得22222189,99k k x y kk 所以直线PQ 的斜率为:2110PQ k k k,直线PQ 的方程为:222219118191019k k k y x k k k ,令0x 得222291194195519k k y k k ,即直线PQ 过定点40,5 .(3)方法一:由(2)知: 227281190525k x kx 1212227281,5192519k x x x x k k ,所以APQ 面积121925S x x 22121229812514102519k x x x x k 22511k t ,所以22125t k 代入可得:281818127169162489t S t t t 此时417,315t k ,所以APQ 面积的最大值是278方法二:由(2)知 2219180k x kx ,所以2218119k AP k k ,因为,AP AQ 互相垂直,同理得2211819k AQ k k,所以APQ 面积2222118118112199k kS AP AQ k k k k222116211629982k k k k k k 令21116227,162162649644889t k t S k t t t ,此时83t ,解得3k 或13k ,所以APQ 面积的最大值是278.。
2024-2025学年第一学期六校联合体10月联合调研高三数学2024.10.22注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x| x 2-2x -8<0},B ={x| x ≤4 },则“x ∈A ”是“x ∈B ”A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件 2.若复数z 满足-z =2-i3+i,则|z |= A .510 B .102 C .22 D .123.甲、乙、丙、丁去听同时举行的3个讲座,每人可自由选择听其中一个讲座,则恰好只有甲、乙两人听同一个讲座的种数为A .6B .12C . 18D . 24 4.已知等比数列{a n }满足a 4a 5a 6=64,则a 2a 4+a 6a 8的最小值为A .48B .32C .24D .85.已知函数f (x )=⎩⎪⎨⎪⎧-13x 3+ax 2-a -4(x ≥0)ax -sin x (x <0)在R 上单调,则实数a 的取值范围为A .()-∞,-1B .(]-∞,-1C .[)-4,-1D .[]-4,-1 6.已知圆(x -2)2+y 2=1与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线交于A ,B 两点,且|AB |=1,则该双曲线的离心率为A .2B .13C .21313D .413137.已知函数f (x )=(x -4)3 cos ωx (ω>0),存在常数a ∈R ,使f (x +a )为偶函数,则ω的最小值为A .π12B .π8C .π4D . π28.已知2024m =2025,2023m =x +2024 ,2025m =y +2026,则A .0<x <yB .x <y <0C .y <x <0D .x <0<y二.多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法中正确的是A .若随机变量X ~B (10,p ),且E (X )=3,则D (X )=2.1B .某射击运动员在一次训练中10次射击成绩(单位:环)如下:6,5,7,9,6,8,9,7,9,5,这组数据的75百分位数为7C .若随机变量ξ~N (μ,σ2),且P (ξ>3)=P (ξ<-1)=p ,则P (1≤ξ≤3)=12-pD .若变量y 关于变量x 的线性回归方程为^y =x +t ,且-x =4,-y =2t ,则t =4310.已知棱长为4的正方体ABCD -A 1B 1C 1D 1,球O 是该正方体的内切球,E ,F ,P 分别是棱AA 1,BC ,C 1D 1的中点,M 是正方形BCC 1B 1的中心,则 A .球O 与该正方体的表面积之比为π6 B .直线EF 与OM 所成的角的正切值为 2 C .直线EP 被球O 截得的线段的长度为2 2 D .球O 的球面与平面APM 的交线长为4π11.已知函数f (x )=x 3+mx +1,则A .当m =-1时,过点(2,2)可作3条直线与函数f (x )的图象相切B .对任意实数m ,函数f (x )的图象都关于(0,1)对称C .若f (x )存在极值点x 0,当f (x 1)=f (x 0)且x 1≠x 0,则x 1+32x 0=0 D .若有唯一正方形使其4个顶点都在函数f (x )的图象上,则m =-2 2三、填空题:本题共3小题,每小题5分,共15分.12.已知向量a ,b 满足a +b =(2,1),a -b =(-2,4),则|a |-|b |=_______.13.某个软件公司对软件进行升级, 将序列A =(a 1,a 2,a 3,···)升级为新序列A*=(a 2-a 1,a 3-a 2,a 4-a 3,···), A*中的第n 项为a n +1-a n , 若(A*)*的所有项都是3,且a 4=11, a 5=18,则a 1=_______.14.已知抛物线C :y 2=4x 的焦点为F ,过点D (-1,0)的直线l 在第一象限与C 交于A ,B 两点,且BF 为∠AFD 的平分线,则直线l 的方程为_______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分13分)如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,AB ⊥AD ,P A =PD , AB =2,AD =8,AC =CD =5(1)求证:平面PCD ⊥平面P AB ;(2)求直线PB 与平面PCD 所成角的正弦值.16.(本题满分15分)已知△ABC 的角A ,B ,C 对的边分别为a ,b ,c ,2b cos A =2c -3a (1)求B ;(2)若cos A =sin C -1,CA →=4CD →,BD =37,求△ABC 的面积.17.(本题满分15分)某人工智能研究实验室开发出一款全新聊天机器人,它能够通过学习和理解人类的语言来进行对话.聊天机器人的开发主要采用 (人类反馈强化学习)技术,在测试它时,如果输入的问题没有语法错误,则它的回答被采纳的概率为80%,当出现语法错误时,它的回答被采纳的概率为40%.(1)在某次测试中输入了8个问题,聊天机器人的回答有5个被采纳,现从这8个问题中抽取4个,以X 表示抽取的问题中回答被采纳的问题个数,求X 的分布列和数学期望; (2)设输入的问题出现语法错误的概率为p ,若聊天机器人的回答被采纳的概率为70%,求p 的值.18.(本题满分17分) 已知f (x )=ln(x +1)(1) 设h (x )=x f (x -1),求h (x )的极值.(2) 若f (x )≤ax 在[0,+∞)上恒成立,求a 的取值范围.(3) 若存在常数M ,使得对任意x ∈I ,f (x )≤M 恒成立,则称f (x )在I 上有上界M ,函数f (x )称为有上界函数.如y =e x 是在R 上没有上界的函数, y =ln x 是在(0,+∞)上没有上界的函数;y =-e x ,y =-x 2都是在R 上有上界的函数.若g (n )=1+12+13+···+1n (n ∈N *),则g (n )是否在N *上有上界? 若有,求出上界;若没有,给出证明.19.(本题满分17分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),C 的上顶点为B ,左右顶点分别为A 1、A 2,左焦点为F 1,离心率为12.过F 1作垂直于x 轴的直线与C 交于D ,E 两点,且| DE |=3.(1)求C 的方程;(2)若M ,N 是C 上任意两点①若点M (1,32),点N 位于x 轴下方,直线MN 交x 轴于点G ,设△MA 1G 和△NA 2G的面积分别为S 1,S 2,若2S 1-2S 2=3,求线段MN 的长度;②若直线MN 与坐标轴不垂直,H 为线段MN 的中点,直线OH 与C 交于P ,Q 两点,已知P ,Q ,M ,N 四点共圆, 求证:线段MN 的长度不大于14.2024-2025学年第一学期六校联合体10月联合调研高三数学参考答案 2024.10一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上. 1.C 2.C 3.A 4.B 5.D 6.D 7.B 8.D二.选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,不选或有选错的得0分. 9. AC 10.ACD 11.ABD三、填空题:本大题共3小题,每小题5分,共15分.请把答案填写在答题卡相应位置上. 12.0 13.8 14.y =32x +32四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤. 15.(本小题满分13分)解:(1)∵平面PAD ⊥平面ABCD ,且平面PAD ⋂平面ABCD AD =, 且AB AD ⊥,AB ⊂平面ABCD ,∴AB ⊥平面PAD ,………………...........................2分 ∵PD ⊂平面PAD ,∴AB PD ⊥,又PD PA ⊥,且PA AB A =,,PA AB ⊂平面PAB , ∴PD ⊥平面PAB ;…………................................……..4分又PD ⊂平面PAD ,所以平面⊥PCD 平面PAB ………………..6分 (2)取AD 中点为O ,连接CO ,PO 又因为PD PA =,所以AD PO ⊥ 则4==PO AO因为5==CD AC ,所以AD CO ⊥,则322=-=AO AC CO以O 为坐标原点,分别以OP OA OC ,,所在直线为z y x ,,轴,建立如图所示的空间直角坐标系xyz O -则)4,0,0(),0,4,0(),0,0,3(),0,4,2(),0,4,0(P D C B A -,)4,4,0(),4,0,3(--=-=PD PC ,)4,4,2(-=PB ......................................……..8分设),,(z y x n =是平面PCD 的一个法向量,则,00⎪⎩⎪⎨⎧=⋅=⋅PD n PC n 得⎩⎨⎧=+=-043z y z x ,令,3=z 则3,4-==y x , 所以)3,3,4(-=n ……………............................................…..10分设PB 与平面PCD 所成的角为θ则51344363416sin =⋅-==θ所以PB 与平面PCD 所成的角的正弦值为51344………………..13分16.(本小题满分15分)解:因为2cos 2b A c =,所以2sin cos 2sin B A C A =2sin cos 2sin()2sin cos 2cos sin B A A B A A B A B A =+=+所以B A A cos sin 2sin 3=…………..3分在ABC ∆中,0sin ≠A ,所以23cos =B ,所以6π=B …………..5分 (2)由1sin cos -=C A ,得1sin -65cos -=C C )(π, 1sin sin 65sin cos 65cos-=+C C C ππ,1)3sin(=+πC ………..7分 因为π<<C 0,所以3433πππ<+<C ,所以23ππ=+C ,所以6π=C …………..9分所以c b A ==,32π在ABD ∆中, ,4CD CA =所以b AD 43=A AD AB AD AB BD cos 237222⋅-+==)21(43216922-⋅⋅-+=b b b b ,得4==c b ,…………………………………………………………....13分 所以ABC ∆的面积.34234421sin 21=⋅⋅⋅=⋅=A AC AB S ………………..15分17.(本小题满分15分)(1)由题可知X 的所有取值为1,2,3,4, P (X =1)=C 15C 33C 48=570=114P (X =2)=C 25C 23C 48=3070=37P (X =3)=C 35C 13C 48=3070=37P (X =4)=C 45C 03C 48=570=114,………………………………8分故X 的分布列为:则E (X )=1×114+2×37+3×37+4×114=52.………………………………9分(2)记“输入的问题没有语法错误”为事件A ,记“输入的问题有语法错误”为事件B ,记“回答被采纳”为事件C ,…………………………………………………………10分由已知得,P (C )=0.7,P (C |A )=0.8,P (C |B )=0.4,P (B )=p ,P (A )=1-p , 所以由全概率公式得 P (C )=P (A )·P (C |A )+P (B )·P (C |B )=0.8(1-p )+0.4p =0.8-0.4p =0.7,…………14分 解得p =0.25.……………………………………………………………………15分18.(本小题满分17分) 解:(1) h ′(x )=ln x +1(x >0)令h ′(x )=0则x =1e ……………………………………………………………2分 所以在(0,1e )上h ′(x ) <0,h (x )递减; 在(1e ,+∞)上,h ′(x )>0,h (x )递增;所以函数h (x )有极小值h (1e )=-1e ,函数没有极大值.(未写极大值扣1分)…………4分 (2)设m (x )=ln(x +1)-ax (x ≥0),m (0)=0 m ′(x )=1x +1-a当a ≤0时, m ′(x )>0, m (x )单调递增,m (x )≥0,显然不满足. …………………………6分当0<a <1时,令 m ′(x ) =0, x 0使m ′(x 0)=0,在(0,x 0)上,m (x )单调递增;在( x 0,+∞)上,m (x )单调递减,显然不成立;…………………………………………………………8分当a ≥1时,m ′(x )<0,m (x )单调递减,m (x )≤m (0)=0;…………………………………10分 综上:a ≥1. ………………………………………………………………………………11分(3)没有上界,理由如下:由(1)可知,ln(x +1)≤x 在[0,+∞)上恒成立,令x =1n ,则ln(1n +1)≤1n ,…………………………………………………………………13分所以ln(11+1)<11,ln(12+1)<12,ln(13+1)<13...ln(1n +1)<1n ,…………………………15分 将上式相加,ln(n +1)<1+12+13+...+1n =g (n )由于ln(n +1)没有上界,故g (n )也没有上界. …………………………………………17分19.(本小题满分17分)解:(1)由离心率为12,得b 2 a 2=34,由DE =3得2b 2a =3,解得a =2,b = 3所以故椭圆C 的方程为x 24+y 23=1…………………………………………………………3分(2)由(1)可得A 2(2,0),连接MA 2,因为S 1-S 2=S △MA 1A 2-S △MNA 2=32,S △MA 1O =32, 所以S △NGA 2=S △MOG ,得S △NMA 2=S △MOA 2;所以ON ∥MA 2,所以直线ON 的方程为,y =-32x,……………………………………6分由⎩⎨⎧y =-32x ,x 24+y 23=1.得N (1,-32),N (-1,32)(舍去). 所以|MN |=3 …………………………………………………8分(3)设直线MN :y =kx +m ,M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),H (x 0,y 0)则Q (-x 3,-y 3).联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1.可得,(3+4k 2)x 2+8mkx+4m 2-12=0, 所以,x 1+x 2=-8mk4k 2+3,x 1x 2=4m 2-124k 2+3,………………………………………10分y 1+y 2=k (x 1+x 2)+2m =6m4k 2+3Δ=64m 2k 2+16(m 2-3)(4k 2+3)>0,得m 2-3-4k 2<0. 所以中点H 的坐标为(-4mk 4k 2+3,3m 4k 2+3),所以k OH =-34k, 故直线OH :y =-34k x. ………………………………………12分由P ,Q ,M ,N 四点共圆,则|HM |·|HN |=|HP |·|HQ |,………………………………14分由|HM |·|HN |=14|MN |2=14(1+k 2)[(x 1+x 2)2-x 1x 2]=12(1+k 2).4k 2+3-m 2(4k 2+3)2; 联立⎩⎨⎧y =-34k x ,x 24+y 23=1.可得,x 2=16k24k 2+3,所以x 23=16k 24k 2+3,所以|HP |·|HQ |=(1+916k 2)|x 20-x 23|=(9+16k 2).4k 2+3-m 2(4k 2+3)2, 所以12(1+k 2)=9+16k 2得,k =±32……………………………………………………16分所有m 2<3+4k 2=6,得m ∈(- 6 ,6),|MN |2=48(1+k 2).4k 2+3-m 2(4k 2+3)2=42-7m 23 ≤14 即|MN |≤14…………………………………………………………………………17分。
南京市2007-2008学年度第一学期期末调研测试卷高 三 数 学 2008.01注意事项:1、本试卷共160分,考试用时120分钟.2、答题前,考生务必将自己的姓名、班级、学号写在答卷纸的密封线内,答案写在答卷纸上对应题目的答案空格内,考试结束后,交回答卷纸. 一、填空题(本大题共14小题,每小题5分,共70分).1.设集合{}1A x x =>-,{}3B x x =≤,则A B = _______________. 2.已知复数1()z bi b R =+∈是纯虚数,则b 的值是______________. 3.函数2lg(2)y x x =-的定义域是____________________.4.经过点(2,1)-,且与直线2350x y -+=平行的直线方程是_____________.5.现有2008年奥运会福娃卡片5张,卡片正面分别是贝贝、晶晶、欢欢、迎迎、妮妮,每张卡片大小、质地和背面图案均相同,将卡片正面朝下反扣在桌子上,从中一次随机抽出两张,抽到贝贝的概率是_______________________.6.右图是甲乙两名运动员某赛季一些场次得分的茎叶图,则平均得分高的________运动员.7.已知双曲线的中心在原点,一个焦点为0),实轴长为2, 则该双曲线的标准方程是_______.8.已知等比数列{}n a 的各项都为正数,它的前三项依次为1,1a +,25a +则数列{}n a 的甲 乙 0 8 50 1 247 32 2 199 875421 3 36 944 4 1 5 2 (第6题图)通项公式是n a =_____________.9.根据如图所示的算法流程图,可知输出的结果i 为_______________.10.已知一个空间集合体的三视图如图所示,根据图中标出的尺寸(单位: cm ),可得到这个几何体的体积是_______________3cm .11.已知2O A = ,2O B = ,0OA OB = ,点C 在线段AB 上,且060AOC ∠=,则A B O C的值是________________. 12.函数()f x 由下表定义:若11a =,25a =,*2(),n n a f a n N +=∈则2008a 的值________________.13.如图,正六边形A B C D E F 的两个顶点,A D 为椭圆的两个焦点,其余四个顶点在椭圆上,则该椭圆的离心 率的值是___________________.14.已知定义域为D 的函数()f x ,对任意x D ∈,存在正数K ,都有()f x K ≤成立,则称函数()f x 是D 上的“有(第9题图) 主视图左视图俯视图(第10题图)(第13题图)界函数”。
已知下列函数:①()2sin f x x =;②()f x =()12x f x =-; ④2()1x f x x =+,其中是“有界函数”的是______(写出所有满足要求的函数的符号).二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤) 15.(本题满分14分)已知(0,)2πα∈,1tan 2α=,求tan 2α和sin(2)3πα+的值.16.(本题满分14分,第1小题6分,第2小题8分)已知函数321()33f x x x x a =-+++.(1)求()f x 的单调减区间;(2)若()f x 在区间[]3,4-上的最小值为73,求a 的值.17.(本题满分14分,第1小题7分,第2小题7分)如图,,,M N K 分别是正方体1111ABCD A B C D -的棱11,,AB CD C D 的中点. (1)求证:A N //平面1A M K ; (2)求证:平面11A B C ⊥平面1A M K .D 1 A 1 B 1C 1KNCD18.(本题满分16分)某建筑的金属支架如图所示,根据要求AB 至少长2.8m ,C 为AB 的中点,B 到D 的距离比C D 的长小0.5m ,060BCD ∠=,已知建筑支架的材料每米的价格一定,问怎样设计,A B C D 的长,可使建造这个支架的成本最低?19.(本题满分16分,第1小题8分,第2小题8分)已知圆M :22(2)1x y +-=,设点,B C 是直线l :20x y -=上的两点,它们的横坐标分别是,4()t t t R +∈,点P 在线段B C 上,过P 点作圆M 的切线PA ,切点为A . (1)若0t =,M P =PA 的方程;(2)经过,,A P M 三点的圆的圆心是D ,求线段D O 长的最小值()L t .20.(本题满分16分,第1小题4分,第2小题6分,第3小题6分)已知{}n a 是公差为d 的等差数列,它的前n 项和为n S ,4224S S =+,1n n na b a +=.(1)求公差d 的值;BACD(2)若152a =-,求数列{}n b 中的最大项和最小项的值;(3)若对任意的*n N ∈,都有8n b b ≤成立,求1a 的取值范围.南京市2007—2008学年度第一学期期末调研试卷高三数学参考答案 2008.01一、填空题1.{|13}x x -<≤ 2. 1± 3. {|02}x x x <>或 4. 2370x y -+= 5.256.甲7. 221x y -=8. 13n -9. 5 10.43π11. 4 12. 113. 1 14. ①②④二、解答题 15.(本题满分14分) 解:22tan tan 21tan a a a=-21242.131()2⨯==-4(0,),2(0,).tan 20,2(0,).232a a a a πππ∈∈=>∴∈43sin 2,cos 2.55a a ∴==sin(2)sin 2cos cos 2sin333a a a πππ∴+=⋅+⋅413525210=⨯+⨯=16.(本题满分14分,第1小题6分,第2小题8分) 解:(1)2()23,f x x x '=-++令()0f x '<,则2230.x x -++< 解得1x <-或 3.x >∴函数()f x 的单调减区间为(,1)-∞-和(3,)+∞.(2)列表如下:()f x ∴在(3,1)--和(3,4)上分别是减函数,在(1,3)-上是增函数.又520(1),(4),(1)(4).33f a f a f f -=-=+∴-<(1)f ∴-是()f x 在[3,4]-上的最小值.57.33a ∴-=解得 4.a =17.(本题满分14分,第1小题7分,第2小题7分) 证明:(1)证明:连结NK . 在正方体1111ABCD A B C D -中,四边形1111,AA D D DD C C 都为正方形, 1111//,,AA DD AA DD ∴= 1111//,.C D CD C D CD =,N K 分别为11,CD C D 的中点,11//,.DN D K DN D K ∴= 1DD KN ∴为平行四边形.D 1A 1B 1KNBA M D11/,.KN DD KN DD ∴= 11//,.AA KN AA KN ∴= 1AA KN ∴为平行四边形. 1//.AN A K ∴1A K ⊂ 平面1,A MK AN ⊄平面1A M K , //AN ∴平面1.A M K(2)连结1.BC在正方体1111ABCD A B C D -中,1111//,.AB C D AB C D =,M K 分别11,AB C D 中点,11//,.BM C K BM C K ∴=∴四边形1BC KM 为平行四边形. 1//.MK BC ∴在正方体1111ABCD A B C D -中,11A B ⊥平面111,BB C C BC ⊂平面11,BB C C111.A B BC ∴⊥111//,.MK BC A B MK ∴⊥11BB C C 为正方形,11.BC B C ∴ 1.M K B C ⊥ 11A B ⊂ 平面111,A B C B C ⊂平面111111,,A B C A B B C B = MK ∴⊥平面11.A B CM K ⊂ 平面 1,A MK ∴平面1A M K ⊥平面11.A B C18.(本题满分16分)解:设(1,4),.BC am a CD bm =≥=连结BD .则在C D B ∆中,2221()2cos 60.2b b a ab -=+-214.1a b a -∴=- 21422.1a b a a a -∴+=+-设 2.81,10.4,2t a t =-≥-= 则21(1)3422(1)347,4t b a t t tt+-+=++=++≥等号成立时0.50.4, 1.5, 4.t a b =>==答:当3,4AB m C D m ==时,建造这个支架的成本最低.19.(本题满分16分,第1小题8分,第2小题8分) 解:(1)设(2,)(02).P a a a ≤≤(0,2),M MP =解得1a =或15a =-(舍去).(2,1).P ∴由题意知切线P A 的斜率存在,设斜率为k .所以直线P A 的方程为1(2)y k x -=-,即210.kx y k --+= 直线PA 与圆M相切,1∴=,解得0k =或4.3k =-∴直线PA 的方程是1y =或43110.x y +-= (2)设(2,)(24).P a a t a t ≤≤+PA 与圆M 相切于点A ,.PA M A ∴⊥∴经过,,A P M 三点的圆的圆心D 是线段MP 的中点.(0,2),M D ∴ 的坐标是(,1).2a a + 设222225524().()(1)1().24455aD O f a f a a a a a =∴=++=++=++当225t >-,即45t >-时,2m in 5()()1;2162t t f a f t ==++ 当22252t t ≤-≤+,即24455t -≤≤-时,m in 24()();55f a f =-=当2225t +<-,即245t <-时22m in 515()(2)(2)(2)138242216t t t f a f t t =+=++++=++则45244()555245t L t t t >-=-≤≤-⎪<-⎩. 20.(本题满分16分,第1小题4分,第2小题6分,第3小题6分) 解:(1)∵4224S S =+,∴113442(2)42a d a d ⨯+=++解得1d = (2)∵152a =-,∴数列{}n a 的通项公式为17(1)2n a a n n =+-=-∴111172n nb a n =+=+-∵函数1()172f x x =+-在7,2⎛⎫-∞ ⎪⎝⎭和7,2⎛⎫+∞ ⎪⎝⎭上分别是单调减函数,∴3211b b b <<<当4n ≥时,41n b b <≤∴数列{}n b 中的最大项是43b =,最小项是31b =- (2)由11n nb a =+得1111n b n a =++-又函数11()11f x x a =++-在()1,1a -∞-和()11,a -+∞上分别是单调减函数,且11x a <-时1y <;11x a >-时1y >.∵对任意的*n N ∈,都有8n b b ≤,∴1718a <-< ∴176a -<<-∴1a 的取值范围是(7,6)--。