初中实验班自主招生选拔考试模拟试题(十四)
- 格式:doc
- 大小:128.50 KB
- 文档页数:4
第一套:满分150分2020-2021年江苏苏州实验中学初升高自主招生数学模拟卷一.选择题(共8小题,满分48分)1.(6分)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM=()A.3:2:1 B.5:3:1C.25:12:5 D.51:24:102.(6分)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②1> ;m4③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【】A.0B.1C.2D.33.(6分)已知长方形的面积为20cm2,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A. B. C. D.4.(6分)如图,在平面直角坐标系中,⊙O 的半径为1,则直线y x 2=-与⊙O 的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能 5.(6分)若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A .B .C .D .6.(6分)如图,Rt △ABC 中,BC=,∠ACB=90°,∠A=30°,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E 2013,分别记△BCE 1、△BCE 2、△BCE 3、…、△BCE 2013的面积为S 1、S 2、S 3、…、S 2013.则S 2013的大小为( ) A.31003 B.320136 C.310073 D.67147.(6分)抛物线y=ax 2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a 的取值范围是( )A .≤a ≤1B .≤a ≤2C .≤a ≤1D .≤a ≤28.(6分)如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB ,AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交BD 于点02,同样以AB ,AO 2为两邻边作平行四边形ABC 2O 2.…,依此类推,则平行四边形ABC 2009O 2009的面积为( )A.n 25 B.n 22 C.n 31 D.n 23二.填空题:(每题7分,满分42分)9.(7分)方程组的解是 .10.(7分)若对任意实数x 不等式ax >b 都成立,那么a ,b 的取值范围为 .11.(7分)如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是 .12.(7分)有一张矩形纸片ABCD ,AD=9,AB=12,将纸片折叠使A 、C 两点重合,那么折痕长是 .13.(7分)设﹣1≤x ≤2,则|x ﹣2|﹣|x|+|x+2|的最大值与最小值之差为 .14.(7分)两个反比例函数y=,y=在第一象限内的图象如图所示.点P 1,P 2,P 3、…、P 2007在反比例函数y=上,它们的横坐标分别为x 1、x 2、x 3、…、x 2007,纵坐标分别是1,3,5…共2007个连续奇数,过P 1,P 2,P 3、…、P 2007分别作y 轴的平行线,与y=的图象交点依次为Q 1(x 1′,y 1′)、Q 1(x 2′,y 2′)、…、Q 2(x 2007′,y 2007′),则|P 2007Q 2007|= .三.解答题:(每天12分,满分60分)15.(12分).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.16.(12分)如图,ABC △是等腰直角三角形,CA CB =,点N 在线段AB 上(与A 、B 不重合),点M 在射线BA 上,且45NCM ∠=︒。
可编辑修改精选全文完整版初中生自主招生考试模拟试题物理试卷一.选择题(每小题4分,共48分,每小题有一个或多个选项正确,漏选得两分,错选不得分)。
1. 安全用电的常识之一是不要靠近高压电,但是站在高压线上的鸟却不会发生触电事故,这是因为( )A. 鸟爪上的角质层不会导电B.鸟爪很干燥C.电线上有绝缘层D.鸟的两爪间的电压很低2. 一列火车以s m /15的速度做匀速运动,一个人以s m /3的速度从车厢的一头走到另一头,车厢长为36m ,则需要需要的时间为( )A.2SB.3SC.12SD.5S3. 有两个鸡蛋,一生一熟,让他们在光滑的水平桌面上以相同的速度同时开始转动,则( )A. 生鸡蛋很快停止转动,熟鸡蛋转了一会儿后停止转动B. 熟鸡蛋很快停止转动,生鸡蛋转了一会儿后停止转动C. 两个鸡蛋都很快停止转动D. 两个鸡蛋都转了一会儿后停止转动4. 两个实心球,木球的质量是铁球的21,木球半径是铁球半径的两倍,则木球的密度是铁球的(A )A. 161B.81C.41D.21 5.一种手电筒上所有的聚光小电珠如图2所示,其前端相当于一个玻璃制成的凸透镜,灯丝(可看作一个点光源)发出的光通过它出射时,出射光束(图中实线所示)比无此透镜时的光束(图中虚线所示)要窄,即它可减小光束的发散,有聚光功能。
在这种小电珠中,灯丝应位于 ( )A .凸透镜的焦点以内。
B .凸透镜的一倍焦距和两倍焦距之间。
C .凸透镜的焦点处。
D .凸透镜的两倍焦距处。
6.在图3的电路中,R 为待测电阻,阻值约为5欧。
给你的器材有:滑动变阻器(2安,0~10欧);电压表,有2个量程,分别为0~3伏、0~15伏;电流表,有2个量程,分别为0~0.6安、0~3安;电池组为新干电池3节串联。
两只电表的量程可采用以下4种选法,但为使测量时能较准确地读数,最后,两只电表的量程应采用 ( )A .0~0.6安和0~1.5伏。
B .0~3安和0~15伏。
第一套:满分150分2020-2021年湖南长沙县实验中学初升高自主招生数学模拟卷一.选择题(共8小题,满分48分)1.(6分)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM=()A.3:2:1 B.5:3:1C.25:12:5 D.51:24:102.(6分)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②1> ;m4③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【】A.0B.1C.2D.33.(6分)已知长方形的面积为20cm2,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A. B. C. D.4.(6分)如图,在平面直角坐标系中,⊙O 的半径为1,则直线y x 2=-与⊙O 的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能 5.(6分)若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A .B .C .D .6.(6分)如图,Rt △ABC 中,BC=,∠ACB=90°,∠A=30°,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E 2013,分别记△BCE 1、△BCE 2、△BCE 3、…、△BCE 2013的面积为S 1、S 2、S 3、…、S 2013.则S 2013的大小为( ) A.31003 B.320136 C.310073 D.67147.(6分)抛物线y=ax 2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a 的取值范围是( )A .≤a ≤1B .≤a ≤2C .≤a ≤1D .≤a ≤28.(6分)如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB ,AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交BD 于点02,同样以AB ,AO 2为两邻边作平行四边形ABC 2O 2.…,依此类推,则平行四边形ABC 2009O 2009的面积为( )A.n 25 B.n 22 C.n 31 D.n 23二.填空题:(每题7分,满分42分)9.(7分)方程组的解是 .10.(7分)若对任意实数x 不等式ax >b 都成立,那么a ,b 的取值范围为 .11.(7分)如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是 .12.(7分)有一张矩形纸片ABCD ,AD=9,AB=12,将纸片折叠使A 、C 两点重合,那么折痕长是 .13.(7分)设﹣1≤x ≤2,则|x ﹣2|﹣|x|+|x+2|的最大值与最小值之差为 .14.(7分)两个反比例函数y=,y=在第一象限内的图象如图所示.点P 1,P 2,P 3、…、P 2007在反比例函数y=上,它们的横坐标分别为x 1、x 2、x 3、…、x 2007,纵坐标分别是1,3,5…共2007个连续奇数,过P 1,P 2,P 3、…、P 2007分别作y 轴的平行线,与y=的图象交点依次为Q 1(x 1′,y 1′)、Q 1(x 2′,y 2′)、…、Q 2(x 2007′,y 2007′),则|P 2007Q 2007|= .三.解答题:(每天12分,满分60分)15.(12分).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.16.(12分)如图,ABC △是等腰直角三角形,CA CB =,点N 在线段AB 上(与A 、B 不重合),点M 在射线BA 上,且45NCM ∠=︒。
尖子生实验班选拔考试模拟试题(三)一、选择题1. 若,,a b c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-=【 】A .1.B .2.C .3.D .4.2.若实数,,a b c 满足等式3||6b =,9||6b c =,则c 可能取的最大值为【 】A .0.B .1.C .2.D .3.3.若b a ,是两个正数,且,0111=+-+-ab b a 则【 】 A .103a b <+≤. B .113a b <+≤. C .413a b <+≤. D .423a b <+≤. 4.若方程2310x x --=的两根也是方程420x ax bxc +++=的根,则2a b c +-的值为【 】A .-13.B .-9.C .6.D . 0.5.在△ABC 中,已知︒=∠60CAB ,D ,E 分别是边AB ,AC 上的点,且︒=∠60AED ,CE DB ED =+,CDE CDB ∠=∠2,则=∠DCB 【 】A .15°.B .20°.C .25°.D .30°.6.对于自然数n ,将其各位数字之和记为n a ,如2009200911a =+++=,201020103a =+++=,则12320092010a a a a a +++++= 【 】A .28062.B .28065.C .28067.D .28068.二、填空题7.已知实数,x y 满足方程组3319,1,x y x y ⎧+=⎨+=⎩则22x y += .8.二次函数c bx x y ++=2的图象与x 轴正方向交于A ,B 两点,与y 轴正方向交于点C .已知AC AB 3=,︒=∠30CAO ,则c = .9.在等腰直角△ABC 中,AB =BC =5,P 是△ABC 内一点,且PA PC =5,则PB =______.10.将若干个红、黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放_______个球.三、解答题11.设整数,,a b c (a b c ≥≥)为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长不超过30的三角形的个数.12.已知等腰三角形△ABC 中,AB =AC ,∠C 的平分线与AB 边交于点P ,M 为△ABC 的内切圆⊙I 与BC 边的切点,作MD//AC ,交⊙I 于点D.证明:PD 是⊙I 的切线.NC A13.已知二次函数2y x bx c =+-的图象经过两点P (1,)a ,Q (2,10)a .(1)如果,,a b c 都是整数,且8c b a <<,求,,a b c 的值.(2)设二次函数2y x bx c =+-的图象与x 轴的交点为A 、B ,与y 轴的交点为C.如果关于x 的方程20x bx c +-=的两个根都是整数,求△ABC 的面积.14.设p 是大于2的质数,k 为正整数.若函数4)1(2-+++=p k px x y 的图象与x 轴的两个交点的横坐标至少有一个为整数,求k 的值.。
【冲刺实验班】河南河南省实验中学2020中考提前自主招生数学模拟试卷(9套)附解析中学自主招生数学试卷一、选择题(每小题4分,共40分):每小题有四个答案,其中有且只有一个答案是正侧的,请往答题卡上相应题目的答题区域内作答,答对的得4分,答错或不答一律得0分.1.(4分)﹣2019的绝对值是()A.2019B.﹣2019C.0D.12.(4分)下面是几何体中,主视图是矩形的()A.B.C.D.3.(4分)下列事件是必然事件的是()A.随意翻到一本书的某页,页码是奇数B.抛掷一枚普通硬币,正面朝下C.抛得一枚普通正方体般子所得点数大于3D.太阳每天从东方升起4.(4分)目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.4×108B.4×10﹣8C.0.4×108D.﹣4×1085.(4分)在函数y=中,自变量x的取值范围是()A.x≥0B.x>0且x≠3C.x≥0且x≠3D.x>06.(4分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=55°,则∠3的度数等于()A.20°B.25°C.30°D.55°7.(4分)关于x的一元二次方程ax2+4x+2=0有两个相等的实数根,则a的值是()A.﹣2B.0C.1D.28.(4分)平面直角坐标系中,直线1:y=3x﹣1平移后得到新直线y=3x+1.则直线l的平移方式是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位9.(4分)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5B.﹣1或5C.1或﹣3D.1或310.(4分)如图,矩形ABCD长与宽的比为5:3,点E、F分别在边BC、CD上,tan∠1=,tan∠2=,则cos(∠1+∠2)的值为()A.B.C.D.二、填空题(每小题4分,共24分):在答题卡上相应题目的答题区域内作答.11.(4分)计算:()﹣1+20190=.12.(4分)已知a2﹣b2=8,且a﹣b=﹣4,则a+b=.13.(4分)如图,已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4,则四边形DBCE的面积是.14.(4分)生命在于运动,小张同学用手机软件记录了4月份每天行走的步数(单位:万步),将记录结果绘制成如下图所示的统计图.在这组数据中,众数是万步.15.(4分)若整数a使关于x的分式方程+=的解为正数,使关于y的不等式组无解,则所有满足条件的整数a的值之和是.16.(4分)如图,在平面直角坐标系xOy中,已知⊙A经过点E、B、0、C,点C在y轴上,点E在x轴上,点A的坐标为(﹣2,1),则sin∠OBC的值是.三、解答题(共86分):在答题卡上相应题目的答题区域内作答.17.(8分)解不等式:8﹣(x﹣3)≤2(x+1),并把解集在数轴上表示出来;18.(8分)先化简,再求值:(1﹣)÷,其中a=4.19.(8分)如图,已知△ABC.(1)用圆规和直尺作∠A的平分线AD(保留作图痕迹,不必证明).(2)在(1)的条件下,E是AB边上一点,连结DE,若∠AED=∠C.求证:AC=AE.20.(8分)《九章算术》是中国古代第一部数学专著,该书中记载了一个问题,“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价格是多少?21.(8分)如图,在平面直角坐标系中,一次函数为y1=﹣x+2与反比例函数y2=的图象交于A(﹣3.a)和B(b,﹣2)两点.(1)求a,b的值;(2)结合图象,当y1<y2时,直接写出x的取值范围.22.(10分)某校在一次大课间活动中,采用了三种活动形式:A跑步,B跳绳,C做操,该校学生都选择了一种形式参与活动.(1)小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,列出了两幅不完整的统计图,利用图中所提供的信息解决以下问题:①小杰共调查统计了人;②请将图1补充完整;③图2中C所占的圆心角的度数是;(2)假设被调查的甲、乙两名同学对这三项活动的选择是等可能的,请你用列表格或画树状图的方法求一下两人中至少有一个选择“A”的概率.23.(10分)如图,二次函数y=﹣(x﹣2)2+b的图象与x轴分别相交于A、B两点,点A的坐标为(﹣1,0),与y轴交于点C.(1)求b的值;(2)抛物线顶点为E,EF⊥x轴于F点,点P(2,m)是线段EF上一动点,Q(n,0)在x轴上,且n <2,若∠QPC=90°,求n的最小值.24.(13分)如图,在直角三角形ABC中,∠C=90°,AC=2,BC=2,点O是边AB上的一个动点,以点O为圆心,OA为半径作⊙O,与边AC交于点M.(1)如图1,当⊙O经过点C时,⊙O的直径是;(2)如图2,当⊙O与边BC相切时,切点为点N,试求⊙O与△ABC重合部分的面积;(3)如图3,当⊙O与边BC相交时,交点为E、F,设CM=x,就判断AE•AF是否为定值,若是,求出这个定值;若不是,请用含x的代数式表示.25.(13分)矩形ABCO,O(0,0),C(0.3),A(a.0),(a≥3),以A为旋转中心顺时针旋转矩形ABCO,得到矩形AFED.(1)如图1,当点D落在边BC上时,求BD的长;(2)如图2,当a=3时,矩形AFEO的对角线A任交矩形ABCO的边BC于点G,连结CE.若△CGE 是等腰三角形,求直线BE的解析式.(3)如图3,当a=4时,矩形ABCD的对称中心为点M,△MED的面积为s,求s的取值范围.参考答案与试题解析一、选择题(每小题4分,共40分):每小题有四个答案,其中有且只有一个答案是正侧的,请往答题卡上相应题目的答题区域内作答,答对的得4分,答错或不答一律得0分.1.(4分)﹣2019的绝对值是()A.2019B.﹣2019C.0D.1【分析】直接利用绝对值的性质得出答案.【解答】解:﹣2019的绝对值是:2019.故选:A.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.(4分)下面是几何体中,主视图是矩形的()A.B.C.D.【分析】先得到相应的几何体,找到从正面看所得到的图形即可.【解答】解:A、圆柱的主视图为矩形,符合题意;B、球体的主视图为圆,不合题意;C、圆锥的主视图为三角形,不合题意;D、圆台的主视图为等腰梯形,不合题意.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(4分)下列事件是必然事件的是()A.随意翻到一本书的某页,页码是奇数B.抛掷一枚普通硬币,正面朝下C.抛得一枚普通正方体般子所得点数大于3D.太阳每天从东方升起【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A.随意翻到一本书的某页,页码是奇数,属于随机事件;B.抛掷一枚普通硬币,正面朝下,属于随机事件;C.抛得一枚普通正方体般子所得点数大于3,属于随机事件;D.太阳每天从东方升起,属于必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(4分)目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.4×108B.4×10﹣8C.0.4×108D.﹣4×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:0.000 000 04=4×10﹣8,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.(4分)在函数y=中,自变量x的取值范围是()A.x≥0B.x>0且x≠3C.x≥0且x≠3D.x>0【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x≥0且x﹣3≠0,解得:x≥0且x≠3.故选:C.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(4分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=55°,则∠3的度数等于()A.20°B.25°C.30°D.55°【分析】如图,由平行线的性质可求得∠4,结合三角形外角的性质可求得∠3.【解答】解:如图,∵a∥b,∴∠4=∠2=55°,又∵∠4=∠1+∠3,∴∠3=∠4﹣∠1=55°﹣30°=25°.故选:B.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.7.(4分)关于x的一元二次方程ax2+4x+2=0有两个相等的实数根,则a的值是()A.﹣2B.0C.1D.2【分析】方程ax2+4x+2=0有两个相等的实数根,利用一元二次方程根的判别式△=b2﹣4ac=0即可求解【解答】解:依题意,方程ax2+4x+2=0有两个相等的实数根∴△=b2﹣4ac=16﹣8a=0,得a=2故选:D.【点评】此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2﹣4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0 时,方程有两个相等的实数根;③当△<0 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.8.(4分)平面直角坐标系中,直线1:y=3x﹣1平移后得到新直线y=3x+1.则直线l的平移方式是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位【分析】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【解答】解:∵将直线l:y=3x﹣1平移后,得到直线:y=3x+1,∴3x﹣1+a=3x+1,解得:a=2,故将l向上平移2个单位长度.故选:C.【点评】此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.9.(4分)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5B.﹣1或5C.1或﹣3D.1或3【分析】由解析式可知该函数在x=h时取得最小值1,x>h时,y随x的增大而增大;当x<h时,y随x的增大而减小;根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍);③若1<h<3时,当x=h时,y取得最小值为1,不是5,∴此种情况不符合题意,舍去.综上,h的值为﹣1或5,故选:B.【点评】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.10.(4分)如图,矩形ABCD长与宽的比为5:3,点E、F分别在边BC、CD上,tan∠1=,tan∠2=,则cos(∠1+∠2)的值为()A.B.C.D.【分析】设AB=3a=CD,AD=BC=5a,可求CF=2a=BE,EC=AB=3a,由“SAS”可证△ABE≌△ECF,可得AE=EF,∠1=∠FEC,可求∠EAF=45°,即可求cos(∠1+∠2)的值.【解答】解:连接EF∵矩形ABCD长与宽的比为5:3,∴设AB=3a=CD,AD=BC=5a,∵tan∠1==,tan∠2==,∴BE=2a,DF=a,∴CF=2a=BE,EC=AB=3a,且∠B=∠C=90°∴△ABE≌△ECF(SAS)∴AE=EF,∠1=∠FEC∵∠1+∠AEB=90°∴∠AEB+∠FEC=90°∴∠AEF=90°,且AE=EF∴∠EAF=45°∴∠1+∠2=45°∴cos(∠1+∠2)=故选:B.【点评】本题考查了矩形的性质,全等三角形的性质和判定,锐角三角函数,证明△ABE≌△ECF是本题的关键.二、填空题(每小题4分,共24分):在答题卡上相应题目的答题区域内作答.11.(4分)计算:()﹣1+20190=4.【分析】直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案.【解答】解:原式=3+1=4.故答案为:4.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(4分)已知a2﹣b2=8,且a﹣b=﹣4,则a+b=﹣2.【分析】已知第一个等于左边利用平方差公式化简,将第二个等式代入计算即可求出所求.【解答】解:∵a2﹣b2=(a+b)(a﹣b)=8,且a﹣b=﹣4,∴a+b=﹣2,故答案为:﹣2【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.13.(4分)如图,已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4,则四边形DBCE的面积是21.【分析】证明△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=()2,即=,解得,S△ABC=25,∴四边形DBCE的面积=25﹣4=21,故答案为:21.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.14.(4分)生命在于运动,小张同学用手机软件记录了4月份每天行走的步数(单位:万步),将记录结果绘制成如下图所示的统计图.在这组数据中,众数是 1.4万步.【分析】根据众数的定义求解可得.【解答】解:这组数据的众数是1.4万步,故答案为:1.4.【点评】本题考查的是众数的定义及其求法,牢记定义是关键.15.(4分)若整数a使关于x的分式方程+=的解为正数,使关于y的不等式组无解,则所有满足条件的整数a的值之和是7.【分析】表示出分式方程的解,由分式方程解为正数,得到a的取值范围;不等式组变形后,根据不等式组无解,确定出a的范围,进而求出a的值,得到所有满足条件的整数a的值之和.【解答】解:分式方程去分母得:2a﹣4=x﹣2解得:x=2a﹣2由分式方程的解为正数,得到:2a﹣2>0,2a﹣2≠2∴a>1且a≠2不等式组整理得:∵不等式组无解,∴3﹣2a≥﹣5∴a≤4∴综上,a的范围为1<a≤4且a≠2∴整数a=3,4∴所有满足条件的整数a的值之和是7故答案为:7【点评】本题考查了分式方程的解以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.解题时注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.16.(4分)如图,在平面直角坐标系xOy中,已知⊙A经过点E、B、0、C,点C在y轴上,点E在x轴上,点A的坐标为(﹣2,1),则sin∠OBC的值是.【分析】连接EC,由∠COE=90°,根据圆周角定理可得:EC是⊙A的直径,求出OE和OC,根据勾股定理求出EC,解直角三角形求出即可.【解答】解:过A作AM⊥x轴于M,AN⊥y轴于N,连接EC,∵∠COE=90°,∴EC是⊙A的直径,即EC过O,∵A(﹣2,1),∴OM=2,ON=1,∵AM⊥x轴,x轴⊥y轴,∴AM∥OC,同理AN∥OE,∴N为OC中点,M为OE中点,∴OE=2AN=4,OC=2AM=2,由勾股定理得:EC==2,∵∠OBC=∠OEC,∴sin∠OBC=sin∠OEC===.故答案为.【点评】此题考查了圆周角定理,勾股定理,坐标与图形性质,以及锐角三角函数定义,熟练掌握定理是解本题的关键.三、解答题(共86分):在答题卡上相应题目的答题区域内作答.17.(8分)解不等式:8﹣(x﹣3)≤2(x+1),并把解集在数轴上表示出来;【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:8﹣(x﹣3)≤2(x+1),8﹣x+3≤2x+2﹣3x≤﹣9∴原不等式的解集为:x≥3,在数轴上表示不等式的解集:【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能根据不等式的性质求出不等式的解集是解此题的关键.18.(8分)先化简,再求值:(1﹣)÷,其中a=4.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:(1﹣)÷===,当a=4时,原式==4.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.(8分)如图,已知△ABC.(1)用圆规和直尺作∠A的平分线AD(保留作图痕迹,不必证明).(2)在(1)的条件下,E是AB边上一点,连结DE,若∠AED=∠C.求证:AC=AE.【分析】(1)利用基本作图作AD平分∠BAC;(2)利用“ASA”证明△ACD≌△AED得到AC=AE.【解答】解:(1)如图,AD为求作;(2)如图,∵AD平分∠CAB,∴∠CAD=∠EAD,在△ACD和△AED中,∴△ACD≌△AED(ASA),∴AC=AE.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形全等的判定与性质.20.(8分)《九章算术》是中国古代第一部数学专著,该书中记载了一个问题,“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价格是多少?【分析】设有x人,物品价值y元,根据题意可得,8×人数﹣3=物品价值,7×人数+4=物品价值,据此列方程组求解.【解答】解:设共有x人,每件物品的价格为y元,依题意得:解得答:共有7人,每件物品的价格为53元.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.21.(8分)如图,在平面直角坐标系中,一次函数为y1=﹣x+2与反比例函数y2=的图象交于A(﹣3.a)和B(b,﹣2)两点.(1)求a,b的值;(2)结合图象,当y1<y2时,直接写出x的取值范围.【分析】(1)将A、B点坐标代入y1=﹣x+2即可求得a、b的值;(2)根据解得A、B的坐标,结合图象即可求得.【解答】解:(1)把A(﹣3.a)和B(b,﹣2)代入y1=﹣x+2得,a=﹣×(﹣3)+2=4,﹣2=﹣b+2,则b=6;(2)∵A(﹣3,4),B(6,﹣2),∴当y1<y2时,x的取值范围是﹣3<x<0或x>6.【点评】本题主要考查了一次函数与反比例函数交点问题,解题时注意:一次函数与反比例函数交点坐标同时满足一次函数与反比例函数解析式.22.(10分)某校在一次大课间活动中,采用了三种活动形式:A跑步,B跳绳,C做操,该校学生都选择了一种形式参与活动.(1)小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,列出了两幅不完整的统计图,利用图中所提供的信息解决以下问题:①小杰共调查统计了160人;②请将图1补充完整;③图2中C所占的圆心角的度数是45°;(2)假设被调查的甲、乙两名同学对这三项活动的选择是等可能的,请你用列表格或画树状图的方法求一下两人中至少有一个选择“A”的概率.【分析】(1)①用参与B项目的人数除以它所占的百分比得到调查的总人数;②用总人数乘以参加A项目的人数的百分比得到参与A项目的人数,然后补全条形统计图;③用360度乘参与C项目的百分比得到以图2中C所占的圆心角的度数;(2)画树状图展示9种等可能的结果数,找出两人中至少有一个选择“A”的结果数,然后根据概率公式求解.【解答】解:(1)①40÷25%=160,所以小杰共调查统计了160人;②参加A项目的人数为160×62.5%=100(人),图1补充完整为:③图2中C所占的圆心角的度数=360°×=45°;故答案为160;45°;(2)画树状图为:共有9种等可能的结果数,其中两人中至少有一个选择“A”的结果数为5,所以两人中至少有一个选择“A”的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.23.(10分)如图,二次函数y=﹣(x﹣2)2+b的图象与x轴分别相交于A、B两点,点A的坐标为(﹣1,0),与y轴交于点C.(1)求b的值;(2)抛物线顶点为E,EF⊥x轴于F点,点P(2,m)是线段EF上一动点,Q(n,0)在x轴上,且n <2,若∠QPC=90°,求n的最小值.【分析】(1)将点A的坐标代入二次函数表达式,即可求解;(2)利用tan∠MCP=tan∠QPF,则,即可求解.【解答】解:(1)将点A的坐标代入二次函数表达式得:0=﹣(﹣1﹣2)2+b,解得:b=9;(2)过点C作CM⊥EF,垂足为M,∴∠CMP=∠CPQ=∠PFQ=90°∴∠MCP=∠QPF,∴tan∠MCP=tan∠QPF,∴,∴n=m2﹣m+2=(m﹣)2﹣,∵n<2,∴0≤m<5,∴当时,n的最小值为﹣.【点评】本题考查的是二次函数综合运用,涉及到函数最值、解直角三角形等知识,难度不大.24.(13分)如图,在直角三角形ABC中,∠C=90°,AC=2,BC=2,点O是边AB上的一个动点,以点O为圆心,OA为半径作⊙O,与边AC交于点M.(1)如图1,当⊙O经过点C时,⊙O的直径是4;(2)如图2,当⊙O与边BC相切时,切点为点N,试求⊙O与△ABC重合部分的面积;(3)如图3,当⊙O与边BC相交时,交点为E、F,设CM=x,就判断AE•AF是否为定值,若是,求出这个定值;若不是,请用含x的代数式表示.【分析】(1)由AB是圆的直径知∠C=90°,再根据勾股定理求解可得;(2)连结ON,OM,先证tan∠B==知∠B=30°,∠A=60°,∠BON=60°,∠AON=120°,设ON=OA=r,证△OBN∽△ABC得=,据此求出r的值,再计算出2S扇形MON和S△AOM,从而得出答案;(3)设⊙O与AB的另一交点为G,连结GE,OM,证△AGE∽△AFC得=,由AC=2,CM=x 知AM=2﹣x,再证∠AOM=60°得OA=AM=2﹣x,AG=2AO=4﹣2x,从而知AE•AF=AC•AG=8﹣4x,据此得出答案.【解答】解:(1)∵AB是圆的直径,∴∠C=90°,∵AC=2,BC=2,∴AB=4故答案为4;(2)如图2,连结ON,OM,∵⊙O与边BC相切于点N,∴ON⊥BC在Rt△ABC中,∠C=90°,AC=2,BC=2,∴tan∠B==,∴∠B=30°,∠A=60°,∠BON=60°,∠AON=120°,∵OA=OM,∴∠OMA=∠A=60°,∴∠AOM=60°,∠MON=60°,设ON=OA=r,∵∠BNO=∠C=90°,∠B=∠B,∴△OBN∽△ABC,∴=,即=,解得r=,∴2S扇形MON=2×=,∵S△AOM=×()2=,∴⊙O与△ABC重合部分的面积是+.(3)AE•AF不为定值,理由如下:如图3,设⊙O与AB的另一交点为G,连结GE,OM,∵AG是⊙O的直径,∴∠GEA=90°=∠C,在圆内接四边形AGEF中,∠AGE+∠AFE=180°,∵∠AFC+∠AFE=180°,∴∠AGE=∠AFC,∴△AGE∽△AFC,∴=,∵AC=2,CM=x,∴AM=2﹣x,∵∠OMA=∠OAM=60°,∴∠AOM=60°,∴OA=AM=2﹣x,AG=2AO=4﹣2x,∴AE•AF=AC•AG=8﹣4x,∵x不是定值∴AE•AF不是定值.【点评】本题是圆的综合问题,解题的关键是掌握圆周角定理、勾股定理、三角函数的运用、相似三角形的判定与性质及切线的性质等知识点.25.(13分)矩形ABCO,O(0,0),C(0.3),A(a.0),(a≥3),以A为旋转中心顺时针旋转矩形ABCO,得到矩形AFED.(1)如图1,当点D落在边BC上时,求BD的长;(2)如图2,当a=3时,矩形AFEO的对角线A任交矩形ABCO的边BC于点G,连结CE.若△CGE 是等腰三角形,求直线BE的解析式.(3)如图3,当a=4时,矩形ABCD的对称中心为点M,△MED的面积为s,求s的取值范围.【分析】(1)如图1,当点D落在边BC上时,BD2=AD2﹣AB2,即可求解;(2)分CG=EG、CE=GE、CE=CG三种情况分别求解;(3)MN≤MA+AD,当射线DA经过点M时,MN=MA+AD=,当边AD经过点M,即P与M重合时,MN=PD,MN=PD=AD﹣AP=4﹣=,即可求解.【解答】解:(1)如图1,在矩形ABCO中,∠B=90°当点D落在边BC上时,BD2=AD2﹣AB2,∵C(0,3),A(a,0)∴AB=OC=3,AD=AO=a,∴BD=;(2)如图2,连结AC,∵a=3,∴OA=OC=3,∴矩形ABCO是正方形,∴∠BCA=45°,设∠ECG的度数为x,∴AE=AC,∴∠AEC=∠ACE=45°+x,①当CG=EG时,x=45°+x,解得x=0,不合题意,舍去;②当CE=GE时,如图2,∠ECG=∠EGC=x∵∠ECG+∠EGC+∠CEG=180°,∴x+x+(45°+x)=180°,解得x=45°,∴∠AEC=∠ACE=90°,不合题意,舍去;③当CE=CG时,∠CEG=∠CGE=45°+x,∵∠ECG+∠EGC+∠CEG=180°,∴x+(45°+x)+(45°+x)=180°,解得x=30°,∴∠AEC=∠ACE=75°,∠CAE=30°如图3,连结OB,交AC于点Q,过E作EH⊥AC于H,连结BE,∴EH=AE=AC,BQ=AC,∴EH=BQ,EH∥BQ且∠EHQ=90°∴四边形EHQB是矩形∴BE∥AC,设直线BE的解析式为y=﹣x+b,∵点B(3,3)在直线上,则b=6,∴直线BE的解析式为y=﹣x+6;(3)如图4,∵a=4,点M是矩形ABCO的对称中心∴AO=4,AM=,以A为圆心,分别以AO、AM为半径作圆,AD交小圆于P,过M作MN⊥ED于N∴DE切大圆于D∴MN≥PD根据“垂线段最短”,MN≤MA+AD,如图5,当射线DA经过点M时,MN=MA+AD=,∴s的最大值是ED×(MA+AD)=;如图6,当边AD经过点M,即P与M重合时,MN=PD,MN=PD=AD﹣AP=4﹣=,∴s的最小值是ED×PD=,s的取值范围是.【点评】本题考查的是一次函数综合运用,涉及到正方形和等腰三角形性质、圆的基本知识,其中(2),要注意分类求解,避免遗漏.中学自主招生数学试卷一、选择题(本大题共8小题,共24分)1.2的算术平方根是()A. ±√2B. √2C. −√2D. 22.下列运算正确的是()A. a3⋅a3=2a6B. a3+a3=2a6C. (a3)2=a6D. a6⋅a2=a33.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为()A. 18×104B. 1.8×104C. 0.18×106D. 1.8×1054.如图是由4个大小相同的正方体组合而成的几何体,其左视图是()A. B. C. D.5.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数0 1 2 3 4人数 4 12 16 17 1关于这组数据,下列说法正确的是()A. 中位数是2B. 众数是17C. 平均数是2D. 方差是26.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A. 20%B. 25%C. 50%D. 62.5%7.如图,反比例函数y=kx的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k的值为()A. −6B. −5C. −4D. −38.如图,菱形ABCD的边AB=5,面积为20,∠BAD<90°,⊙O与边AB、AD都相切,AO=2,则⊙O的半径长等于()A. 2√35B. √55C. 3√35D. 2√55二、填空题(本大题共8小题,共24分)9.-5的相反数是______.10.分解因式:4a2-4a+1=______.11.若√x−2在实数范围内有意义,则x的取值范围为______.12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=______度.13.如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是______.14.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为______℃.15.如图,把等边△ABC沿着DE折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC=______cm.16.如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是______.三、计算题(本大题共3小题,共20分)17.计算|-6|+(-2)3+(√7)018.化简:(1−3a )÷a−3a219.小明、小刚和小红打算各自随机选择本周日的上午或下午去兴化李中水上森林游玩.(1)小明和小刚都在本周日上午去游玩的概率为______;(2)求他们三人在同一个半天去游玩的概率.四、解答题(本大题共8小题,共82分)20.解不等式组{4x+2<x+42x>1−x21.某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题(1)该调查的样本容量为______,a=______%,b=______%,“常常”对应扇形的圆心角为______°(2)请你补全条形统计图;(3)若该校共有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?22.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)当∠BAE为多少度时,四边形AECF是菱形?请说明理由.23.某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为______元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?24.如图,一种侧面形状为矩形的行李箱,箱盖打开后,盖子的一端靠在墙上,此时BC=10cm,箱底端点E与墙角G的距离为65cm,∠DCG=60°.(1)箱盖绕点A转过的角度为______,点B到墙面的距离为______cm;(2)求箱子的宽EF(结果保留整数,可用科学计算器).(参考数据:√2=1.41,√3=1.73)。
中学2021年自主招生〔理科实验班〕预录考试训练题制卷人:打自企;成别使;而都那。
审核人:众闪壹;春壹阑;各厅……日期:2022年二月八日。
中学预录语文模拟试题(二)1.C〔A项“扼〞B项“强〞D项“供〞〕2.D〔A项“忧〞应为“尤〞B项“敬〞应为“儆〞或者“警〞C项“装〞应为“妆〞〕3.D(“必需〞是动词,“必须〞是副词;“HY〞指不依靠别人,“独助〞指依靠自己的力量做事,强调做事,“违背〞是指不遵守法规、章程,“违犯〞是指违犯和触犯法律;“自愿〞指自己愿意,“志愿〞有两个意项,一是志向和愿望,二是自愿。
)4.D〔A项“俯首贴耳〞形容非常征服恭顺,应改为“垂头丧气〞。
B项“在劫难逃〞指坏事情一定要发生,要防止也防止不了。
C项“刻骨铭心〞比喻牢记在心上,永远不忘,多用于对别人的感谢。
〕5.D(A(‘报刊杂志〞应为“报纸杂志〞或者“报刊〞;B“几个班的HY〞有歧义;C“过于〞与“溺〞语意重复。
)6.A(此题主要考虑,填入的语句与下文在语意、语气上的一致性。
)7、〔1〕林黛玉贾宝玉薛宝钗〔2〕一首好汉长可口可歌一幅顽猴的漫画8①以燕昭王招贤纳士典故引出诗歌话题,引出下文对现实人才际遇的描写;②与下文描写的现实中人才的遭际构成比照,突出诗人不被重用,怀才不遇的现实处境;③赞许燕昭王招贤纳士之举,表达诗人的向往之情。
〔任意答对两点即给满分是〕9.诗歌结尾两句运用比喻手法,诗人以高飞的黄鹄自比。
〔2分〕表达了诗人对现实中权贵昏庸腐朽,不重用人才的不满和意欲远走高飞而又不知前途何在的迷茫。
〔3分〕10.B 11.D 12.D 13.B 14.C;15.D;16C17〔1〕我怎么知道次山你将来不会说圆滑的话、做圆滑的事,一辈子都圆滑呢?〔2〕公植大概会拿起矛戟杀我吧!译文元子家里有位乳母,制作了一个圆转玩具来引逗婴儿快乐,婴儿很喜欢。
母亲就让乳母召集一些幼童陪伴婴儿一同玩乐。
朋友公植,听说有取乐婴儿的玩具,便恳求看看;等看到圆转玩具,就急忙把它烧了,并责怪元子说:“我听说古代有个憎恶圆的读书人唱道:‘宁可正直沦为奴隶,不能圆滑谋求显荣。
初中实验班自主招生实验班选拔考试模拟试题(四)数学模拟试卷一、选择题(共5小题,每小题3分,满分15分)1.设,则代数式x (x+1)(x+2)(x+3)的值为()A .0 B .1 C .﹣1 D .22.已知x ,y ,z 为实数,且满足x+2y ﹣5z=3,x ﹣2y ﹣z=﹣5,则x 2+y 2+z 2的最小值为()A .B .0C .5D .3.点D ,E 分别在△ABC 的边AB ,AC 上,BE ,CD 相交于点F ,设S 四边形EADF =S 1,S △BDF =S 2,S △BCF =S 3,S △CEF =S 4,则S 1S 3与S 2S 4的大小关系为()A .S 1S 3<S 2S 4B .S 1S 3=S 2S 4C .S 1S 3>S 2S 4D .不能确定4.如图,菱形ABCD 的边长为a ,点O 是对角线AC 上的一点,且OA=a ,OB=OC=OD=1,则a 等于()A .B .C .1 D .25.如果x 、y 是非零实数,使得,那么x+y 等于()A .3B .C .D .二、填空题(共5小题,每小题3分,满分15分)6.两条直角边长分别是整数a ,b (其中b <2011),斜边长是b+1的直角三角形的个数为_________.7.若的最大值为a ,最小值为b ,则a 2+b 2的值为_________.8.如图,双曲线(x >0)与矩形OABC 的边CB ,BA 分别交于点E ,F ,且AF=BF ,连接EF ,则△OEF 的面积为_________.9.如图,将长为4cm宽为2cm的矩形纸片ABCD折叠,使点B落在CD边上的中点E处,压平后得到折痕MN,则线段AM的长度为_________cm.10.已知二次函数的图象经过原点及点(﹣,﹣),且图象与x轴的另一交点到原点的距离为1,求该二次函数的解析式.三、解答题(共4小题,满分0分)11.如图,点H为△ABC的垂心,以AB为直径的⊙O1和△BCH的外接圆⊙O2相交于点D,延长AD交CH于点P,求证:点P为CH的中点.12.如图,正方形ABCD的边长为1,对角线AC与BD相交于点O,点P是AB边上的一个动点(点P不与点A、B重合),CP与BD相交于点Q.(1)若CP平分∠ACB,求证:AP=2QO.(2)先按下列要求画出相应图形,然后求解问题.①把线段PC绕点P旋转90°,使点C落在点E处,并连接AE.设线段BP的长度为x,△APE的面积为S.试求S与x的函数关系式;②求出S的最大值,判断此时点P所在的位置.2。
2024年自主招生(理科实验班)提前预录考试化学模拟试题 05卷班级___________姓名___________学号____________分数____________(考试时间:70分钟试卷满分:70分)注意事项:1.答卷前,考生务必将自己的班级、姓名、学号填写在试卷上。
2.答卷时,将答案直接写在试卷上。
3.本卷可能用到的相对原子质量:H-1 C-12 N-14 O-16 Na-23 Mg-24 Al-27 S-32 Cl-35.5 Zn-65 Ca-40 Fe-56 Cu-64 Ag-108 K-39 Ba-137一、选择题(本题共15小题,每小题只有一个选项符合题意。
每小题2分,共30分)1.化学与生活、技术密不可分。
下列说法中正确的是()A. 用活性炭为焦糖脱色和用臭氧漂白纸浆原理相似B. 炒菜时加碘盐要在菜准备出锅时添加,是因为食盐中的碘受热易升华C. 汽油中添加含铅化合物Pb(C2H5)4,可提高汽油的抗爆震性能,有利于改善大气环境D. “熬胆矾铁釜,久之亦化为铜”,该过程发生了氧化还原反应2.以下装置(部分夹持仪器略)错误或达不到实验目的的是()A. 图①由含有HCl的CO2获取纯净干燥的CO2B. 图②由海水获得淡水C. 图③过滤除去蔗糖水中的泥沙D. 图④蒸发结晶由NaCl溶液获取NaCl晶体3.有两瓶完全相同的氢氧化钠固体,其中一瓶是新开封的,将其用7.3%盐酸恰好中和消耗盐酸质量为a;另一瓶露置在空气中一段时间了,将其用7.3%的盐酸恰好完全反应,消耗盐酸质量为b,则a和b的关系为()A. a=bB. a<bC. a>bD. 无法确定4.原子种类多种多样,组成了丰富多彩的世界万物。
已知,同种元素组成的结构不同的单质之间互称同素异形体。
符号H、D、T可以表示三种不同的氢原子。
以下说法错误的是()A. 科学家近期发现的N5、N3与氮气互为同素异形体B. 中科院研发的“东方超环”(人造太阳)用到的H、D、T属于同一种元素C. 石墨、金刚石、富勒烯(如C60)结构不同,物理性质不同,化学性质相似D. 中科院大连物化所的科学家在H+HD→H2+D转化中,观测到化学反应中的量子干涉现象,HD与H2互为同素异形体5.下列说法正确的是()A. 除去CO2中的HCl气体、水蒸气杂质,可通过饱和的Na2CO3溶液,再通过浓H2SO4B. 硝酸铵、苛性钠、氯化钠、碳酸钙四种白色固体用水不可以鉴别出来C. 用Zn、ZnO、Zn(OH)2、ZnCO3、CuCl2和盐酸6种物质制备ZnCl2的方法共有5种D. 检验氢氧化钠溶液是否部分变质,可取样加入适量的氯化钡溶液观察现象即可完成检验6.甲乙丁X的转化关系如图所示(反应条件和部分产物已略去,“→”表示一步转化)。
第二批次自主招生(实验班)考试数学学科试卷考试时间: 90分钟满分 100分就读学校:姓名:考场号:报名号:一、选择题(本大题共10 小题,每题 3 分,共 30 分。
每题只有一个正确答案)1.(2 m)1化简后的结果为 () m2A. m2B.2mC. 2 mD.m2a b c abc的全部可能值的个数为()2.式子| b || c || abc || a |A.2 个B.3个C.4个D. 无数个3.某班展开课外选修课活动,班级的50 名学生可在音乐、美术、体育三门选修课中选择,每位学生起码选择一门,选择音乐的有21 人,选择美术的有28 人,选择体育的有16 人,既选择音乐又选择美术的有7 人,既选择美术又选择体育的有 6 人,既选择体育又选择音乐的有5人,则三项都参加的人数为 ()A. 2B. 3C. 4D. 54.已知二次函数y x22x 6 ,当m x 4 时,函数的最大值为 2 ,最小值为7 ,则知足条件的 m 的取值范围是()A. m 1B. 2m 1C. 2 m 1D. 2 m 13x y1,且知足方程3x y 1的x的取值范围是()5.合适yxA. 0111C. 01D.11 x B.x x2x 424446 .已知A、B两点在一次函数y x 的图象上,过A、B 两点分别作y 轴的平行线交双曲线y 2( x 0) 于M、N两点,O为坐标原点。
若BN3AM ,则9OM2ON2的值为() xA. 8B. 16C. 32D. 367.在Rt ABC中,BAC90 ,M、N 是BC边上的点, BM CN 1MN ,假如AM8 ,AN6,则 MN 的长为(2 )A.4 10B.2 103D.10C.1028.将正奇数按如 所示的 律摆列下去,如有序 数1第一排(n, m) 表示第 n 排,从左到右第m 个数,如 ( 4,2) 表示奇3 5第二排数 15, 表示奇数2017 的有序 数 是 ()1197第三排A. ( 44,19)B. (45,26)13151719第四排⋯⋯8C. ( 45,19)D. (45,27)9 .如 ,在矩形ABCD 中, 点 B 作 BFAC ,垂足 F ,AF m, CFn ,若 CF2CD , n的 ()mA.22 2B.32 1C.231D.251ab50 a b 53a ,b a 等于 ()10.已知正整数、 足,0.790.8bA. 4B. 5C. 6D. 7二、填空题(本大题 4 小题,每题 3 分,共 12 分)11.函数 y2 x x 73x1 的最大.12.如 ,在平行四 形ABCD 中, ABBC BD 4, M 、N 分是 AD 、 CD 上的 点(含端点) , MBN60 , 段 MN 的 的取范 是.13. 季将至, 宿舍的四位同学每人写了一 明信片放 盒,准 每一个人随机抽取一 , 每一个人都拿到的是 人的明信片的概率是.14.如 ,直AB 和 AC 与 O 分 相切于 B 、C 两点,P 上一点,且点 P 到 AB 、BC 的距离分6和 4,点 P 到 AC 的距离.三、解答题(本大题 5 小题,共 58 分)15. (10 分)(1)计算: (3) 0| 32 3 |332 cos302(2)因式分解: x32x 25x 616. (10 分)(1)已知有理数a, b知足a(b2)2104322 ,求 a, b 的值;(2)解方程x 98x2x x917. (12 分) 已知x1, x2是一元二次方程kx22kx k10 的两个实数根;(1)若 (2x1x2 )( x12x2 )8k建立,务实数 k 的值;(2)能否存在整数 k ,使x2x1的值为整数?若存在,求出k 的值;若不存在,请说明原因。
初中实验班自主招生选拔考试模拟试题
(十四)
一、选择题
1.设x =(1)(2)(3)x x x x +++的值为【 】
(A )0 (B )1 (C )-1 (D )2
2.已知x y z ,,为实数,且满足253x y z +-=,25x y z --=-,则
222x y z ++的最小值为【 】
(A )1
11 (B )0 (C )5 (D )54
11
3.点D E ,分别在△ABC 的边A B A C ,上,B E C D ,相交于点F ,设1234BDF BCF CEF EADF S S S S S S S S ∆∆∆====四边形,,,,则13S S 与24S S 的大小关系为【 】
(A )1324S S S S < (B )1324S S S S = (C )1324S S S S > (D )不能确定
4.如图,菱形ABCD 中,点O 是对角线AC 上一点,OA =AD ,且OB =OC =OD =1,则该菱形的边长为【
】 A .251+ B .25
1
- C .1 D .2
5.如果x 和y 是非零实数,使得∣x∣+y =3和∣x∣y+x 3=0,那么x +y 等于【 】
A 、3;
B 、13;
C 、
2
131-; D 、4-13 二、填空题 6.两条直角边长分别是整数a b ,(其中2011b <),斜边长是1b +的直角三角形的个数为 .
7.若y =a ,最小值为b ,则22a b +的值为 8.如图,双曲线x
y 2=(x >0)与矩形OABC 的边CB , BA 分别交于点E ,F ,且AF=BF ,连接EF ,则△OEF 的面积为 .
9.如图9,将长为4 cm 宽为2 cm 的矩形纸片ABCD 折叠,使点B 落在CD 边上的中点E 处,压平后得到折痕MN ,则线段AM 的长度为__________.
10.已知二次函数的图象经过原点及点1124⎛⎫-- ⎪⎝⎭
,,且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为 .
三、解答题
11.如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D , 延长AD 交CH 于点P ,求证:点P 为CH 的中点.。