考点19 抛物线
- 格式:doc
- 大小:177.00 KB
- 文档页数:5
专题19 二次函数的性质与图象判断问题知识对接考点一、二次函数的概念及表达式考点二、二次函数的性质与图象2. 抛物线c bx ax y ++=2与系数a,b,c 的关系一、单选题1.抛物线y=(x﹣5)2的顶点坐标是()A.(0,﹣5)B.(﹣5,0)C.(0,5)D.(5,0)【答案】D【分析】根据顶点式解析式写出顶点坐标即可得解.【详解】解:抛物线y=(x-5)2的顶点坐标是(5,0).故选:D.【点睛】本题考查了二次函数的性质,主要利用顶点式解析式求顶点坐标,是基础题,需熟记.2.对于二次函数y=2(x+3)2的图象,下列说法不正确的是()A.开口向上B.对称轴是直线x=﹣3C.当x<﹣3时,y随x的增大而增大D.与x轴仅有一个交点【答案】C【分析】根据抛物线的性质由a=2得到图象开口向上,根据顶点式得到顶点坐标为(﹣3,0),对称轴为直线x=﹣3,当x<﹣3时,y随x的增大而增减小.【详解】解:二次函数y=2(x+3)2的图象开口向上,顶点坐标为(﹣3,0),与x轴仅有一个交点,对称轴为直线x =﹣3,当x <﹣3时,y 随x 的增大而减小,故A 、B 、D 说法正确,C 说法不正确,故选:C .【点睛】本题主要考查抛物线与x 轴的交点,二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a (x −h )2+k 中,其顶点坐标为(h ,k ),对称轴为x =h .当a >0时,抛物线开口向上,当a <0时,抛物线开口向下.3.如图1,在平行四边形ABCD 中,60B ∠=︒,2BC AB =;动点P 以每秒1个单位的速度从点A 出发沿线段AB 运动到点B ,同时动点Q 以每秒4个单位的速度从点B 出发,沿折线B C D --运动到点D .图2是点P 、Q 运动时,BPQ 的面积S 随运动时间t 变化关系的图象,则a 的值是( )A .B .C .D .【答案】A【分析】 根据题意计算得4AB =;再结合题意,得当动点Q 在BC 上时,BPQ 的面积S 随运动时间t 变化呈现二次函数关系;当动点Q 在CD 上时,BPQ 的面积S 随运动时间t 变化呈现一次函数关系,从而得a 对应动点Q 和点C 重合;通过计算BPC S △,即可得到答案.【详解】根据题意,得4t =时到达点B∵动点P 以每秒1个单位的速度从点A 出发沿线段AB 运动到点B∵4AB =∵28BC AB ==结合题意,当动点Q 在BC 上时,BPQ 的面积S 随运动时间t 变化呈现二次函数关系 当动点Q 在CD 上时,BPQ 的面积S 随运动时间t 变化呈现一次函数关系∵a 对应动点Q 和点C 重合,如下图:∵动点Q 以每秒4个单位的速度从点B 出发∵48t =∵2t =∵2AP t ==∵2BP AB AP =-=如图,过点A 作AM CD ⊥,交CD 于点M∵2BC AB =,60B ∠=︒∵2AD BC AB ==,60D B ∠=∠=︒∵sin 8AM AD D =⨯∠==∵11222BPC S BP AM =⨯⨯=⨯⨯=,即a = 故选:A .【点睛】本题考查了平行四边形、二次函数、一次函数、三角函数的知识;解题的关键是熟练掌握二次函数、一次函数、三角函数的性质,从而完成求解.4.已知二次函数2()y x h =-(h 为常数),当自变量x 的值满足1≤x ≤3时,其对应的函数值y 的最小值为1,则h 的值为( )A .2或4B .0或4C .2或3D .0或3【答案】B【分析】根据函数的对称轴为:x=h 和13x ≤≤的位置关系,分三种情况讨论即可求解.【详解】解:函数的对称轴为:x=h ,∵当3h ≥时,x =3时,函数取得最小值1,即2(3)1h -=,解得h =4或h =2(舍去);∵当1h ≤时,x =1时,函数取得最小值1,即2(1)1h -=,解得h =0或h =2(舍去);∵当13h <<时,x=h 时,函数取得最小值1,不成立,综上,h =4或h =0,故选:B .【点睛】此题考查函数的最值,函数的对称轴,分情况讨论解决问题是解此题的关键. 5.二次函数()213y x =--+图象的顶点坐标是( )A .()1,3-B .()1,3C .()1,3--D .()1,3- 【答案】B【分析】根据二次函数顶点式即可得出顶点坐标.【详解】解:∵二次函数的解析为2(1)3y x =--+,∵二次函数图像顶点坐标为(1,3).故选B .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a (x -h )2+k 中,对称轴为x =h ,顶点坐标为(h ,k ).6.下列事件中,属于不可能事件的是( )A .抛物线y =ax 2的开口向上B .抛物线y =(x ﹣2)2+1中y 有最小值2C .相似三角形的面积比等于相似比的平方D .三边对应成比例的两个三角形全等【答案】B【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A 、抛物线y =ax 2的开口向上是随机事件;B 、抛物线y =(x ﹣2)2+1中y 有最小值2是不可能事件;C 、相似三角形的面积比等于相似比的平方是必然事件;。
抛物线考点与题型归纳一、基础知识1.抛物线的定义平面内与一个定点F 和一条定直线l (点F 不在直线l 上) 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物 线的焦点,定直线l 叫做抛物线的准线. 2.抛物线的标准方程和几何性质 标准y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)方程 图形p 的几何意义:焦点F 到准线l 的距离顶点 O (0,0)对称轴 x 轴y 轴焦点 F ⎝⎛⎭⎫p 2,0F ⎝⎛⎭⎫-p2,0 F ⎝⎛⎭⎫0,p 2 F ⎝⎛⎭⎫0,-p2 离心率 e =1准线方程 x =-p 2x =p 2 y =-p2y =p 2 范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R开口方向 向右 向左 向上 向下 焦半径(其中P (x 0,y 0)) |PF |=x 0+p2|PF |=-x 0+p2|PF |=y 0+p2|PF |=-y 0+p2二、常用结论与抛物线焦点弦有关的几个常用结论设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),α为弦AB 的倾斜角.则(1)x 1x 2=p 24,y 1y 2=-p 2.(2)|AF |=p 1-cos α,|BF |=p1+cos α.(3)弦长|AB |=x 1+x 2+p =2psin 2α.(4)1|AF |+1|BF |=2p. (5)以弦AB 为直径的圆与准线相切. 考点一 抛物线的定义及应用[典例] (1)若抛物线y 2=4x 上一点P 到其焦点F 的距离为2,O 为坐标原点,则△OFP 的面积为( )A.12 B .1 C.32D .2(2)设P 是抛物线y 2=4x 上的一个动点,若B (3,2),则|PB |+|PF |的最小值为________. [解析] (1)设P (x P ,y P ),由题可得抛物线焦点为F (1,0),准线方程为x =-1. 又点P 到焦点F 的距离为2, ∴由定义知点P 到准线的距离为2. ∴x P +1=2,∴x P =1. 代入抛物线方程得|y P |=2,∴△OFP 的面积为S =12·|OF |·|y P |=12×1×2=1.(2)如图,过点B 作B Q 垂直准线于点Q ,交抛物线于点P 1,则|P 1Q |=|P 1F |.则有|PB |+|PF |≥|P 1B |+|P 1Q |=|B Q |=4,即|PB |+|PF |的最小值为4.[答案] (1)B (2)4 [变透练清]1.若抛物线y 2=2px (p >0)上的点A (x 0,2)到其焦点的距离是A 到y 轴距离的3倍,则p 等于( )A.12B .1C.32D .2解析:选D 由抛物线y 2=2px 知其准线方程为x =-p2.又点A 到准线的距离等于点A到焦点的距离,∴3x 0=x 0+p 2,∴x 0=p 4,∴A ⎝⎛⎭⎫p 4,2.∵点A 在抛物线y 2=2px 上,∴p 22=2.∵p>0,∴p =2.故选D.2.(变条件)若将本例(2)中的B 点坐标改为(3,4),则|PB |+|PF |的最小值为________. 解析:由题意可知点(3,4)在抛物线的外部. 因为|PB |+|PF |的最小值即为B ,F 两点间的距离, 所以|PB |+|PF |≥|BF |=22+42=4+16=25,即|PB |+|PF |的最小值为2 5. 答案:253.已知抛物线方程为y 2=4x ,直线l 的方程为x -y +5=0,在抛物线上有一动点P 到y 轴的距离为d 1,到直线l 的距离为d 2,则d 1+d 2的最小值为________.解析:由题意知,抛物线的焦点为F (1,0). 点P 到y 轴的距离d 1=|PF |-1, 所以d 1+d 2=d 2+|PF |-1.易知d 2+|PF |的最小值为点F 到直线l 的距离, 故d 2+|PF |的最小值为|1+5|12+(-1)2=32,所以d 1+d 2的最小值为32-1. 答案:32-1[解题技法] 与抛物线有关的最值问题的解题策略该类问题一般情况下都与抛物线的定义有关,实现由点到点的距离与点到直线的距离的相互转化.(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上的点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中,垂线段最短”解决.考点二抛物线的标准方程及性质[典例](1)顶点在原点,对称轴为坐标轴,且过点P(-4,-2)的抛物线的标准方程是() A.y2=-x B.x2=-8yC.y2=-8x或x2=-y D.y2=-x或x2=-8y(2)(2018·北京高考)已知直线l过点(1,0)且垂直于x轴,若l被抛物线y2=4ax截得的线段长为4,则抛物线的焦点坐标为________.[解析](1)(待定系数法)设抛物线为y2=mx,代入点P(-4,-2),解得m=-1,则抛物线方程为y2=-x;设抛物线为x2=ny,代入点P(-4,-2),解得n=-8,则抛物线方程为x2=-8y.(2)由题知直线l的方程为x=1,则直线与抛物线的交点为(1,±2a)(a>0).又直线被抛物线截得的线段长为4,所以4a=4,即a=1.所以抛物线的焦点坐标为(1,0).[答案](1)D(2)(1,0)[解题技法]1.求抛物线标准方程的方法及注意点(1)方法求抛物线的标准方程的主要方法是定义法和待定系数法.若题目已给出抛物线的方程(含有未知数p),那么只需求出p即可;若题目未给出抛物线的方程,对于焦点在x轴上的抛物线的标准方程可统一设为y2=ax(a≠0),a的正负由题设来定;焦点在y轴上的抛物线的标准方程可设为x2=ay(a≠0),这样就减少了不必要的讨论.(2)注意点①当坐标系已建立时,应根据条件确定抛物线方程属于四种类型中的哪一种;②要掌握抛物线的顶点、对称轴、开口方向与方程之间的对应关系;③要注意参数p的几何意义是焦点到准线的距离,利用它的几何意义来解决问题.2.抛物线性质的应用技巧(1)利用抛物线方程确定及应用其焦点、准线时,关键是将抛物线方程化成标准方程.(2)要结合图形分析,灵活运用平面图形的性质简化运算.[题组训练]1.(2019·哈尔滨模拟)过点F (40,3)且和直线y +3=0相切的动圆圆心的轨迹方程为( ) A .y 2=12x B .y 2=-12x C .x 2=-12yD .x 2=12y解析:选D 由抛物线的定义知,过点F (0,3)且和直线y +3=0相切的动圆圆心的轨迹是以点F (0,3)为焦点,直线y =-3为准线的抛物线,故其方程为x 2=12y .2.若双曲线C :2x 2-y 2=m (m >0)与抛物线y 2=16x 的准线交于A ,B 两点,且|AB |=43,则m 的值是________.解析:y 2=16x 的准线l :x =-4,因为C 与抛物线y 2=16x 的准线l :x =-4交于A ,B 两点,|AB |=43, 设A 在x 轴上方,所以A (-4,23),B (-4,-23),将A 点坐标代入双曲线方程得2×(-4)2-(23)2=m , 所以m =20. 答案:203.已知抛物线x 2=2py (p >0)的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,若△FPM 为边长是4的等边三角形,则此抛物线的方程为________________.解析:由△FPM 为等边三角形,得|PM |=|PF |,由抛物线的定义得PM 垂直于抛物线的准线,设P ⎝⎛⎭⎫m ,m 22p ,则点M ⎝⎛⎭⎫m ,-p 2,因为焦点F ⎝⎛⎭⎫0,p2,△FPM 是等边三角形,所以⎩⎨⎧m 22p +p2=4,⎝⎛⎭⎫p 2+p 22+m 2=4,解得⎩⎪⎨⎪⎧m 2=12,p =2,因此抛物线方程为x 2=4y .答案:x 2=4y考点三 直线与抛物线的综合问题考法(一) 直线与抛物线的交点问题[典例] (2019·武汉部分学校调研)已知抛物线C :x 2=2py (p >0)和定点M (0,1),设过点M 的动直线交抛物线C 于A ,B 两点,抛物线C 在A ,B 处的切线的交点为N .若N 在以AB 为直径的圆上,则p 的值为________.[解析] 设直线AB :y =kx +1,A (x 1,y 1),B (x 2,y 2),将直线AB 的方程代入抛物线C 的方程得x 2-2pkx -2p =0, 则x 1+x 2=2pk ,x 1x 2=-2p . 由x 2=2py 得y ′=xp,则A ,B 处的切线斜率的乘积为x 1x 2p 2=-2p ,∵点N 在以AB 为直径的圆上,∴AN ⊥BN , ∴-2p =-1,∴p =2.[答案] 2[解题技法] 直线与抛物线交点问题的解题思路(1)求交点问题,通常解直线方程与抛物线方程组成的方程组. (2)与交点相关的问题通常借助根与系数的关系或用向量法解决.考法(二) 抛物线的焦点弦问题[典例] (2018·全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程. 解:(1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x得k 2x 2-(2k 2+4)x +k 2=0. Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k 2.由题设知4k 2+4k 2=8,解得k =1或k =-1(舍去).因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3), 即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎨⎧y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16.解得⎩⎪⎨⎪⎧ x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.[解题技法]解决抛物线的弦及弦中点问题的常用方法(1)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.[提醒] 涉及弦的中点、斜率时一般用“点差法”求解.[题组训练]1.(2018·全国卷Ⅰ)设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C交于M ,N 两点,则FM ―→·FN ―→=( )A .5B .6C .7D .8解析:选D 由题意知直线MN 的方程为y =23(x +2),联立⎩⎪⎨⎪⎧y =23(x +2),y 2=4x ,解得⎩⎪⎨⎪⎧ x =1,y =2或⎩⎪⎨⎪⎧x =4,y =4.不妨设M (1,2),N (4,4). 又∵抛物线焦点为F (1,0),∴FM ―→=(0,2),FN ―→=(3,4). ∴FM ―→·FN ―→=0×3+2×4=8.2.已知抛物线y 2=16x 的焦点为F ,过F 作一条直线交抛物线于A ,B 两点,若|AF |=6,则|BF |=________.解析:不妨设A (x 1,y 1),B (x 2,y 2)(A 在B 上方),根据焦半径公式|AF |=x 1+p2=x 1+4=6,所以x 1=2,y 1=42,所以直线AB 的斜率为k =422-4=-22,所以直线方程为y =-22(x -4),与抛物线方程联立得x 2-10x +16=0,即(x -2)(x -8)=0,所以x 2=8,故|BF |=8+4=12.答案:12[课时跟踪检测]A 级1.(2018·永州三模)已知抛物线y =px 2(其中p 为常数)过点A (1,3),则抛物线的焦点到准线的距离等于( )A.92 B.32 C.118D.16解析:选D 由抛物线y =px 2(其中p 为常数)过点A (1,3),可得p =3,则抛物线的标准方程为x 2=13y ,则抛物线的焦点到准线的距离等于16.故选D.2.过点P (-2,3)的抛物线的标准方程是( ) A .y 2=-92x 或x 2=43yB .y 2=92x 或x 2=43yC .y 2=92x 或x 2=-43yD .y 2=-92x 或x 2=-43y解析:选A 设抛物线的标准方程为y 2=kx 或x 2=my ,代入点P (-2,3),解得k =-92,m =43,所以y 2=-92x 或x 2=43y .3.(2019·龙岩质检)若直线AB 与抛物线y 2=4x 交于A ,B 两点,且AB ⊥x 轴,|AB |=42,则抛物线的焦点到直线AB 的距离为( )A .1B .2C .3D .5解析:选A 由|AB |=42及AB ⊥x 轴,不妨设点A 的纵坐标为22,代入y 2=4x 得点A 的横坐标为2,从而直线AB 的方程为x =2.又y 2=4x 的焦点为(1,0),所以抛物线的焦点到直线AB 的距离为2-1=1,故选A.4.(2018·齐齐哈尔八中三模)已知抛物线C :y =x 28的焦点为F ,A (x 0,y 0)是C 上一点,且|AF |=2y 0,则x 0=( )A .2B .±2C .4D .±4解析:选D 由y =x 28,得抛物线的准线为y =-2,由抛物线的几何意义可知,|AF |=2y 0=2+y 0,得y 0=2,所以x 0=±4,故选D.5.(2019·湖北五校联考)直线l 过抛物线y 2=-2px (p >0)的焦点,且与该抛物线交于A ,B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线的方程是( )A .y 2=-12xB .y 2=-8xC .y 2=-6xD .y 2=-4x解析:选B 设A (x 1,y 1),B (x 2,y 2),根据抛物线的定义可知|AB |=-(x 1+x 2)+p =8.又AB 的中点到y 轴的距离为2,∴-x 1+x 22=2,∴x 1+x 2=-4,∴p =4,∴所求抛物线的方程为y 2=-8x .故选B.6.已知点A (0,2),抛物线C 1:y 2=ax (a >0)的焦点为F ,射线F A 与抛物线C 相交于点M ,与其准线相交于点N .若|FM |∶|MN |=1∶5,则a 的值为( )A.14B.12 C .1D .4解析:选D 依题意,点F 的坐标为⎝⎛⎭⎫a 4,0,设点M 在准线上的射影为K ,由抛物线的定义知|MF |=|MK |,|KM |∶|MN |=1∶5,则|KN |∶|KM |=2∶1.∵k FN =0-2a 4-0=-8a ,k FN =-|KN ||KM |=-2,∴8a =2,解得a =4.7.抛物线x 2=-10y 的焦点在直线2mx +my +1=0上,则m =________. 解析:抛物线的焦点为⎝⎛⎭⎫0,-52,代入直线方程2mx +my +1=0,可得m =25. 答案:258.(2019·沈阳质检)已知正三角形AOB (O 为坐标原点)的顶点A ,B 在抛物线y 2=3x 上,则△AOB 的边长是________.解析:如图,设△AOB 的边长为a ,则A ⎝⎛⎭⎫32a ,12a ,∵点A 在抛物线y 2=3x 上,∴14a 2=3×32a ,∴a =6 3.答案:639.(2018·广州一模)已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 23-y 2=1的右焦点重合,若A 为抛物线在第一象限上的一点,且|AF |=3,则直线AF 的斜率为________.解析:∵双曲线x 23-y 2=1的右焦点为(2,0),∴抛物线方程为y 2=8x ,∵|AF |=3,∴x A +2=3,得x A =1,代入抛物线方程可得y A =±2 2.∵点A 在第一象限,∴A (1,22),∴直线AF 的斜率为221-2=-2 2.答案:-2210.已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作y 轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析:由题意知F (1,0),|AC |+|BD |=|AF |+|FB |-2=|AB |-2,即|AC |+|BD |取得最小值时当且仅当|AB |取得最小值.依抛物线定义知当|AB |为通径,即|AB |=2p =4时为最小值,所以|AC |+|BD |的最小值为2.答案:211.已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥F A ,垂足为N ,求点N 的坐标.解:(1)抛物线y 2=2px (p >0)的准线为x =-p 2, 于是4+p 2=5,∴p =2. ∴抛物线方程为y 2=4x .(2)∵点A 的坐标是(4,4),由题意得B (0,4),M (0,2).又∵F (1,0),∴k F A =43, ∵MN ⊥F A ,∴k MN =-34. ∴F A 的方程为y =43(x -1),① MN 的方程为y -2=-34x ,② 联立①②,解得x =85,y =45, ∴点N 的坐标为⎝⎛⎭⎫85,45.12.已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8.(1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP |=|PB |,求△F AB 的面积.解:(1)易知直线与抛物线的交点坐标为(8,-8),∴(-8)2=2p ×8,∴2p =8,∴抛物线C 的方程为y 2=8x .(2)直线l 2与l 1垂直,故可设直线l 2:x =y +m ,A (x 1,y 1),B (x 2,y 2),且直线l 2与x 轴的交点为M .由⎩⎪⎨⎪⎧y 2=8x ,x =y +m ,得y 2-8y -8m =0,Δ=64+32m >0,∴m >-2.y 1+y 2=8,y 1y 2=-8m ,∴x 1x 2=y 21y 2264=m 2. 由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0,∴m =8或m =0(舍去),∴直线l 2:x =y +8,M (8,0).故S △F AB =S △FMB +S △FMA =12·|FM |·|y 1-y 2|=3(y 1+y 2)2-4y 1y 2=24 5.B 级1.设抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,M ∈C ,以M 为圆心的圆M 与准线l 相切于点Q ,Q 点的纵坐标为3p ,E (5,0)是圆M 与x 轴不同于F 的另一个交点,则p =( )A .1B .2C .3D .4 解析:选B 如图,抛物线C :y 2=2px (p >0)的焦点F ⎝⎛⎭⎫p 2,0,由Q点的纵坐标为3p 知M 点的纵坐标为3p ,则M 点的横坐标x =3p 2,即M ⎝⎛⎭⎫3p 2,3p .由题意知点M 是线段EF 的垂直平分线上的点,3p 2=5-p 22+p 2,解得p =2.故选B. 2.(2018·全国卷Ⅲ)已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.解析:法一:设点A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,∴y 21-y 22=4(x 1-x 2), ∴k =y 1-y 2x 1-x 2=4y 1+y 2. 设AB 中点M ′(x 0,y 0),抛物线的焦点为F ,分别过点A ,B 作准线x =-1的垂线,垂足为A ′,B ′,则|MM ′|=12|AB |=12(|AF |+|BF |) =12(|AA ′|+|BB ′|). ∵M ′(x 0,y 0)为AB 的中点,∴M 为A ′B ′的中点,∴MM ′平行于x 轴,∴y 1+y 2=2,∴k =2.法二:由题意知,抛物线的焦点坐标为F (1,0),设直线方程为y =k (x -1),直线方程与y 2=4x 联立,消去y ,得k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1x 2=1,x 1+x 2=2k 2+4k 2. 由M (-1,1),得AM ―→=(-1-x 1,1-y 1),BM ―→=(-1-x 2,1-y 2).由∠AMB =90°,得AM ―→·BM ―→=0,∴(x 1+1)(x 2+1)+(y 1-1)(y 2-1)=0,∴x 1x 2+(x 1+x 2)+1+y 1y 2-(y 1+y 2)+1=0.又y 1y 2=k (x 1-1)·k (x 2-1)=k 2[x 1x 2-(x 1+x 2)+1],y 1+y 2=k (x 1+x 2-2),∴1+2k 2+4k 2+1+k 2⎝ ⎛⎭⎪⎫1-2k 2+4k 2+1-k ⎝ ⎛⎭⎪⎫2k 2+4k 2-2+1=0, 整理得4k 2-4k+1=0,解得k =2. 答案:23.(2019·洛阳模拟)已知抛物线C :x 2=2py (p >0),过焦点F 的直线交C 于A ,B 两点,D 是抛物线的准线l 与y 轴的交点.(1)若AB ∥l ,且△ABD 的面积为1,求抛物线的方程;(2)设M 为AB 的中点,过M 作l 的垂线,垂足为N .证明:直线AN 与抛物线相切. 解:(1)∵AB ∥l ,∴|FD |=p ,|AB |=2p .∴S △ABD =p 2,∴p =1,故抛物线C 的方程为x 2=2y .(2)设直线AB 的方程为y =kx +p 2, 由⎩⎪⎨⎪⎧ y =kx +p 2,x 2=2py得x 2-2kpx -p 2=0. ∴x 1+x 2=2kp ,x 1x 2=-p 2.其中A ⎝⎛⎭⎫x 1,x 212p ,B ⎝⎛⎭⎫x 2,x 222p . ∴M ⎝⎛⎭⎫kp ,k 2p +p 2,N ⎝⎛⎭⎫kp ,-p 2. ∴k AN =x 212p +p 2x 1-kp =x 212p +p 2x 1-x 1+x 22=x 21+p 22p x 1-x 22=x 21-x 1x 22p x 1-x 22=x 1p . 又x 2=2py ,∴y ′=x p. ∴抛物线x 2=2py 在点A 处的切线斜率k =x 1p. ∴直线AN 与抛物线相切.。
高中数学抛物线知识点抛物线是高中数学的一个重要考点。
抛物线是指平面内到一个定点f和一条定直线l距离相等的点的轨迹。
1抛物线的概念1.抛物线定义:平面内与一个定点和一条直线的距离相等的点的轨迹叫做抛物线,点叫做抛物线的焦点,直线叫做抛物线的准线,定点不在定直线上。
它与椭圆、双曲线的第二定义相仿,仅比值(离心率e)不同。
2.抛物线的标准方程有四种形式,参数的几何意义,是焦点到准线的距离,掌握不同形式方程的几何性质(如下表):其中为抛物线上任一点。
3.对于抛物线上的点的坐标可设为,以简化运算。
4.抛物线的焦点弦:设过抛物线的焦点的直线与抛物线交于,直线与的斜率分别为,直线的倾斜角为,则有解。
说明:(1)求抛物线方程时,若由已知条件可知曲线是抛物线一般用待定系数法;若由已知条件可知曲线的动点的规律一般用轨迹法。
(2)凡涉及抛物线的弦长、弦的中点、弦的斜率问题时要注意利用韦达定理,能避免求交点坐标的复杂运算。
(3)解决焦点弦问题时,抛物线的定义有广泛的应用,而且还应注意焦点弦的几何*质。
5.抛物线的焦点弦的性质:关于抛物线的几个重要结论:(1)弦长公式同椭圆.(2)对于抛物线y2=2px(p>0),我们有p(x0,y0)在抛物线内部p(x0,y0)在抛物线外部(3)抛物线y2=2px上的点p(x1,y1)的切线方程是抛物线y2=2px(p>,高二;0)的斜率为k的切线方程是y=kx+(4)抛物线y2=2px外一点p(x0,y0)的切点弦方程是(5)过抛物线y2=2px上两点的两条切线交于点m(x0,y0),则(6)自抛物线外一点p作两条切线,切点为a,b,若焦点为f,又若切线pa ⊥pb,则ab必过抛物线焦点f.2抛物线的解题技巧1.利用抛物线的几何性质解题的方法:根据抛物线定义得出抛物线一个非常重要的几何性质:抛物线上的点到焦点的距离等于到准线的距离.利用抛物线的几何性质,可以进行求值、图形的判断及有关*.2.抛物线中定点问题的解决方法:在高考中一般以填空题或选择题的形式考查抛物线的定义、标准方程以及几何*质等基础知识,在解答题中常常将解析几何中的方法、技巧与思想集于一身,与其他圆锥曲线或其他章节的内容相结合。
抛物线知识点高考高中数学中的抛物线知识点在高考中占据了重要的位置。
抛物线是数学中的一种曲线,具有很多有趣的性质和应用。
在本文中,我们将深入探讨抛物线的定义、性质以及高考中常见的相关考点。
首先,我们来介绍一下抛物线的定义。
抛物线是由一个定点(焦点)和一条直线(准线)确定的曲线。
对于抛物线上的任意一点P,它到焦点的距离等于它到准线的距离。
这个定义能够很好地解释抛物线的形状,以及抛物线上各个点的位置关系。
接下来,我们来探讨抛物线的性质。
首先是对称性。
抛物线具有对称轴,对称轴是通过焦点垂直于准线的直线。
抛物线的形状在对称轴两侧完全相同,即左右对称。
其次是焦点与准线之间的距离关系。
抛物线上任意一点到焦点与准线的距离之差保持不变。
这个性质在物理学中有广泛的应用,例如反射和聚焦。
最后是切线和法线。
抛物线上每一点处都有唯一的切线和法线,切线与法线相互垂直。
在高考中,抛物线相关的知识点主要包括方程求解、性质应用以及相关的解析几何问题。
首先是方程求解,即给定一个抛物线的方程,要求求解其焦点、准线以及对称轴等相关的信息。
其次是性质应用,例如给定一个抛物线上的一点,要求计算它到焦点和准线的距离之差。
另外,还会出现一些解析几何的问题,例如给定一个抛物线和一条直线,要求求解它们的交点等等。
在解决这些问题的过程中,我们可以运用一些有效的方法和技巧。
其中,最重要的是熟练掌握抛物线的标准方程和一般方程。
标准方程是y^2=4ax,其中a是抛物线的参数。
一般方程是y=ax^2+bx+c。
通过这两个方程,我们可以很方便地确定抛物线的性质和解析几何问题的解。
另外,还要注意抛物线的对称性质和距离关系,这些特性对于解题至关重要。
总之,抛物线是高中数学中一个重要的知识点,也是高考中经常出现的考点之一。
通过深入了解抛物线的定义、性质以及运用方法,我们可以更好地应对高考中的相关题目。
希望本文的介绍和解析能够帮助到同学们更好地掌握抛物线知识,取得优异的成绩。
抛物线 典例剖析知识点一 抛物线概念的应用已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求|P A |+|PF |的最小值,并求出取最小值时P 点的坐标.解将x=3代入抛物线方程 y 2=2x ,得y=〒6.6>2,∴点A 在抛物线内部.设抛物线上点P 到准线l : x=21的距离为d ,由定义知|PA|+|PF|=|PA|+d , 当PA ⊥l 时,|PA|+d 最小, 最小值为27,即|PA|+|PF|的最小值为27, 此时P 点纵坐标为2,代入y 2=2x ,得x=2, ∴点P 坐标为(2,2).知识点二 求抛物线的标准方程求适合下列条件的抛物线的标准方程:(1)过点(-3,2);(2)焦点在直线x -2y -4=0上.分析 设出抛物线的标准形式,依据条件求出p 的值.解 (1)设抛物线标准方程为y 2=-2px 或x 2=2py (p >0),则将点(-3,2)代入方程得2p =43,或2p =92,故抛物线的标准方程为y 2=-43x ,或x 2=92y .(2)①令x =0,由方程x -2y -4=0,得y =-2. ∴抛物线的焦点为F (0,-2).设抛物线方程为x 2=-2py ,则由p2=2,得2p =8.∴所求的抛物线方程为x 2=-8y .②令y =0,由x -2y -4=0,得x =4. ∴抛物线的焦点为F (4,0).设抛物线方程为y 2=2px ,由p2=4,得2p =16.∴所求抛物线方程为y 2=16x .知识点三 抛物线在实际中的应用汽车前灯反射镜与轴截面的交线是抛物线的一部分,灯口所在的圆面与反射镜的轴垂直,灯泡位于抛物线焦点处,已知灯口的直径是24 cm ,灯深10 cm ,那么灯泡与反射镜的顶点(即截得抛物线顶点)距离是多少?分析 确定抛物线方程,求出抛物线的焦点到其顶点的距离解 取反射镜的轴即抛物线的对称轴为x 轴,抛物线的顶点为坐标原点,建立直角坐标系xOy ,如图所示.因灯口直径|AB|=24.灯深|OP|=10, 所以点A 的坐标是(10,12).设抛物线的方程为y 2=2px(p>0).由点A(10,12)在抛物线上,得122=2p ×10, ∴p=7.2.抛物线的焦点F 的坐标为(3.6,0).因此灯泡与反射镜顶点的距离是3.6 cm.知识点四 抛物线几何性质的简单应用抛物线的顶点在原点,对称轴重合于椭圆9x 2+4y 2=36短轴所在的直线,抛物线焦点到顶点的距离为3,求抛物线的方程.分析 先确定抛物线方程的形式,再依条件求待定参数.解 椭圆9x 2+4y 2=36可化为x 24+y 29=1,得抛物线的对称轴为x 轴.设抛物线的方程为y 2=ax (a ≠0), 又抛物线的焦点到顶点的距离为3,则有|a4|=3,∴|a |=12,即a =±12.故所求抛物线方程为y 2=12x ,或y 2=-12x .知识点五 直线与抛物线已知过抛物线y 2=2px (p >0)的焦点的直线交抛物线于A 、B 两点,且|AB |=52p ,求AB 所在的直线方程.解 焦点F (p2,0),设A (x 1,y 1)、B (x 2,y 2),若AB ⊥Ox ,则|AB |=2p <52p ,不合题意.所以直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k (x -p2),k ≠0.由⎩⎪⎨⎪⎧y =k (x -p 2),y 2=2px ,消去x ,整理得ky 2-2py -kp 2=0.韦达定理得,y 1+y 2=2pk,y 1y 2=-p 2.∴|AB |=(x 1-x 2)2+(y 1-y 2)2=(1+1k 2)·(y 1-y 2)2=1+1k2·(y 1+y 2)2-4y 1y 2=2p (1+1k 2)=52p .解得k =±2.∴AB 所在直线方程为y =2(x -p 2),或y =-2(x -p 2).知识点六 抛物线的焦点弦问题AB 是过抛物线y 2=2px (p >0)焦点F 的弦,M 是AB 的中点,l 是抛物线的准线,MN ⊥l ,N 为垂足.求证:(1)AN ⊥BN ; (2)FN ⊥AB ;(3)若MN 交抛物线于Q ,则Q 平分MN .证明 (1)作AC ⊥l ,垂足为C ,作BD ⊥l ,垂足为D ,在直角梯形ABDC 中, ∵|AF|=|AC|,|BF|=|BD|, ∴|MN|=21(|AC|+|BD|) =21(|AF|+|BF|) =21|AB|, 由平面几何知识可知△ANB 是直角三角形,即AN ⊥BN. (2)∵|AM|=|NM|, ∴∠MAN=∠MNA , ∵AC ∥MN ,∴∠CAN=∠MNA ,∴∠MAN=∠CAN.在△ACN 和△AFN 中,|AN|=|AN|,|AC|=|AF|, 且∠CAN=∠FAN ,∴△ACN ≌△AFN , ∴∠NFA=∠NCA=90°, 即FN ⊥AB.(3)在Rt △MNF 中,连结QF , 由抛物线的定义及(2)的结论得 |QN|=|QF|⇒∠QNF=∠QFN ,且∠QFN=90°-∠QFM ,∠QMF=90°-∠QNF , ∴∠QFM=∠QMF ,∴|QF|=|QM|, ∴|QN|=|QM|,即Q 平分MN.知识点七 抛物线的综合问题过抛物线y 2=2px (p >0)的焦点F 作倾斜角为θ的直线交抛物线于A 、B 两点,设△AOB 的面积为S (O 为原点).(1)用θ、p 表示S ;(2)求S 的最小值;当最小值为4时,求抛物线的方程.解 (1)设直线y =k ⎝⎛⎭⎫x -p2,代入y 2=2px , 得y 2=2p ⎝⎛⎭⎫y k +p 2,即y 2-2pk y -p 2=0,∴y 1+y 2=2pk,y 1y 2=-p 2.∴|AB |= 1+1k2·(y 1+y 2)2-4y 1y 2= k 2+1k 2·4p 2k2+4p 2=(1+1k 2)2p =(1+1tan 2θ)2p=2p sin 2θ.① 当直线AB ⊥x 轴时,①也成立.∴S =12|OF ||AF |sin θ+12|OF ||BF |sin(π-θ)=12|OF ||AB |sin θ =12·p 22p sin 2θsin θ=p 22sin θ. (2)当θ=90°时,S min =12p 2.若S min =4,则12p 2=4.∴p =2 2.∴此时抛物线的方程为y 2=42x .考题赏析1.(辽宁高考)已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A.172 B .3 C. 5 D.92解析 如图所示,由抛物线的定义知,点P 到准线x =-12的距离d 等于点P 到焦点的距离|PF |.因此点P 到点(0,2)的距离与点P 到准线的距离之和可转化为点P 到点(0,2)的距离与点P到点F 的距离之和,其最小值为点M (0,2)到点F ⎝⎛⎭⎫12,0的距离,则距离之和的最小值为4+14=172.答案 A2.(全国Ⅰ高考)已知抛物线y =ax 2-1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为________.解析 ∵y =ax 2-1,∴y +1=ax 2.令y +1=y ′,x =x ′,则y ′=ax ′2,∴x ′2=2×12ay ′,∴x ′2=1a y ′的焦点坐标为⎝⎛⎭⎫0,14a ,即y +1=14a , ∴y =ax 2-1的焦点坐标为⎝⎛⎭⎫0,14a -1. 又y =ax 2-1的焦点是原点,∴14a =1,∴a =14.∴y =14x 2-1.令x =0,得y =-1,令y =0,得x =±2.故y =14x 2-1与两坐标轴的三个交点为(0,-1),(2,0),(-2,0),∴围成三角形面积为S =12×4×1=2.答案 23.(全国Ⅱ高考)已知F 是抛物线C :y 2=4x 的焦点,A 、B 是抛物线C 上的两个点,线段AB 的中点为M (2,2),则△ABF 的面积等于________.解析 设A (x 1,y 1),B (x 2,y 2),则y 21=4x 1,y 22=4x 2. ∴(y 1+y 2)(y 1-y 2)=4(x 1-x 2).∵x 1≠x 2,∴y 1-y 2x 1-x 2=4y 1+y 2=1.∴直线AB 的方程为y -2=x -2,即y =x . 将其代入y 2=4x ,得A (0,0)、B (4,4).∴|AB |=4 2.又F (1,0)到y =x 的距离为22,∴S △ABF =12×22×42=2.答案 21.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是( ) A.|a |4 B.|a |2C .|a |D .-a2答案 B解析 因为y 2=ax ,所以p =|a |2,即该抛物线的焦点到其准线的距离为|a |2,故选B.2.抛物线y 2=2px (p >0)上一点M 到焦点的距离是a (a >p2),则点M 的横坐标是( )A .a +p 2B .a -p2C .a +pD .a -p 答案 B解析 由抛物线的定义知:点M 到焦点的距离a 等于点M 到抛物线的准线x =-p2的距离,所以点M 的横坐标即点M 到y 轴的距离为a -p2.3.已知抛物线的方程为标准方程,焦点在x 轴上,其上点P (-3,m )到焦点F 的距离为5,则抛物线方程为( )A .y 2=8xB .y 2=-8xC .y 2=4xD .y 2=-4x 答案 B解析 点P (-3,m )在抛物线上,焦点在x 轴上,所以抛物线的标准方程可设为y 2=-2px (p >0).由抛物线定义知|PF |=3+p2=5.所以p =4,所以抛物线的标准方程是y 2=-8x .应选B.4.抛物线y 2=ax 的焦点与双曲线x 23-y 2=1的左焦点重合,则这条抛物线的方程是( )A .y 2=4xB .y 2=-4xC .y 2=-42xD .y 2=-8x 答案 D解析 因为x 23-y 2=1的左焦点为(-2,0),所以抛物线开口向左,所以a <0,且p =|a |2=4,所以a =-8,所以抛物线方程为y 2=-8x ,故选D.5.已知F 为抛物线C :y 2=4x 的焦点,过F 且斜率为1的直线交抛物线C 于A 、B 两点.设|F A |>|FB |,则|F A |与|FB |的比值等于________.答案 3+2 2解析 ∵y 2=4x 的焦点坐标为 F (1,0),准线方程为x =-1,∴过F 且斜率为1的直线方程为y = x - 1.将其代入y 2= 4x 得 x 2 - 6x + 1=0.∴x 1, 2 =62± = 3〒22.∵|FA|>|FB|,∴x A =3+22,x B =3-22.又|FA|= x +1,|FB|= x B +1,∴|FA||FB|== 3+22. 答案 -36. 过抛物线y 2 = 4x 的焦点的直线交抛物线于A 、B 两点,O 为坐标原点,则· 的值是________.. 解析 当直线过焦点且垂直于x 轴时,直线方程为x =1,代入y 2=4x ,y 1,2=±2.A 、B 点的坐标分别为(1,2),(1,-2).∴·OB →=1-4=-3.当直线过焦点不垂直x 轴时,则直线的方程可设为y =k (x -1),设A ,B 坐标分别为(x 1,y 1)(x 2,y 2).则y 21·y 22=16x 1x 2.由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),得k 2x 2-(2k +4)x +k 2=0, ·OB →=x 1x 2+y 1y 2=1-4=-3. 7.已知圆A :(x +2)2+y 2=1与定直线l :x =1,若动圆C 与圆A 相外切,且与直线l 相切,求动圆圆心C 的轨迹方程.解 设圆心C 到直线l 的距离为d ,则由题意知|CA |=d +1从而可知圆心C 到点(-2,0)的距离和到定直线x =2的距离相等.所以动圆圆心C 的轨迹是抛物线,其焦点为(-2,0),准线为x =2,故设动圆圆心C 的轨迹方程为y 2=-2px (p >0),由p2=2,得p =4.因此动圆圆心C 的轨迹方程为y 2=-8x .8.已知点M (-2,4)及焦点为F 的抛物线y =18x 2,在此抛物线上求一点P 使|PM |+|PF |的值最小.分析 先根据已知条件画出图形,由定义知,抛物线上的点P 到焦点F 的距离等于P 到准线l 的距离d ,所以求|PM |+|PF |的最小值问题可转化为求|PM |+d 的最小值问题,让点P 在抛物线上运动,容易发现当点P 运动到过点M 且与x 轴垂直的直线与抛物线的交点处时,|PM |+d 最小.解 如图,设MN ⊥x 轴,与准线交于N ,与抛物线交于点P ,在抛物线上任取一点P ′,连P ′M ,P ′F ,作P ′N 垂直于准线,垂足为N ′.由抛物线的定义,|PN|=|PF|,|P ′N ′|=|P ′F||P ′M|+|P ′N ′|=|P ′M|+|P ′F| |PN|+|PM|=|PM|+|PF|∵|P ′M|+|P ′N ′|≥|PN|+|PM| ∴|P ′M|+|P ′F|≥|PM|+|PF|这就是说,当P ′与P 重合时,|PM|+|PF|的值最小解方程组22,1,8x y x =-⎧⎪⎨=⎪⎩得P(-2,12). 9.已知抛物线y 2=2x ,过点Q (2,1)作一条直线交抛物线于A 、B 两点,试求弦AB 中点的轨迹方程.解 设弦AB 的中点M (x ,y ),A (x 1,y 1),B (x 2,y 2),则有y 21=2x 1,y 22=2x 2, ∴y 1-y 2x 1-x 2=2y 1+y 2,又y 1+y 2=2y ,∴y 1-y 2x 1-x 2=1y,即k AB =1y .又k MQ =y -1x -2,由题意知k MQ =k AB .∴y -1x -2=1y,整理, 得y 2-x -y +2=0.所以,弦AB 中点的轨迹方程为y 2-x -y +2=0.10.抛物线的顶点在原点,以x 轴为对称轴,经过焦点且倾斜角为135°的直线,被抛物线所截得的弦长为8,试求抛物线方程.解 如右图所示,依题意设抛物线方程为y 2=2px(p>0),则直线方程为y=-x+12p. 设直线交抛物线于A(x 1,y 1), B(x 2,y 2),则由抛物线定义得|AB|=|AF|+|FB|=|AC|+|BD| =x 1+2P + x 2 + 2P , 即x 1+x 2 +p=8.①又A (x 1,y 1)、B (x 2,y 2)是抛物线和直线的交点.由⎩⎪⎨⎪⎧y =-x +12p ,y 2=2px ,消去y 得x 2-3px +p 24=0,∴x 1+x 2=3p ,将其代入①得p =2. ∴所求抛物线方程为y 2=4x .当抛物线方程设为y 2=-2px (p >0)时,同理可求得抛物线方程为y 2=-4x . 故抛物线的方程为y 2=4x 或y 2=-4x .讲练学案部分2.4.1 抛物线及其标准方程.对点讲练知识点一 求抛物线的标准方程分别求出满足下列条件的抛物线的标准方程.(1)过点(3,-4).(2)焦点在直线x +3y +15=0上. 解 (1)∵点(3,-4)在第四象限,∴抛物线的标准方程为y 2=2px (p >0)或x 2=-2p 1y (p 1>0),把点(3,-4)的坐标分别代入得(-4)2=2p ×3,32=-2p 1×(-4)即2p =163,2p 1=94∴所求抛物线的方程为y 2=163x 或x 2=-94y .(2)令x =0得y =-5;令y =0得x =-15 ∴抛物线的焦点为(0,-5)或(-15,0)∴所求抛物线的标准方程为y 2=-60x 或x 2=-20y .【反思感悟】 求抛物线方程应首先确定焦点的位置,进而确定方程的形式,然后利用已知条件求p 的值.求满足下列条件的抛物线的方程.(1)以坐标轴为对称轴,且过点A (2,3);(2)以坐标轴为对称轴,焦点到准线的距离为52.解 (1)由题意,方程可设为y 2=mx 或x 2=ny , 将点A (2,3)的坐标代入,得32=m ·2或22=n ·3,∴m =92或n =43.∴所求的抛物线方程为y 2=92x 或x 2=43y .(2)由焦点到准线的距离为52,可知p =52.∴所求抛物线方程为y 2=5x 或y 2=-5x 或x 2=5y 或x 2=-5y .知识点二 抛物线定义的应用已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离等于5,求抛物线的方程和m 的值.解 设抛物线的方程为y 2=-2px (p >0),则准线方程为x =p2.∵点M (-3,m )是抛物线上的点,根据抛物线定义,M 点到焦点的距离等于M 点到准线的距离∴|-3|+p2=5 ∴p =4.∴抛物线方程为y 2=-8x .又点M (-3,m )在抛物线上故m 2=-8×(-3) ∴m =±2 6.【反思感悟】 涉及抛物线上一点与焦点的距离问题要注意用定义转化为该点到准线的距离,可简化计算.若动圆与圆(x -2)2+y 2=1相外切,又与直线x +1=0相切,则动圆圆心的轨迹是( )A .椭圆B .双曲线C .双曲线的一支D .抛物线答案 D解析 设动圆的圆心为M ,半径为r ,动圆与圆(x -2)2+y 2=1相外切,则M 到定点(2,0)的距离为r +1,动圆与直线x =-1相切,则点M 到定直线x =-1的距离为r ,所以M 到定点(2,0)和到定直线x =-2的距离相等,由抛物线定义知,答案选D.知识点三 抛物线知识在实际中的应用喷灌的喷头装在直立管柱OA 的顶点A 处,喷出水流的最高点B 高5 m ,且与OA 所在的直线相距4 m ,水流落在以O 为圆心,半径为9 m 的圆上,则管柱OA 的长是多少?解 如图所示,建立直角坐标系,设水流所形成的抛物线的方程为x 2= -2py(p>0),点C(5, -5)在抛物线上,所以25= -2p ·(-5),2p=5,所以抛物线的方程为x 2= -5y ,点A(-4,y 0)在抛物线上,所以16= -5y 0,y 0 = -165,所以OA 的长为5 - 165=1.8 (m).∴管柱OA 的长是1.8 m.【反思感悟】 根据题意,建立直角坐标系,用待定系数法求出抛物线方程,再利用抛物线方程解决实际问题.抛物线型拱桥顶距离水面2米,水面宽4米,当水下降1米后,水面宽________米.答案 2 6解析 可设抛物线方程为x 2=-2py ,则点(-2,-2)在抛物线上,则有:4=4p . ∴p =1,抛物线方程为x 2=-2y ,当y =-3时,x =±6. ∴水面宽为2 6. 课堂小结:1.四个标准方程的区分:焦点在一次项字母对应的坐标轴上,开口方向由一次项系数的符号确定.当系数为正时,开口方向为坐标轴的正方向;系数为负时,开口方向为坐标轴的负方向.2.焦点在y 轴上的抛物线的标准方程x 2=2py 通常又可以写成y=ax 2,这与以前学习的二次函数的解析式是完全一致的,但需要注意的是,由方程y=ax 2来求其焦点和准线时,必须先化成标准形式.3.经过抛物线的焦点的弦称为抛物线的焦点弦,它有以下特性:设焦点弦AB 的端点坐标分别为A (x 1 , y 1),B(x 2,y 2),则y 1y 2= - p 2, x 1x 2 = 24p ,|AB|= x 1 + x 2 + p.课时作业一、选择题1.已知抛物线的顶点在原点,对称轴为x 轴,焦点在曲线x 24-y 22=1上,则抛物线方程为( )A .y 2=8xB .y 2=4xC .y 2=2xD .y 2=±8x 答案 D解析 由题意知抛物线的焦点为双曲线x 24-y 22=1的顶点,即(-2,0)、(2,0),所以抛物线的方程为y 2=8x 或y 2=-8x .2.抛物线y =mx 2(m <0)的焦点坐标是( )A .(0,m 4)B .(0,14m )C .(0,-m 4)D .(0,-14m)答案 B解析 由于抛物线方程可化为x 2=1my (m <0),所以抛物线的焦点在y 轴的负半轴上,且2p =-1m ,所以p 2=-14m ,所以抛物线的焦点坐标是(0,14m),答案选B.3.过点M (2,4)作与抛物线y 2=8x 只有一个公共点的直线l 有( ) A .0条 B .1条 C .2条 D .3条 答案 C解析 容易发现点M (2,4)在抛物线y 2=8x 上,这样l 过M 点且与x 轴平行时,l 与抛物线有一个公共点,或者l 在M 点上与抛物线相切,故选C.4.已知P 1(x 1,y 1),P 2(x 2,y 2)是抛物线y 2=2px (p >0)上不同的两点,则y 1·y 2=-p 2是直线P 1P 2通过抛物线焦点的( )A .充分不必要条件B .充分必要条件C .必要不充分条件D .既不充分也不必要条件 答案 B解析 设直线P 1P 2的斜率为k ,在x 轴上的截距为x 0,则P 1P 2的方程为y =k (x -x 0), x =1ky +x 0(k =0时只有一个交点不合题意), 所以y 2=2p ⎝⎛⎭⎫1k y +x 0,即y 2-2pky -2px 0=0. 当直线P 1P 2过焦点时,x 0=p2,则y 1y 2=-p 2.当y 1y 2=-p 2时,即-2px 0=-p 2,则x 0=p2,直线过焦点.当斜率不存在时也可验证是充要条件.5.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,那么|AB |等于( )A .10B .8C .6D .4 答案 B解析 方法一 由已知得抛物线焦点为(1,0),过焦点的直线设为y =k (x -1)(由x 1+x 2=6知,此直线不平行于y 轴,因而k 存在).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,消去y 得k 2x 2-2(k 2+2)x +k 2=0. 由⎩⎪⎨⎪⎧x 1+x 2=2(k 2+2)k 2=6,x 1·x 2=1得k =±1.所以|AB |2=(1+k 2)(x 1-x 2)2=2(x 1-x 2)2=64,故|AB |=8.方法二 由焦半径公式|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=8.二、填空题6.抛物线2y 2+5x =0的焦点坐标为____________,准线方程为______________.答案 ⎝⎛⎭⎫-58,0 x =58解析 化抛物线2y 2+5x =0为标准方程y 2=-52x,2p =52,p 2=58,所以焦点坐标为(-58,0),准线方程为x =58.7.设点M ⎝⎛⎭⎫3,103与抛物线y 2=2x 上的点P 之间的距离为d 1,P 到抛物线准线l 的距离为d 2,则当d 1+d 2取最小值时,P 点坐标为____________.答案 (2,2)解析 当P 点是M 与焦点F ⎝⎛⎭⎫12,0连线与抛物线交点时,d 1+d 2最小,MF 的方程为y =43x -23,与抛物线y 2=2x 联立得P (2,2). 三、解答题8.过点Q (4,1)作抛物线y 2=8x 的弦AB ,若弦恰被Q 平分,求AB 所在直线方程. 解 设A (x 1,y 1),B (x 2,y 2),因点Q (4,1)为A ,B 的中点则有⎩⎪⎨⎪⎧x 1+x 2=8y 1+y 2=2将A 、B 两点坐标代入y 2=8x .则有⎩⎪⎨⎪⎧y 21=8x 1 ①y 22=8x 2 ②①-②得:(y 1-y 2)(y 1+y 2)=8(x 1-x 2),由y 1+y 2=2,则有y 1-y 2x 1-x 2=4,∴k AB =4.∴所求直线方程为y -1=4(x -4),即4x -y -15=0.9.一抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上有一宽4米、高6米的矩形大木箱,问能否安全通过?解建立坐标系如图,设抛物线方程为 x 2= -2py ,则点(26, -6.5)在抛物线上, ∴262= -2p ·(-6.5),∴p=52,抛物线的方程为x 2= -104y ,当y=-0.5时,x=〒213,则有413>4, 所以木箱能安全通过.10.已知过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点. 求证:(1)x 1x 2为定值;(2)1|F A |+1|FB |为定值. 证明 (1)抛物线y 2=2px 的焦点为F ⎝⎛⎭⎫p 2,0,当AB 不垂直于x 轴时,设直线AB 的方程为y =k ⎝⎛⎭⎫x -p2 (k ≠0). 由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -p 2y 2=2px消去y , 得k 2x 2-p (k 2+2)x +k 2p 24=0.由根与系数的关系得x 1x 2=p 24(定值).当AB ⊥x 轴时,x 1=x 2=p2,x 1x 2=p24也成立.(2)由抛物线的定义知,|F A |=x 1+p 2,|FB |=x 2+p2.又由(1)得x 1x 2=p24,所以1|F A |+1|FB |=1x 1+p 2+1x 2+p2=x 1+x 2+pp 2(x 1+x 2)+x 1x 2+p 24 =x 1+x 2+p p 2(x 1+x 2)+p 22=x 1+x 2+p p 2(x 1+x 2+p )=2p(定值). 2.4.2 抛物线的简单几何性质.对点讲练知识点一 由性质求方程已知抛物线的顶点为坐标原点,对称轴为x 轴,且与圆x 2+y 2=4相交的公共弦长等于23,求这条抛物线的方程.解 设所求抛物线方程为y 2=2px (p >0)或y 2=-2px (p >0),设交点A (x 1,y 1),B (x 2,y 2),(y 1>0,y 2<0),则|y 1|+|y 2|=23,即y 1-y 2=23,由对称性知,y 2=-y 1,代入上式得y 1=3,把y 1=3代入x 2+y 2=4得x =±1.所以点(1,3)在抛物线y 2=2px 上,点(-1,3)在抛物线y 2=-2px 上,所以3=2p 或3=-2p ×(-1).所以p =32,所以所求抛物线方程为y 2=3x 或y 2=-3x .【反思感悟】 (1)由已知的几何条件求抛物线方程,常用待定系数法.(2)由于抛物线是轴对称图形,所以与对称轴垂直的弦一定被对称轴平分.已知抛物线的焦点在x 轴上,直线y =2x +1被抛物线截得的线段长为15,求此抛物线的标准方程.解 ∵抛物线的焦点在x 轴上,∴设它的标准方程为y 2=2px由方程组⎩⎪⎨⎪⎧y 2=2pxy =2x +1得4x 2+(4-2p )x +1=0.∴|x 1-x 2|=(4-2p )2-164=p 2-4p2.∴1+22|x 1-x 2|=52p 2-4p .∴52p 2-4p =15.∴p =6或p =-2. ∴抛物线的方程为y 2=12x 或y 2=-4x .知识点二 与抛物线有关的证明问题过抛物线焦点F 的直线交抛物线于A ,B 两点,通过点A 和抛物线顶点的直线交抛物线的准线于点D ,求证:直线DB 平行于抛物线的对称轴.证明如图所示,以抛物线的对称轴为x 轴,它的顶点为原点,建立直角坐标系. 设抛物线的方程为y 2=2px ,①点A 的坐标为⎝⎛⎭⎫y 202p ,y 0,则直线OA 的方程为 y =2py 0x (y 0≠0),②抛物线的准线方程是x =-p2.③联立②③,可得点D 的纵坐标为y =-p 2y 0④因为点F 的坐标是⎝⎛⎭⎫p 2,0,当AB ⊥x 轴时,|y 0|=p 此时,|OA |=|OD |,∴DB ∥x 轴当AB 与x 轴不垂直时,即y 20≠p 2时,直线AF 的方程为y =2py 0y 20-p 2⎝⎛⎭⎫x -p 2,⑤ 联立①⑤,可得点B 的纵坐标为y =-p 2y 0.⑥由④⑥可知,DB ∥x 轴.【反思感悟】 因抛物线方程的独特形式,较之椭圆与双曲线,它上面的点便于用一个变量表示出来,如y 2=2px 上任一点,可表示为⎝ ⎛⎭⎪⎫y 22p ,y ,注意恰当运用.设抛物线y 2=2px (p >0)的焦点为F ,Q 是抛物线上除顶点外的任意一点,直线QO 交准线于P 点,过Q 且平行于抛物线对称轴的直线交准线于R 点,求证:PF ⊥RF .证明如图所示,设点Q ⎝⎛⎭⎫y 202p ,y 0,则R.(-2p,y 0 ) 直线OQ 的方程为y=02y p x , 当x=-2p 时,解得y=-02y p,∴P =2,20p p y ⎛⎫-- ⎪⎝⎭,又F (2p ,0),∴RF →=⎝⎛⎭⎫p ,p 2y 0,RF →=(p ,-y 0) ∴RF →·RF →=0,∴PF ⊥RF .知识点三 直线与抛物线的交点问题已知抛物线的方程为y 2=4x ,直线l 过定点P (-2,1),斜率为k .k 为何值时,直线l 与抛物线y 2=4x :只有一个公共点;有两个公共点;没有公共点?解 由题意,设直线l 的方程为y -1=k (x +2).由方程组⎩⎪⎨⎪⎧y -1=k (x +2)y 2=4x ,可得:ky 2-4y +4(2k +1)=0.① (1)当k =0时,由方程①得y =1.把y =1代入y 2=4x ,得x =14.这时,直线l 与抛物线只有一个公共点⎝⎛⎭⎫14,1. (2)当k ≠0时,方程①的判别式为 Δ=-16(2k 2+k -1). 1°由Δ=0,即2k 2+k -1=0,解得k =-1,或k =12.于是,当k =-1,或k =12时,方程①只有一个解,从而方程组(*)只有一个解.这时,直线l 与抛物线只有一个公共点.2°由Δ>0,即2k 2+k -1<0,解得-1<k <12.于是,当-1<k <12,且k ≠0时,方程①有两个解,从而方程组有两个解.这时,直线l与抛物线有两个公共点.3°由Δ<0,即2k 2+k -1>0,解得k <-1,或k >12.于是,当k <-1,或k >12时,方程①没有实数解,从而方程组(*)没有解.这时,直线l与抛物线没有公共点.综上,我们可得当k =-1,或k =12,或k =0时,直线l 与抛物线只有一个公共点;当-1<k <12,且k ≠0时,直线l 与抛物线有两个公共点;当k <-1,或k >12时,直线l 与抛物线没有公共点.【反思感悟】 当直线与抛物线的对称轴平行或重合时,抛物线和直线相交,只有一个交点.解决直线与抛物线位置关系问题时,不要忽视这一点,否则容易漏解.直线l :y =kx +1,抛物线C :y 2=4x ,当k 为何值时,l 与C 分别相切、相交、相离?解 将l 和C 的方程联立⎩⎪⎨⎪⎧y =kx +1, ①y 2=4x , ②①式代入②式,并整理,得 k 2x 2+(2k -4)x +1=0.当k ≠0时,是一元二次方程, ∴Δ=(2k -4)2-4k 2=16(1-k ).(1)当Δ=0时,即k =1时,l 与C 相切. (2)当Δ>0时,即k <1时,l 与C 相交. (3)当Δ<0时,即k >1时,l 与C 相离.当k =0时,直线l :y =1与曲线C :y 2=4x 相交.综上所述,当k =0或k <1时,l 与C 相交,当k =1时,l 与C 相切,当k >1时,l 与C 相离.课堂小结:1.在已知抛物线的顶点在坐标原点,对称轴为x 轴,求抛物线的标准方程时,为避免讨论张口的方向可设抛物线的方程为y 2=2ax (a ≠0).此时,不论a>0或a<0,焦点坐标都是(2a,0),准线方程都为x=-2a . 2.抛物线y 2= 2px (p>0)上任一点的坐标可用一个量y 1表示为21(1),2y y p;x 2 = 2py (p>0)上任一点坐标可设为(x 1 , 212x p).3.直线与抛物线的位置关系设直线l :y=kx+m ,抛物线:y 2=2px(p>0),将直线方程与抛物线方程联立整理成关于x 的方程:ax 2+bx+c=0,(1)若a ≠0,当Δ>0时,直线与抛物线相交,有两个交点; 当Δ=0时,直线与抛物线相切,有一个交点; 当Δ<0时,直线与抛物线相离,无公共点.(2)若a=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合,因此直线与抛物线有一个交点是直线与抛物线相切的必要不充分条件.一、选择题1.P (x 0,y 0)是抛物线y 2=2px (p ≠0)上任一点,则P 到焦点的距离是( )A .|x 0-p 2|B .|x 0+p2|C .|x 0-p |D .|x 0+p | 答案 B解析 当p >0时,由抛物线定义得点P (x 0,y 0)到焦点的距离为x 0+p2,当p <0时由抛物线定义知P (x 0,y 0)到焦点的距离为-p 2-x 0,综上得所求距离为|x 0+p2|,故选B.2.过抛物线y 2=4x 的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为4,则|AB |等于( )A .10B .8C .6D .4 答案 A解析 设A 、B 两点的横坐标分别为x A 、x B ,则有x A +x B =8,|AB |=|AF |+|BF |=x A +p 2+x B +p2=8+p =8+2=10.3.抛物线y 2=2px 与直线ax +y -4=0的一个交点是(1,2),则抛物线的焦点到该直线的距离为( )A.32 3B.25 5C.710 5D.172 答案 B解析 由已知得抛物线方程为y 2=4x ,直线方程为2x +y -4=0,抛物线y 2=4x 的焦点坐标是F (1,0),到直线2x +y -4=0的距离d =|2+0-4|22+1=255.4.若抛物线y 2=2px (p >0)上三个点的纵坐标的平方成等差数列,那么这三个点到抛物线焦点的距离的关系是( )A .成等差数列B .既成等差数列又成等比数列C .成等比数列D .既不成等比数列也不成等差数列 答案 A解析 设三点为P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),则y 21=2px 1,y 22=2px 2,y 23=2px 3,因为2y 22=y 21+y 23, 所以x 1+x 3=2x 2,即|P 1F |-p 2+|P 3F |-p2=2⎝⎛⎭⎫|P 2F |-p 2, 所以|P 1F |+|P 3F |=2|P 2F |. 二、填空题5.抛物线的顶点在原点,准线垂直于x 轴,且焦点到顶点的距离为4,则其方程为______________________.答案 y 2=16x 或y 2=-16x解析 焦点到顶点的距离即p2=4,p =8.6.抛物线y =x 2上的点到直线2x -y -4=0的距离最短的点的坐标是____________. 答案 (1,1)解析 设点A (x ,y )是符合题设条件的点,则由点到直线的距离公式,得d =55|2x -y -4|=55|2x -x 2-4| =55|-(x -1)2-3|≥355. 当且仅当x =1时,d 取得最小值,故所求点为(1,1).7.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是____________.答案 [-1,1]解析 Q 点坐标为(-2,0),直线l 的斜率不存在时,不满足题意,所以可设直线l 的斜率为k ,方程为y =k (x +2).当k =0时满足.当k ≠0时,x =1ky -2,代入y 2=8x ,得y 2-8k y +16=0.Δ=64k2-64≥0,k 2≤1,即-1≤k ≤1(k ≠0).综上,-1≤k ≤1.三、解答题8.过点(-3,2)的直线与抛物线y 2=4x 只有一个公共点,求此直线方程. 解 显然,直线存在斜率k , 设其方程为y -2=k (x +3), 由⎩⎪⎨⎪⎧y -2=k (x +3)y 2=4x 消去x ,整理得ky 2-4y +8+12k =0①(1)当k =0时,方程①化为-4y +8=0,即y =2, 此时过(-3,2)的直线方程为y =2,满足条件. (2)当k ≠0时,方程①应有两个相等实根. 由⎩⎪⎨⎪⎧ k ≠0Δ=0即⎩⎪⎨⎪⎧k ≠016-4k (8+12k )=0,得k =13或k =-1.∴直线方程为y -2=13(x +3)或y -2=-(x +3),即x -3y +9=0或x +y +1=0.故所求直线有三条,其方程分别为: y =2,x -3y +9=0或x +y +1=0.9.A ,B 是抛物线y 2=2px (p >0)上两点,满足OA ⊥OB ,其中O 为抛物线顶点.求证: (1)A ,B 两点的纵坐标乘积为定值; (2)直线AB 恒过一定点. 证明(1)设A(x 1,y 1),B(x 2,y 2),x 1≠0,x 2≠0,则y 12=2px 1, y 22=2px 2. ∵OA ⊥OB ,∴x 1x 2 + y 1y 2=0.∴y 12y 22、= 4p 2 x 1x 2 = 24p -y 1y 2.∴y 1y 2 =24p -为定值, x 1x 2=-y 1y 2=4p 2也为定值.∴A 、B 两点的纵坐标乘积为定值.(2)若AB ⊥x 轴,则易知直线AB 方程为x = 2p , 过点(2p,0);若AB 与x 轴不垂直,则x 1≠x 2,y 1+y 2≠0.由y 12-y 22=2p(x 1-x 2),得1212122y y px x y y -++=. ∴直线AB 的方程是y= 122py y + (x -x 1)+y 1,即y = 211121222px px y y y y y ++-+。
高考抛物线知识点总结高中数学中的抛物线是一个重要的知识点,也是高考数学中经常会出现的考点。
在解题过程中,对于抛物线的性质、方程及应用需要有深入的理解。
本文将对高考抛物线知识点进行总结,帮助考生加深对这一部分内容的理解和应用能力。
一、抛物线的基本形状和性质抛物线是一种二次曲线,其基本形状为开口朝上或朝下的弧线。
抛物线由一个定点(焦点)和一条定线(准线)确定,焦点和准线之间的距离称为焦距。
抛物线的顶点为曲线上的最低点或最高点,称为顶点。
在图像上,抛物线呈现出对称性,即以顶点为对称中心将曲线分成两个对称的部分。
抛物线的开口方向取决于二次曲线的二次项的系数正负。
若为开口朝上,则二次项系数为正,反之为负。
二、抛物线的常见方程1. 顶点坐标形式:设抛物线的顶点为(h, k),焦点坐标为(F, k),则抛物线的顶点坐标形式方程为:(x-h)² = 4a(y - k),其中a为焦距的一半。
2. 标准形式:设抛物线的焦点坐标为(F, 0),焦距为2a,则抛物线的标准形式方程为:y² = 4ax。
3. 配方形式:将标准形式方程简化得到的抛物线的配方形式方程为:x = ay² + by + c。
三、抛物线的性质及相关公式1. 抛物线的对称轴是与准线垂直并通过抛物线的顶点的直线。
对称轴的方程为x = h。
2. 离心率和焦距之间的关系:抛物线的离心率e等于焦距与准线之间的比值:e = F/a。
3. 焦点和准线之间的关系:焦点关于对称轴对称,焦点到准线的距离等于焦距。
4. 定点和定线之间的关系:抛物线上任意一点到定点的距离等于该点到准线的距离。
5. 直角坐标系中的曲线长度公式:设函数y = f(x)在闭区间[a,b]上连续,则抛物线上的曲线长度:L = ∫[a,b]√(1+(f'(x))²)dx。
四、抛物线的应用抛物线的应用范围广泛,在数学、物理、经济等多个学科中都有应用。
以下是抛物线在几个常见领域中的应用案例:1. 圆锥曲线:抛物线是圆锥曲线的一种,它在天文学、建筑学等领域中有着广泛的应用。
高考数学复习考点知识与题型专题讲解抛物线考试要求1.掌握抛物线的定义、几何图形、标准方程.2.掌握抛物线的简单几何性质(范围、对称性、顶点、离心率).3.了解抛物线的简单应用.知识梳理 1.抛物线的概念把平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 2.抛物线的标准方程和简单几何性质标准方程y 2=2px (p >0) y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)图形范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 焦点⎝ ⎛⎭⎪⎫p 2,0 ⎝ ⎛⎭⎪⎫-p 2,0 ⎝ ⎛⎭⎪⎫0,p 2 ⎝ ⎛⎭⎪⎫0,-p 2 准线方程x =-p 2x =p 2y =-p 2y =p 2对称轴x轴y轴顶点(0,0)离心率e=1常用结论抛物线焦点弦的几个常用结论设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=p24,y1y2=-p2;(2)若A在第一象限,B在第四象限,则|AF|=p1-cosα,|BF|=p1+cosα,弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角);(3)1|F A|+1|FB|=2p;(4)以弦AB为直径的圆与准线相切;(5)以AF或BF为直径的圆与y轴相切;(6)过焦点弦的端点的切线互相垂直且交点在准线上;(7)通径:过焦点与对称轴垂直的弦长等于2p.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹是抛物线.(×)(2)方程y=4x2表示焦点在x轴上的抛物线,焦点坐标是(1,0).(×)(3)抛物线既是中心对称图形,又是轴对称图形.(×)(4)若直线与抛物线只有一个交点,则直线与抛物线相切.(×) 教材改编题1.抛物线y =2x 2的准线方程为() A .y =-18B .y =-14 C .y =-12D .y =-1 答案A解析由y =2x 2,得x 2=12y ,故抛物线y =2x 2的准线方程为y =-18.2.过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |等于() A .9B .8C .7D .6 答案B解析抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得, |PQ |=|PF |+|QF |=x 1+1+x 2+1 =x 1+x 2+2=8.3.已知抛物线C 与双曲线x 2-y 2=1有相同的焦点,且顶点在原点,则抛物线C 的方程是________. 答案y 2=±42x解析由已知可知双曲线的焦点为 (-2,0),(2,0).设抛物线方程为y 2=±2px (p >0),则p2=2, 所以p =22,所以抛物线方程为y 2=±42x .题型一 抛物线的定义和标准方程 命题点1定义及应用例1(1)(2020·全国Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p 等于() A .2B .3C .6D .9 答案C解析设A (x ,y ),由抛物线的定义知,点A 到准线的距离为12,即x +p2=12. 又因为点A 到y 轴的距离为9,即x =9, 所以9+p2=12,解得p =6.(2)已知A (3,2),点F 为抛物线y 2=2x 的焦点,点P 在抛物线上移动,为使|P A |+|PF |取得最小值,则点P 的坐标为() A .(0,0) B .(2,2) C .(1,2) D.⎝ ⎛⎭⎪⎫12,1答案B解析如图所示,设点P 到准线的距离为d , 准线方程为x =-12, 所以|P A |+|PF |=|P A |+d ≥|AB | =3+12=72,当且仅当点P 为AB 与抛物线的交点时,|P A |+|PF |取得最小值, 此时点P 的坐标为(2,2).思维升华 “看到准线想到焦点,看到焦点想到准线”,许多抛物线问题均可根据定义获得简捷、直观的求解.“由数想形,由形想数,数形结合”是灵活解题的一条捷径.命题点2求标准方程例2(1)设抛物线y 2=2px 的焦点在直线2x +3y -8=0上,则该抛物线的准线方程为() A .x =-4B .x =-3 C .x =-2D .x =-1 答案A解析直线2x +3y -8=0与x 轴的交点为(4,0),∴抛物线y 2=2px 的焦点为(4,0),∴准线方程为x =-4.(2)已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,点A是抛物线C上一点,AD⊥l,交l于D.若|AF|=4,∠DAF=60°,则抛物线C的方程为()A.y2=8x B.y2=4xC.y2=2x D.y2=x答案B解析根据抛物线的定义可得|AD|=|AF|=4,又∠DAF=60°,所以|AD|-p=|AF|cos60°=12|AF|,所以4-p=2,解得p=2,所以抛物线C的方程为y2=4x.教师备选1.已知抛物线y2=4x的焦点为F,M,N是抛物线上两个不同的点.若|MF|+|NF|=5,则线段MN的中点到y轴的距离为()A.3B.32C.5D.52答案B解析由题意知抛物线的准线方程为x=-1,分别过点M,N作准线的垂线,垂足为M′,N′(图略),根据抛物线的定义得|MF|=|MM′|,|NF|=|NN′|,所以|MF |+|NF |=|MM ′|+|NN ′|, 所以线段MN 的中点到准线的距离为12(|MF |+|NF |)=52,所以线段MN 的中点到y 轴的距离为52-1=32.2.(2022·济南模拟)已知抛物线x 2=2py (p >0),过焦点F 的直线与抛物线交于A ,B 两点(点A 在第一象限).若直线AB 的斜率为33,点A 的纵坐标为32,则p 的值为() A.14B.12C .1D .2 答案C解析由题意得,抛物线x 2=2py (p >0)的焦点在y 轴上, 准线方程为y =-p2, 设A (x A ,y A ), 则|AF |=y A +p 2=32+p2, 设直线AB 的倾斜角为α, 则tan α=33,因为α∈[0,π),所以α=π6, 所以|AF |=y A -p 2sin α=32-p2sin α=3-p2sin α=3-p 2×12=3-p , 所以3-p =32+p2,解得p =1.思维升华 求抛物线的标准方程的方法(1)定义法;(2)待定系数法:当焦点位置不确定时,分情况讨论.跟踪训练1(1)设抛物线的顶点为O ,焦点为F ,准线为l ,P 是抛物线上异于O 的一点,过P 作PQ ⊥l 于Q .则线段FQ 的垂直平分线() A .经过点O B .经过点PC .平行于直线OPD .垂直于直线OP 答案B解析连接PF (图略),由题意及抛物线的定义可知|PQ |=|FP |,则△QPF 为等腰三角形,故线段FQ 的垂直平分线经过点P .(2)《九章算术》是我国古代内容极为丰富的数学名著,第九章“勾股”,讲述了“勾股定理”及一些应用,直角三角形的三条边长分别称为“勾”“股”“弦”.设点F 是抛物线y 2=2px (p >0)的焦点,l 是该抛物线的准线,过抛物线上一点A 作准线的垂线,垂足为B ,直线AF 交准线l 于点C ,若Rt △ABC 的“勾”|AB |=3,“股”|CB |=33,则抛物线的方程为 ()A .y 2=2xB .y 2=3xC .y 2=4xD .y 2=6x 答案B解析如图,|AB |=3,|BC |=33, 则|AC |=32+(33)2=6,设直线l 与x 轴交于点H ,由|AB |=|AF |=3,|AC |=6,可知点F 为AC 的中点, 所以|FH |=12|AB |=32, 又|FH |=p ,所以p =32, 所以抛物线的方程为y 2=3x . 题型二 抛物线的几何性质例3(1)(2021·新高考全国Ⅱ)抛物线y 2=2px (p >0)的焦点到直线y =x +1的距离为2,则p 等于()A .1B .2C .22D .4 答案B解析抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p 2,0,其到直线x -y +1=0的距离d =⎪⎪⎪⎪⎪⎪p 2-0+11+1=2,解得p =2(p =-6舍去).(2)已知弦AB 经过抛物线y 2=2px (p >0)的焦点F ,设A (x 1,y 1),B (x 2,y 2),则下列说法中错误的是()A .当AB 与x 轴垂直时,|AB |最小 B.1|AF |+1|BF |=2pC .以弦AB 为直径的圆与直线x =-p2相离 D .y 1y 2=-p 2 答案C解析当AB 与x 轴垂直时,AB 为抛物线的通径,是最短的焦点弦,即|AB |最小,A 正确; 设AB 方程为x =ty +p 2, 由⎩⎨⎧x =ty +p2,y 2=2px ,得y 2-2pty -p 2=0,∴y 1+y 2=2pt ,y 1y 2=-p 2,D 正确;∴x 1+x 2=y 21+y 222p =(y 1+y 2)2-2y 1y 22p=4p 2t 2+2p 22p=2pt 2+p ,x 1x 2=y 21y 224p 2=p 24,∴1|AF |+1|BF |=1x 1+p 2+1x 2+p 2=x 1+x 2+p x 1x 2+p 2(x 1+x 2)+p 24=2pt 2+2p p 2+p 2t 2=2p (t 2+1)p 2(t 2+1)=2p,B 正确; ∵AB 的中点到x =-p 2的距离为12(x 1+x 2+p )=12|AB |,∴以AB 为直径的圆与准线x =-p 2相切,C 错误.教师备选1.抛物线y 2=2px (p >0)准线上的点A 与抛物线上的点B 关于原点O 对称,线段AB 的垂直平分线OM 与抛物线交于点M ,若直线MB 经过点N (4,0),则抛物线的焦点坐标是()A .(4,0)B .(2,0)C .(1,0) D.⎝ ⎛⎭⎪⎫12,0 答案C解析设点B (x 1,y 1),M (x 2,y 2),则点A (-x 1,-y 1),可得-x 1=-p 2,则x 1=p 2,设直线MB 的方程为x =my +4,联立⎩⎪⎨⎪⎧x =my +4,y 2=2px ,可得y 2-2mpy -8p =0, 所以y 1y 2=-8p ,由题意可知,OB →·OM →=x 1x 2+y 1y 2=y 21y 224p 2+y 1y 2 =64p 24p 2-8p =16-8p =0,解得p =2.因此,抛物线的焦点为(1,0).2.(2022·唐山模拟)抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线r :y 2=x ,O 为坐标原点,一束平行于x 轴的光线l 1从点P ⎝ ⎛⎭⎪⎫4116,1射入,经过r 上的点A (x 1,y 1)反射后,再经r 上另一点B (x 2,y 2)反射后,沿直线l 2射出,经过点Q ,则下列结论错误的是()A .y 1y 2=-1B .|AB |=2516C .PB 平分∠ABQD .延长AO 交直线x =-14于点C ,则C ,B ,Q 三点共线答案A解析设抛物线的焦点为F ,则F ⎝ ⎛⎭⎪⎫14,0.因为P ⎝ ⎛⎭⎪⎫4116,1,且l 1∥x 轴,故A (1,1),故直线AF :y =1-01-14⎝ ⎛⎭⎪⎫x -14=43x -13.由⎩⎨⎧ y =43x -13,y 2=x ,可得y 2-34y -14=0,故y 1y 2=-14,故A 错误;又y 1=1,故y 2=-14,故B ⎝ ⎛⎭⎪⎫116,-14,故|AB |=1+116+12=2516,故B 正确;直线AO :y =x ,由⎩⎨⎧ y =x ,x =-14,可得C ⎝ ⎛⎭⎪⎫-14,-14,故y C =y 2, 所以C ,B ,Q 三点共线,故D 正确;因为|AP |=4116-1=2516=|AB |,故△APB 为等腰三角形,故∠ABP =∠APB ,而l 1∥l 2,故∠PBQ =∠APB ,即∠ABP =∠PBQ ,故PB 平分∠ABQ ,故C 正确.思维升华 应用抛物线的几何性质解题时,常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性. 跟踪训练2(1)(2021·新高考全国Ⅰ)已知O 为坐标原点,抛物线C :y 2=2px (p >0)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ ⊥OP .若|FQ |=6,则C 的准线方程为______________.答案x =-32解析方法一(解直角三角形法)由题易得|OF |=p 2,|PF |=p ,∠OPF =∠PQF ,所以tan ∠OPF =tan ∠PQF ,所以|OF ||PF |=|PF ||FQ |,即p 2p =p 6,解得p =3,所以C 的准线方程为x =-32.方法二(应用射影定理法)由题易得|OF |=p 2,|PF |=p ,|PF |2=|OF |·|FQ |,即p 2=p 2×6,解得p =3或p =0(舍去),所以C 的准线方程为x =-32.(2)直线l 过抛物线C :y 2=2px (p >0)的焦点F (1,0),且与C 交于A ,B 两点,则p =______,1|AF |+1|BF |=________.答案21解析由p 2=1,得p =2.当直线l 的斜率不存在时,l :x =1与y 2=4x联立解得y =±2,此时|AF |=|BF |=2,所以1|AF |+1|BF |=12+12=1;当直线l 的斜率存在时,设l :y =k (x -1),代入抛物线方程,得k 2x 2-2(k 2+2)x +k 2=0, 设A (x 1,y 1),B (x 2,y 2),则x 1x 2=1,1|AF |+1|BF |=|AF |+|BF ||AF ||BF |=x 1+x 2+2(x 1+1)(x 2+1)=x 1+x 2+2x 1x 2+x 1+x 2+1 =x 1+x 2+21+x 1+x 2+1=1. 综上,1|AF |+1|BF |=1.题型三 直线与抛物线例4已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若AP→=3PB →,求|AB |. 解设直线l :y =32x +t ,A (x 1,y 1),B (x 2,y 2).(1)由题设得F ⎝ ⎛⎭⎪⎫34,0, 故|AF |+|BF |=x 1+x 2+32.又|AF |+|BF |=4,所以x 1+x 2=52.由⎩⎨⎧ y =32x +t ,y 2=3x ,可得9x 2+12(t -1)x +4t 2=0,则x 1+x 2=-12(t -1)9.从而-12(t -1)9=52,得t =-78.所以l 的方程为y =32x -78.(2)由AP →=3PB →可得y 1=-3y 2. 由⎩⎨⎧ y =32x +t ,y 2=3x ,可得y 2-2y +2t =0,所以y 1+y 2=2,从而-3y 2+y 2=2,故y 2=-1,y 1=3.代入C 的方程得x 1=3,x 2=13,即A (3,3),B ⎝ ⎛⎭⎪⎫13,-1. 故|AB |=4133.教师备选如图,已知抛物线x 2=y ,点A ⎝ ⎛⎭⎪⎫-12,14,B ⎝ ⎛⎭⎪⎫32,94,抛物线上的点P (x ,y )⎝ ⎛⎭⎪⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围;(2)求|P A |·|PQ |的最大值.解(1)设直线AP 的斜率为k ,k =x 2-14x +12=x -12,因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1).(2)由(1)得直线AP 的斜率为k ,x =k +12,则直线BQ 的斜率为-1k (k ≠0),设直线AP 的方程为kx -y +12k +14=0,直线BQ 的方程为x +ky -94k -32=0,联立直线AP 与BQ 的方程⎩⎪⎨⎪⎧ kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +32(k 2+1).因为|P A |=1+k 2⎝ ⎛⎭⎪⎫x +12=1+k 2(k +1),|PQ |=1+k 2(x Q -x )=-(k -1)(k +1)2k 2+1,所以|P A |·|PQ |=-(k -1)(k +1)3.令f (k )=-(k -1)(k +1)3,因为f ′(k )=-(4k -2)(k +1)2, 所以f (k )在区间⎝ ⎛⎭⎪⎫-1,12上单调递增,⎝ ⎛⎭⎪⎫12,1上单调递减, 因此当k =12时,|P A |·|PQ |取得最大值2716.当k =0时,|P A |=1,|PQ |=1,|P A |·|PQ |=1,所以|P A |·|PQ |的最大值为2716. 思维升华 (1)求解直线与抛物线问题,一般利用方程法,但涉及抛物线的弦长、中点、距离等问题时,要注意“设而不求”“整体代入”“点差法”以及定义的灵活应用.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点(设焦点在x 轴的正半轴上),可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则可用弦长公式.跟踪训练3设抛物线C :y 2=2px (p >0)的焦点为F ,点A (0,2),O 为坐标原点,过F 的直线l 与C 交于M ,N 两点,当MA ⊥OA 时,|MF |=2.(1)求p 的值;(2)若AM →·AN→=0,求直线l 的方程. 解(1)当MA ⊥OA 时,此时点M 的纵坐标为2,其横坐标x M =2p .因为|MF |=2,根据抛物线的定义,得|MF |=2p +p 2=2,解得p =2.(2)由(1)知,抛物线C 的方程为y 2=4x ,点F 的坐标为(1,0).设直线l :x =ky +1,点M (x 1,y 1),N (x 2,y 2),联立⎩⎪⎨⎪⎧ x =ky +1,y 2=4x ,化简可得y 2-4ky -4=0,则y 1+y 2=4k ,y 1y 2=-4.根据题意AM →=(x 1,y 1-2),AN →=(x 2,y 2-2),且AM →·AN →=0,所以x 1x 2+(y 1-2)(y 2-2)=0.将x 1x 2=y 21y 2216=1,y 1+y 2=4k ,y 1y 2=-4代入化简可得4-2×4k -4+1=0,解得k =18,所以直线l 的方程为x =18y +1,即8x -y -8=0.课时精练1.抛物线x 2=12y 的焦点到准线的距离是()A .2B .1C.12D.14答案D解析抛物线标准方程x 2=2py (p >0)中p 的几何意义为抛物线的焦点到准线的距离,由x 2=12y 得p =14.2.若抛物线y 2=2px (p >0)的焦点到准线的距离为2,过焦点的直线与抛物线交于A ,B 两点,且|AB |=8,则弦AB 的中点到y 轴的距离为()A .2B .3C .4D .6答案B解析因为抛物线y 2=2px (p >0)的焦点到准线的距离为2,所以p =2,抛物线方程为y 2=4x .过焦点的直线与抛物线交于A,B两点,设A(x1,y1),B(x2,y2),由抛物线的定义得,焦点弦|AB|=x1+x2+p,所以8=x1+x2+2,则x1+x2=6,所以AB的中点到y轴的距离为d=x1+x22=62=3.3.(2022·桂林模拟)已知抛物线y=12x2的焦点为F,准线为l,M在l上,线段MF与抛物线交于N点,若|MN|=2|NF|,则|MF|等于()A.2B.3C.2D. 3答案C解析如图,过N作准线的垂线NH,垂足为H,设l与y轴的交点为K.根据抛物线的定义可知|NH|=|NF|,在Rt△NHM中,|MN|=2|NH|,则∠NMH=45°.在Rt△MFK中,∠FMK=45°,所以|MF|=2|FK|.而|FK|=1,所以|MF|= 2.4.中国古代桥梁的建筑艺术,有不少是世界桥梁史上的创举,充分显示了中国劳动人民的非凡智慧.一个抛物线型拱桥,当水面离拱顶2m时,水面宽8m.若水面下降1m,则水面宽度为()A.26mB.46mC.42mD.12m答案B解析由题意,以拱桥顶点为原点,建立平面直角坐标系,设抛物线方程为x2=-2py(p>0),由题意知,抛物线经过点A(-4,-2)和点B(4,-2),代入抛物线方程解得p=4,所以抛物线方程为x2=-8y,水面下降1米,即y=-3,解得x1=26,x2=-26,所以此时水面宽度d=2x1=4 6.5.已知抛物线y 2=2px (p >0)的焦点F 到准线的距离为4,直线l 过点F 且与抛物线交于A (x 1,y 1),B (x 2,y 2)两点,若M (m ,2)是线段AB 的中点,则下列结论不正确的是()A .p =4B .抛物线方程为y 2=16xC .直线l 的方程为y =2x -4D .|AB |=10答案B解析由焦点F 到准线的距离为4,根据抛物线的定义可知p =4,故A 正确;则抛物线方程为y 2=8x ,故B 错误;焦点F (2,0),则y 21=8x 1,y 22=8x 2,若M (m ,2)是线段AB 的中点,则y 1+y 2=4,∴y 21-y 22=8x 1-8x 2,即y 1-y 2x 1-x 2=8y 1+y 2=84=2, ∴直线l 的方程为y =2x -4,故C 正确;又由⎩⎪⎨⎪⎧y 2=8x ,y =2x -4,可得x 2-6x +4=0,∴x 1+x 2=6,∴|AB |=|AF |+|BF |=x 1+x 2+4=10,故D 正确.6.已知A ,B 为抛物线x 2=2py (p >0)上的两个动点,以AB 为直径的圆C 经过抛物线的焦点F ,且面积为2π,若过圆心C 作该抛物线准线l 的垂线CD ,垂足为D ,则|CD |的最大值为()A .2B.2C.22D.12答案A解析根据题意,2π=π⎝ ⎛⎭⎪⎫|AB |22, ∴|AB |=2 2.设|AF |=a ,|BF |=b ,过点A 作AQ ⊥l 于Q ,过点B 作BP ⊥l 于P ,如图,由抛物线定义,得|AF |=|AQ |,|BF |=|BP |,∴在四边形ABPQ 中,2|CD |=|AQ |+|BP |=a +b ,由勾股定理得,8=a 2+b 2,∵|CD |2=⎝ ⎛⎭⎪⎫a +b 22=a 2+b 2+2ab 4=8+2ab 4 =2+ab 2≤2+a 2+b 24=4,∴|CD |≤2(当且仅当a =b 时,等号成立).7.(2021·北京)已知抛物线C :y 2=4x ,焦点为F ,点M 为抛物线C 上的点,且|FM |=6,则M 的横坐标是________,作MN ⊥x 轴于N ,则S △FMN =________.答案54 5解析因为抛物线的方程为y 2=4x ,故p =2且F (1,0),因为|MF |=6,所以x M +p 2=6,解得x M =5,故y M =±25,所以S △FMN =12×(5-1)×25=4 5.8.(2020·新高考全国Ⅰ)斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB |=________.答案163解析如图,由题意得,抛物线的焦点为F (1,0),设直线AB 的方程为y =3(x -1).由⎩⎪⎨⎪⎧y =3(x -1),y 2=4x ,得3x 2-10x +3=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=103,所以|AB |=x 1+x 2+2=163.9.过抛物线C :x 2=2py (p >0)的焦点F 作直线l 与抛物线C 交于A ,B 两点,当点A 的纵坐标为1时,|AF |=2.(1)求抛物线C 的方程;(2)若抛物线C 上存在点M (-2,y 0),使得MA ⊥MB ,求直线l 的方程.解(1)抛物线C :x 2=2py (p >0)的准线方程为y =-p 2,焦点为F ⎝ ⎛⎭⎪⎫0,p 2. ∵当点A 的纵坐标为1时,|AF |=2,∴1+p 2=2,解得p =2,∴抛物线C 的方程为x 2=4y .(2)∵点M (-2,y 0)在抛物线C 上,∴y 0=(-2)24=1.又F (0,1),∴设直线l 的方程为y =kx +1.由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,得x 2-4kx -4=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4,MA →=(x 1+2,y 1-1), MB →=(x 2+2,y 2-1). ∵MA ⊥MB ,∴MA →·MB→=0, ∴(x 1+2)(x 2+2)+(y 1-1)(y 2-1)=0,∴-4+8k +4-4k 2=0,解得k =2或k =0.当k =0时,l 过点M (舍去),∴k =2,∴直线l 的方程为y =2x +1.10.已知抛物线E :y 2=2px (p >0),过点P (3,0)的直线l 交抛物线E 于A ,B ,且OA →·OB →=-3(O 为坐标原点).(1)求抛物线E 的方程;(2)求△AOB 面积的最小值.解(1)设直线l 为x =ty +3,代入E :y 2=2px 整理得y 2-2pty -6p =0,设A (x 1,y 1),B (x 2,y 2),所以y 1+y 2=2pt ,y 1y 2=-6p ,所以x 1x 2=(y 1y 2)24p 2=(-6p )24p 2=9,由OA →·OB→=-3, 即x 1x 2+y 1y 2=-3,得9-6p =-3,所以p =2,所以所求抛物线E 的方程为y 2=4x .(2)由(1)得y 1+y 2=4t ,y 1y 2=-12,|AB |=1+t 2(4t )2+48 =41+t 2t 2+3,点O 到直线l 的距离为d =31+t 2,则S △AOB =12|AB |·d=12×31+t 2×41+t 2t 2+3 =6t 2+3≥63,当t =0时,等号成立,故当t =0时,△AOB 面积有最小值6 3.11.设F 为抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若F 为△ABC 的重心,则|F A →|+|FB →|+|FC →|的值为() A .1B .2C .3D .4答案C解析由题意可知,点F 的坐标为⎝ ⎛⎭⎪⎫12,0, 又F 为△ABC 的重心,故x A +x B +x C 3=12, 即x A +x B +x C =32.又由抛物线的定义可知|F A →|+|FB →|+|FC →|=x A +x B +x C +32=32+32=3. 12.某农场为节水推行喷灌技术,喷头装在管柱OA 的顶端A 处,喷出的水流在各个方向上呈抛物线状,如图所示.现要求水流最高点B 离地面4m ,点B 到管柱OA 所在直线的距离为3m ,且水流落在地面上以O 为圆心,以7m 为半径的圆上,则管柱OA 的高度为()A.53mB.74mC.94mD.73m答案B解析以B 为坐标原点建立平面直角坐标系,如图所示,记BM ⊥OC 且垂足为M ,A 在y 轴上的投影为D ,设抛物线方程为x 2=-2py (p >0),由题意可知|AD |=3,|BM |=4,|OC |=7,所以|MC |=|OC |-|AD |=7-3=4,所以C (4,-4),代入抛物线方程可知16=8p ,所以p =2,所以抛物线方程为x 2=-4y ,又因为x A =-3,所以y A =y D =-94,所以|BD |=94,所以|OA |=|DM |=|BM |-|BD |=4-94=74,所以OA 的高度为74m.13.已知抛物线C :y 2=2px (p >0)过点P (1,1),则下列结论不正确的是()A .点P 到抛物线焦点的距离为54B .过点P 作过抛物线焦点的直线交抛物线于点Q ,则△OPQ 的面积为532C .过点P 与抛物线相切的直线方程为x -2y +1=0D .过点P 作两条斜率互为相反数的直线交抛物线于M ,N 两点,则直线MN 的斜率为12答案D解析因为抛物线C :y 2=2px (p >0)过点P (1,1),所以p =12,所以抛物线方程为y 2=x ,焦点坐标为F ⎝ ⎛⎭⎪⎫14,0.对于A ,|PF |=1+14=54,A 正确;对于B ,k PF =43,所以l PF :y =43⎝ ⎛⎭⎪⎫x -14, 与y 2=x 联立得4y 2-3y -1=0,所以y 1+y 2=34,y 1y 2=-14,所以S △OPQ =12|OF |·|y 1-y 2|=12×14×(y 1+y 2)2-4y 1y 2=532,B 正确; 对于C ,依题意斜率存在,设直线方程为y -1=k (x -1),与y 2=x 联立得ky 2-y +1-k =0,Δ=1-4k (1-k )=0,即4k 2-4k +1=0,解得k =12,所以切线方程为x -2y +1=0,C 正确;对于D ,依题意斜率存在,设l PM :y -1=k ′(x -1),与y 2=x 联立得k ′y 2-y +1-k ′=0,所以y M +1=1k ′, 即y M =1k ′-1,则x M =⎝ ⎛⎭⎪⎫1k ′-12, 所以点M ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫1k ′-12,1k ′-1, 同理N ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫-1k ′-12,-1k ′-1, 所以k MN =1k ′-1-⎝ ⎛⎭⎪⎫-1k ′-1⎝ ⎛⎭⎪⎫1k ′-12-⎝ ⎛⎭⎪⎫-1k ′-12 =2k ′-4k ′=-12,D 错误. 14.已知P 为抛物线C :y =x 2上一动点,直线l :y =2x -4与x 轴,y 轴交于M ,N 两点,点A (2,-4),且AP →=λAM →+μAN →,则λ+μ的最小值为________.答案74解析由题意得M (2,0),N (0,-4),设P (x ,y ),由AP→=λAM →+μAN → 得(x -2,y +4)=λ(0,4)+μ(-2,0).所以x -2=-2μ,y +4=4λ.因此λ+μ=y +44-x -22=x 24-x 2+2=⎝ ⎛⎭⎪⎫x 2-122+74≥74,故λ+μ的最小值为74.15.已知抛物线C :y 2=4x ,其准线与x 轴交于点M ,过其焦点F 的直线与抛物线相交于A ,B 两点,记直线MA ,MB 的斜率分别为k 1,k 2,则1k 21+1k 22的最小值为() A .1B .2C .3D .4答案B解析由题意,可得焦点坐标F (1,0),准线方程为x =-1,可得M (-1,0),设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =my +1,联立方程⎩⎪⎨⎪⎧x =my +1,y 2=4x ,可得y 2-4my -4=0,则y 1+y 2=4m ,y 1·y 2=-4,因为1k 1=x 1+1y 1=my 1+1+1y 1=m +2y 1, 1k 2=x 2+1y 2=my 2+1+1y 2=m +2y 2,所以1k 21+1k 22=⎝⎛⎭⎪⎫m +2y 12+⎝ ⎛⎭⎪⎫m +2y 22 =2m 2+4m ⎝ ⎛⎭⎪⎫1y 1+1y 2+4⎝ ⎛⎭⎪⎫1y 21+1y 22 =2m 2+4m ·y 1+y 2y 1·y 2+4·(y 1+y 2)2-2y 1·y 2y 21·y 22 =2m 2+4m ·4m -4+4·16m 2+816=2m 2+2, 所以当且仅当m =0时,1k 21+1k 22取得最小值为2. 16.已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点;(2)若以E ⎝ ⎛⎭⎪⎫0,52为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.(1)证明设D ⎝ ⎛⎭⎪⎫t ,-12,A (x 1,y 1), 则x 21=2y 1.因为y ′=x ,所以切线DA 的斜率为x 1,故y 1+12x 1-t =x 1,整理得2tx 1-2y 1+1=0.设B (x 2,y 2),同理可得2tx 2-2y 2+1=0. 故直线AB 的方程为2tx -2y +1=0.所以直线AB 过定点⎝ ⎛⎭⎪⎫0,12. (2)解由(1)得直线AB 的方程为y =tx +12.由⎩⎪⎨⎪⎧ y =tx +12,y =x 22,可得x 2-2tx -1=0.于是x 1+x 2=2t ,x 1x 2=-1, y 1+y 2=t (x 1+x 2)+1=2t 2+1, |AB |=1+t 2|x 1-x 2| =1+t 2×(x 1+x 2)2-4x 1x 2 =2(t 2+1).设d 1,d 2分别为点D ,E 到直线AB 的距离, 则d 1=t 2+1,d 2=2t 2+1. 因此,四边形ADBE 的面积S =12|AB |(d 1+d 2)=(t 2+3)t 2+1.设M 为线段AB 的中点,则M ⎝ ⎛⎭⎪⎫t ,t 2+12. 因为EM→⊥AB →,而EM →=(t ,t 2-2),AB →与向量(1,t )平行,所以t +(t 2-2)t =0,解得t =0或t =±1.当t =0时,S =3;当t =±1时,S =4 2. 因此,四边形ADBE 的面积为3或4 2.。
第七节 抛 物 线 2019考纲考题考情1.抛物线的概念平面内与一个定点F 和一条定直线l (F ∉l )的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线。
2.抛物线的标准方程与几何性质 标准 方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F ⎝ ⎛⎭⎪⎫p 2,0 F ⎝ ⎛⎭⎪⎫-p 2,0 F ⎝ ⎛⎭⎪⎫0,p 2 F ⎝ ⎛⎭⎪⎫0,-p 2 离心率e =100抛物线焦点弦的6个常用结论设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=p24,y1y2=-p2。
(2)弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角)。
(3)以弦AB为直径的圆与准线相切。
(4)过焦点垂直于对称轴的弦长等于2p(通径)。
(5)S△AOB=p22sinθ(θ为AB的倾斜角).(6)1|AF|+1|BF|为定值2p.考点一抛物线的定义及应用【例1】(1)已知抛物线x2=4y上一点A纵坐标为4,则点A到抛物线焦点的距离为()A.10B.4C.5D.15(2)已知抛物线C:y2=4x的焦点为F,准线为l,P为C上一点,PQ垂直l 于点Q,M,N分别为PQ,PF的中点,MN与x轴相交于点R,若∠NRF=60°,则|FR|等于()A.12B.1C.2 D.4解析(1)抛物线x2=4y的准线方程为y=-1,点A到准线的距离为5,根据抛物线定义可知点A到焦点的距离为5。
故选C。
(2)因为M,N分别是PQ,PF的中点,所以MN∥FQ,且PQ∥x轴。
又∠NRF=60°,所以∠FQP=60°。
由抛物线定义知|PQ|=|PF|,所以△FQP为正三角形。
3.3 抛物线1.抛物线的定义平面内与一个定点F 和一条定直线l(点F 不在直线l 上)的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 当定点在定直线上时,轨迹为过定点F 与定直线l 垂直的一条直线.2.抛物线的标准方程和几何性质焦点在x 轴上时,方程的右端为±2px ,左端为y2;焦点在y 轴上时,方程的右端为±2py ,左端为x2.O(0,0)[常用结论]与抛物线焦点弦有关的几个常用结论设AB 是过抛物线y2=2px(p >0)焦点F 的弦,若A(x1,y1),B(x2,y2),α为弦AB 的倾斜角.则(1)x1x2=p24,y1y2=-p2.(2)|AF|=p 1-cos α,|BF|=p1+cos α.(3)弦长|AB|=x1+x2+p =2p sin2α.(4)1|AF|+1|BF|=2p .(5)以弦AB 为直径的圆与准线相切.【题型精讲】考点一 抛物线的定义【例1】(2020·天津河西.高二期末)已知抛物线2:8C x y =的焦点为F ,O 为原点,点P 是抛物线C 的准线上的一动点,点A 在抛物线C 上,且4AF =,则PA PO+的最小值为( )A.B.C.D.【玩转跟踪】1.(2020·全国高二课时练习)已知抛物线2:C y x =的焦点为F ,00(,)A x y 是C 上一点,05||4AF x =,则0x =( ) A .4B .2C .1D .82.(2020·全国高二课时练习)若抛物线216x y =上一点()00,x y 到焦点的距离是该点到x 轴距离的3倍,则0y =( )A .12 B C .1D .23.(2020·全国高二课时练习)已知点M 是抛物线24x y =上的一动点,F 为抛物线的焦点,A 是圆C :22(1)(4)1x y -+-=上一动点,则||||MA MF +的最小值为( )A .3B .4C .5D .6考点二 抛物线的标准方程【例2】(2020·全国高二课时练习)设抛物线2:2(0)C y px p =>的焦点为F ,点M 在C 上,5MF =,若以MF 为直径的圆过点,则C 的方程为( )A .24y x =或28y x =B .22y x =或28y x = C .24y x =或216y x = D .22y x =或216y x = 【玩转跟踪】1.(2020·内蒙古青山。
温馨提示:高考题库为word 版,请按住ctrl,滑动鼠标滚轴,调节合适的 观看比例,点击右上角的关闭按钮可返回目录。
考点19 抛物线1.(2010·四川高考文科·T3)抛物线28y x =的的焦点到准线的距离是( ). (A)1 (B)2 (C)4 (D)8【命题立意】本题考查抛物线的焦点坐标及准线方程、抛物线标准方程及点到直线的距离公式.【思路点拨】先求出焦点坐标和准线方程,再利用点到直线的距离公式求解.【规范解答】选 C. 抛物线的焦点坐标为(2,0)F ,准线方程为2x =-,焦点到准线的距离为224--=().【方法技巧】抛物线标准方程22(0)y px p =>中p 的几何意义就是焦点到准线的距离. ∴2824y x x ==⨯,∴焦点到准线的距离为4.2.(2010·上海高考理科·T3)动点P 到点(2,0)F 的距离与它到直线20x +=的距离相等,则点P 的轨迹方程为 .【命题立意】本题考查求满足条件的动点的轨迹方程的思路和方法.【思路点拨】按求动点的轨迹方程的步骤进行.【规范解答】设点P 的坐标为(x ,y ),由题意可得2)2(22+=+-x y x ,化简得x y 82=, 即为点P 的轨迹方程.【答案】x y 82=【方法技巧】求动点的轨迹方程的步骤:3.(2010·全国高考卷Ⅱ文科·T15)已知抛物线C :y 2=2px (p>0)的准线l ,过M (1,0)且斜率为的直线与l 相交于A ,与C 的一个交点为B ,若,则p=_________【命题立意】本题考查直线与抛物线的位置关系及直线的斜率公式的运用。
【思路点拨】利用M 点为中点可以用p 表示A 、B 点的横坐标,把B 点的横坐标代入抛物线C :y 2=2px ,可以求得B 点的纵坐标,又已知直线斜率解关于p 的方程可以解决。
【规范解答】A 点横坐标为-2p ,则B 点横坐标为2p+2,代入抛物线C :y2=2px 得B 点纵坐标 为24p p +,由直线MB 的斜率为,31220p 42=-+-+p p 得p=2. 【答案】2【方法技巧】直线与抛物线问题要结合图像的几何特征,抓住点的坐标关系,用所求的参数列出方程(组),此题用p 表示直线斜率,代入斜率公式计算.4.(2010·重庆高考文科·T13)已知过抛物线24y x =的焦点F 的直线交该抛物线于A ,B 两点, |AF |=2,则|BF |= .【命题立意】本小题考查抛物线的定义和性质及直线与抛物线的位置关系,体现了数形结合的思想方法.【思路点拨】设直线AB 的方程,首先考虑斜率不存在的情形,再考虑斜率存在的情形.【规范解答】抛物线24y x =的焦点F 的坐标是(1,0),则当直线AB 的方程是1x =时,24y =,所以2y =±,符合题意|AF |=2,此时有|BF |=2;当直线AB 的斜率存在时,所得的|AF |的值大于2或小于2,不会等于2.【答案】25.(2010·重庆高考理科·T14)已知以F 为焦点的抛物线24y x =上的两点A 、B 满足3AF FB = ,则弦AB 的中点到准线的距离为___________.【命题立意】本题考查抛物线的定义和性质,考查向量的知识及应用,体现了转化的思想方法.【思路点拨】易得抛物线的准线方程,根据抛物线定义将抛物线上的点到准线的距离转化为向量的模AF 和FB ,再根据有关平面几何的性质求解.【规范解答】 因为3AF FB = ,所以弦AB 是过焦点F 的弦,且3AF FB = ;设点A ,B 到准线1x =-的距离分别是1d ,2d ,那么123d d =, 点A ,B 的横坐标分别是11d -231d =-,21d -,所以224(31)A y d =-,224(1)B y d =-,如图所示, =243d =,所以1123d =,根据梯形中位线的性质可得弦AB 的中点到准线的距离为14128()2333+=. 【答案】83【方法技巧】本题是一道综合题,综合的知识点有(1)抛物线的定义、性质,(2)平面向量相等的性质,(3)梯形中位线的性质,(4)相似三角形的性质;本题的关键是根据梯形中位线性质,把“弦AB 的中点到准线的距离”转化为抛物线上的点到准线的距离,再根据抛物线定义转化为到焦点F 的距离.6.(2010·湖北高考理科·T19)已知一条曲线C 在y 轴右边,C 上每一点到点F (1,0)的距离减去它到 y 轴距离的差都是1,(Ⅰ)求曲线C 的方程;(Ⅱ)是否存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A ,B 的任一直线,都有0<∙? 若存在,求出m 的取值范围;若不存在,请说明理由.【命题立意】本小题主要考察直线与抛物线的位置关系、抛物线的性质等基本知识,同时也考察考生的推理运算能力.【思路点拨】(Ⅰ)按求曲线方程的步骤求对应的曲线方程:设点,列式,化简即可; (Ⅱ)设出直线方程及与曲线的交点,联立直线方程与曲线方程,通过根与系数的关系结合条件,利用“设而不求法”求解.【规范解答】(Ⅰ)设P(y x ,)是曲线C 上任意一点,那么点P(y x ,)满足:1)122=-+-x y x ( (0>x )化简得x y 42= (0>x ) (Ⅱ)设过点(,0)(0)M m m 的直线l 与曲线C 的交点为1122(,),(,)A x y B x y 。
设l 的方程为x ty m =+,由24x ty m y x=+⎧⎨=⎩得2440y ty m --=,216()0t m =+ >. 于是121244y y t y y m +=⎧⎨=-⎩ ① 又1122(1,),(1,)FA x y FB x y =-=-12121212120(1)(1)()10FA FB x x y y x x x x y y ⋅⇔--+=--++ << ②又24y x =,于是不等式②等价于 2222121212()104444y y y y y y ⋅+-++< 2212121212()1()210164y y y y y y y y ⎡⎤⇔+-+-+⎣⎦< ③ 由①式,不等式 ③ 等价于 22614mm t -+< 对任意实数t ,24t 的最小值为0,所以不等式④对于一切t 成立等价于2610m m -+ ,即 33m -+由此可知,存在正数m ,对于过点(,0)M m ,且与曲线C 有两个交点,A B 的任一直线,都有0FA FB ⋅ <,且m 的取值范围是(3-+ 【方法技巧】1、直线和圆锥曲线的交点个数问题求解时可以将直线和圆锥曲线的方程联立,转化为方程 根的个数问题(有些题目也可借用数形结合)。
其中一定要注意对∆的符号加以验证,必要时还须注意根 的范围。
2、形如0FA FB ∙< 的不等式一般都要借用数量积先进行转化,然后借用根与系数的关系进行处理。
7.(2010·全国卷Ⅰ理科·T21)已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB = ,求BDK ∆的内切圆M 的方程 . 【命题立意】“看似寻常却艰辛”.本小题为解析几何与平面向量综合的问题,主要考查抛物线的性质、直线与圆的位置关系,直线与抛物线的位置关系、圆的几何性质与圆的方程的求解、平面向量的数量积等知识,考查考生综合运用数学知识进行推理论证的能力、运算能力和解决问题的能力,同时考查了数形结合思想、设而不求思想.【思路点拨】本题可设过点(1,0)K -的直线方程为)1(+=x k y 但需要对k 进行讨论,为了简化解答过程我们设直线方程为)0(1≠-=m my x ,将其代入到物线2:4C y x =化简求解.【规范解答】设),(),,(),,(112211y x D y x B y x A -,l 的方程为)0(1≠-=m my x .(I) 将1-=my x 代入x y 42=并整理得0442=+-my y ,从而4,42121==+y y m y y .①直线BD 的方程为)(212122x x x x y y y y -⋅-+=-, 即)4(422122y x y y y y -⋅-=-. 令0=y ,得1421==y y x .所以点)0,1(F 在直线BD 上.(II)由(Ⅰ)知,24)1()1(22121-=-+-=+m my my x x ,1)1)(1(2121=--=my my x x . 因为),1(),,1(2211y x FB y x FA -=-=,2212121214841)()1)(1(m x x x x y y x x FB FA -=+++-=+--=⋅, 故98482=-m ,解得34±=m . 所以l 的方程为0343,0343=+-=++y x y x . 又由(Ⅰ)知73444)4(212±=⨯-±=-m y y ,故直线BD 的斜率73412±=-y y , 因而直线BD 的方程为0373,0373=--=-+y x y x . 因为KF 为BKD ∠平分线,故可设圆心)11)(0,(<<-t t M ,)0,(t M 到l 及BD 的距离分别为413,513-+t t . 由413513-=+t t 得91=t ,或9=t (舍去), 故圆M 的方程为94)91(22=+-y x .。