【强烈推荐】人教版六年级数学上册各单元知识点归纳-预习必备
- 格式:doc
- 大小:258.50 KB
- 文档页数:12
六年级上册数学知识点第一单元 位置(用数对确定点物体的位置)1.数用有序的两个数表示一个确定的位置就是数对。
2.用数对表示物体位置的方法。
数对的前一个数表示第几列,后一个数表示第几行。
在书写时要用小括号将两个数括起来,并用逗号将两个数隔开。
如:数对(3,2)表示第三列,第二行。
3.在平面直角坐标系中,一个图形向左右平移,对应点的数对只是列数变,行数不变。
向上下平移,只是行数变,列数不变。
第二单元 分数乘法1.分数乘法意义(1)能改写成加法算式的分数乘法算式意义与整数乘法的意义相同。
是求几个相同加数的和的简便运算。
如:12 ×4=12 +12 +12 +12 那么 ×4表示4个12相加的和是多少。
(2)不能改写成加法算式的分数乘法算式意义就是求一个数的几分之几是多少。
如:12 ×35 表示12 的35是多少。
2.分数乘法的计算方法:(1)分数与整数相乘,用分子与整数相乘的积做分子,分母不变。
(2)分数与分数相乘,用分子相乘的积做分子,分母相乘的积做分母。
注意:在计算分数乘法时,分子和分母能约分的尽量先约分,再计算,这样可以简便。
3.倒数的认识(1)倒数的定义:乘积为1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(2)求倒数的方法:①求分数的倒数是交换分子分母的位置。
②求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。
③求a (a ≠0)的倒数就用1÷a=1a。
(3)1的倒数是它本身;0没有倒数。
4.解决问题求一个数的几分之几是多少要用乘法计算。
【单位“1”的量×分率】第三单元 分数除法1. 分数除法的意义是已知两个数的积与其中一个因数,求另一个因数的运算。
(除法是乘法的逆运算)如:12 ÷35 表示已知两个因数的积是12 与其中一个因数是35,求另一个因数是多少。
2.分数除法的计算方法:除以一个不等于0的数,等于乘这个数的倒数。
第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
第一单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质易错探析分数乘整数及整数乘分数用分敛的分子和整数相乘的积作分子,分母不变。
易错点:单位“1”的选取容易出错。
举例探析:判断:甲数比乙数多[,则5乙敛匕甲教少1O(X)S探析:甲数比乙数多1,则S乙数;匕甲数少】°6分数乘分数分敛乘分敛,用分子相乘的积作分子、分母相乘的积作分母。
小数乘分数可以把小数化成分数,也可以把分数化成小数,再计算a分数乘法混合运算和简便计算1.分数乘法混合运算,没有括号的先算束法,后算加、减法;有括号的,先算括号里面的,再算括号外面的。
2.整数乘法的交换律、结合律和分配津,对于分数乘法也适用,解决问题1.连续求一个歇的儿分之几是多少,用连乘。
2.求比一个数多几分之几的数是多少,列式为ax(1+儿分之几)©3.求比一个数少几分之几的数是多少,列式为q x(1-几分之几)。
第二单元考点梳理总结归纳一览表单元考点基本概念与性质位置与方向1.描述物休的位丑与观浏点有关,说浏点不同,物休位置的描述洸不同,物体的位置关系具有相对性勺2.描述物体位丑的三要素:观测点、方向、距离口简单的路线图描述路线图时,要先按行走的路线确定每一个观测点,然后,以每一个观测点为参照,描述到下一个目标行走的方向和路程口-1-第三单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质倒数的认识1.乘积是1的两个数互为例数。
2.1的倒数是1,0没有倒敬。
分数除法除以一个数(0除外),等于乘这个数的倒数。
整数可以寿成分母是1的分数,分数四则混合运算分数混合运角和整数混合运算的运算顺序相同,,解决问题1.巳知一个数的几分之几是多少,求这个数。
1.方程法:(1)找出单位“1”,设未知堇为心(2)我出题中的等量关系式;(3)列方程.2.算术法:(1)我出单位“T;(2)找出题中的对应关系;(3)列出算式。
2.已知一个数以及这个数比另一个数多(少)几分之几,求另一个数,要找准单位“1”,若设另一个数为心列方程:(1±几分之几*=b或列算式:b-r(1土几分之几)〉3.求两分量:找一个未知量设心用两分量的关系列出等式即可。
人教版新课标六年级数学上册重点知识归纳第一单元:位置1、列、行的意义:横、竖成排有规则的排列,竖排称为列,横排称为行。
列从左往右数,行从前往后数。
2、数对:两个有顺序的数组成的且表示一个确定的位置。
3、用数对表示物体位置的方法:先表示列数,再表示行数。
4、用数对确定物体位置的方法:看数对中的两个数表示的是哪一列、哪一行,确定出物体的位置。
第二单元:分数乘法分数乘整数1、分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算:2、分数乘整数计算法则:分数乘整数用分数的分子和整数相乘的积作分子,分母不变。
3、分数乘整数的简便算法就是先约分,再计算。
计算结果必须是最简分数。
4、温馨提示:计算分数乘整数时只能是整数和分子相乘的积作分子,分数的分母不能和整数相乘作分母。
分数乘分数1、分数乘分数的意义就是求一个数的几分之几是多少。
2、分数乘分数的计算方法:用分子相乘的积作分子,分母相乘的积作分母。
3、分数乘分数的简便算法是先约分,后计算,计算结果必须是最简分数。
4、(1)当一个因数大于1时,积大于另一个因数(0除外);当一个因数小于1时,积小于另一个因数(0除外);当一个因数等于1时,积等于另一个因数。
(2)用字母表示因数与积的关系:a×b=c ○1b﹥1, c﹥a(0除外);○2b=1,c=a;○3b<1,c<a(0除外)。
5、温馨提示:运用约分对分数乘分数进行简便运算时,约分后分子和分母必须不再含有公因数,计算后的结果才是最简分数。
6、温馨提示:在进行因数与积的大小比较时,要考虑因数为0时的特殊情况。
7、形如:的分数可以拆成(一)×8、温馨提示:在具体数和一个数的几分之几进行大小比较时,不要轻易下结论,要从多方面考虑,才能做出正确判断。
分数乘法的混合运算和简便运算1、分数乘加、乘减混合运算的运算顺序和整数的运算顺序相同。
没有括号的先算乘法,后算加、减法;有括号的,先算括号里面的,再算括号外面的。
人教版小学数学六年级上册知识点整理归纳六年级上册数学知识点第一单元位置数对是由两个数字组成,中间用逗号隔开,用括号括起来。
括号里面的数字由左至右为列数和行数,即“先列后行”。
数对的作用是确定一个点的位置,类似于经度和纬度的原理。
在方格图(平面直角坐标系)中,可以用数对来表示一个点的位置,例如数对(3,5)表示第三列,第五行。
第二单元分数乘法一)分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
例如,333×7表示求7个333的和是多少,或者表示333的7倍是多少。
一个数乘分数的意义就是求这个数的几分之几是多少。
二)分数乘法计算法则分数乘整数的运算法则是:分子与整数相乘,分母不变。
为了计算简便,可以先约分再计算。
约分是用整数和分母约掉最大公因数。
分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
分数化简的方法是:分子、分母同时除以它们的最大公因数。
在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简分数。
分数的基本性质是:分子、分母同时乘或者除以一个相同的数(除外),分数的大小不变。
三)积与因数的关系一个数(除外)乘大于1的数,积大于这个数。
当b。
1时,a×b。
a。
一个数(除外)乘小于1的数,积小于这个数。
当b <1时,a×b <a (b≠0)。
一个数(除外)乘等于1的数,积等于这个数。
当b =1时,a×b =a。
2/3,已知乙数是15,求甲数。
解:甲数=乙数×(1+2/3)=15×(5/3)=25分数乘法混合运算的顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
同时,分数乘法也适用整数乘法运算定律,如乘法交换律、结合律和分配律。
新课标人教版六年级数学上册各单元知识点归纳第一单元分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如:65×5表示求5个65的和是多少? 1/3×5表示求5个1/3的和是多少?2、一个数乘分数的意义是求一个数的几分之几是多少。
例如:1/3×4/7表示求1/3的4/7是多少。
4×3/8表示求4的3/8是多少.(二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3、为了计算简便,能约分的要先约分,再计算。
(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;14×14=196;15×15=225;16×16=256;17×17=289;18×18=324;19×19=361)4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
(三)、乘法中比较大小的规律一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a ×b = b ×a乘法结合律:( a ×b )×c = a ×( b ×c )乘法分配律:( a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。
(一)分数乘法的意义1产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、 “甲比乙少几分之几”的形式。
(7)乘法应用题中,单位“1”是已知的。
(8)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是比较,单位一致”的规则。
(9)找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。
单位“1”×分率=比较量;比较量÷分率=单位“1”(10)单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。
(11)单位“1”的特点:①单位“1”为分母;②单位“1”为不变量。
(12)分率与量要对应。
①多的对应量对多的分率;②少的对应量对少的分率;③增加的对应量对增加的分率;④减少的对应量对减少的分率;⑤提高的对应量对提高的分率;⑥降低的对应量对降低的分率;⑦工作总量的对应量对工作总量的分率;⑧工作效率的对应量对工作效率的分率;⑨部分的对应量对部分的分率;⑩总量的对应量对总量的分率;例如:1、求一个数的几分之几是多少?(求一个数的几分之几用乘法计算)方法:单位“1”的数量×对应分率=对应数量。
2、分数的连乘。
找到每一个分率的单位“1”。
(五)倒数1、倒数:乘积是1的两个数互为倒数。
2、求倒数的方法:把这个数写成分数形式,然后将分子和分母交换位置。
3、0没有倒数,1的倒数是它本身。
4、真分数的倒数都大于它本身,假分数的倒数等于或小于它本身。
注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。
一、确定物体位置的方法:1第三单元 分数除法(一)分数除法的意义分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,8.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。
六年级数学上册要记、背的知识点一、分数乘法(一)分数乘法的意义和计算法则1、分数乘整数的意义 112×3 表示:① 求3个112是多少? ② 求112的3倍是多少?2、分数乘整数的计算方法分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
(能约分的要先约分再乘)3、一个数乘分数的意义:就是求这个数的几分之几是多少。
53×41 表示:求53的41是多少。
4、分数乘分数的的计算方法分数乘分数,用分子乘分子,分母乘分母。
(能约分的要先约分再乘) (二)求一个数的几分之几是多少的问题1、找单位“1”的方法(1)是谁的几分之几,就把谁看作单位“1”。
(2)一般把“比”字、“是”字、“占”字、“相当于”后面的量看作单位“1”。
注意:① 找单位“1”在分率句里找,有分率的句子称为分率句。
② 分率不带单位,具体数量带有单位。
2、求一个数的几倍、几分之几是多少,用乘法计算。
15的53是多少? 15×53=93、已知单位“1”用乘法计算单位“1”×分率=分率的对应量注意:(1) 乘上什么样的分率就等于什么样的数量。
(2) 乘上谁占的分率就等于谁的数量。
(3) 是谁的几分之几,就用谁乘上几分之几。
4、已知A 比B 多(或少)几分之几,求A 的解题方法5、积与因数的大小关系大于1的数,积大于A 。
A(0除外)乘上小于1的数,积小于A 。
二、位置与方向1、确定物体的位置:(上北下南,左西右东) (1)北偏东30°就是从北向东移,夹角靠北。
(2)东偏北30°就是从东向北移,夹角靠东。
+-B ×(1 几分之几)=A2、物体位置的相对性(1)两地的位置关系是相对的,方向刚好相反,距离是一样的。
例如:少年宫在学校南偏东35°的方向上,相距250米,(在学校是以学校为观测点)南对北 东对西则学校在少年宫北偏西35°的方向上,相距250米。
暑期预习资料:人教版数学六年级上册全册预习知识点清单人教版数学六年级上册全册预习知识点清单第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b<1时,c<a(b≠0)。
< p=""></a(b≠0)。
<>一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
新课标人教版六年级数学上册各单元知识点归纳第一单元分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如:65×5表示求5个65的和是多少? 1/3×5表示求5个1/3的和是多少?2、一个数乘分数的意义是求一个数的几分之几是多少。
例如:1/3×4/7表示求1/3的4/7是多少。
4×3/8表示求4的3/8是多少.(二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3、为了计算简便,能约分的要先约分,再计算。
(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
(三)、乘法中比较大小的规律一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律: ( a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。
(2)部分和整体的关系:画一条线段图。
2、找单位“1”:单位“1”在分率句中分率的前面;或在“占”、“是”、“比”“相当于”的后面。
3、写数量关系式的技巧:(1)“的”相当于“×”,“占”、“相当于”“是”、“比”是“ = ”(2)分率前是“的”字:用单位“1”的量×分率=具体量例如:甲数是20,甲数的1/3是多少?列式是:20×1/34、看分率前有没有多或少的问题;分率前是“多或少”的关系式:(比少):单位“1”的量×(1-分率)=具体量;例如:甲数是50,乙数比甲数少1/2,乙数是多少?列式是:50×(1-1/2)(比多):单位“1”的量×(1+分率)=具体量例如:小红有30元钱,小明比小红多3/5,小红有多少钱?列式是:50×(1+3/5)3、求一个数的几倍是多少:用一个数×几倍;4、求一个数的几分之几是多少:用一个数×几分之几。
5、求几个几分之几是多少:用几分之几×个数6、求已知一个部分量是总量的几分之几,求另一个部分量的方法:(1)、单位“1”的量×(1-分率)=另一个部分量(建议用)(2)、单位“1”的量-已知占单位“1”的几分之几的部分量=要求的部分量例如:教材15页做一做和16页练习第七题(题目中有时候会有这种题的关键字“其中”)第二单元位置与方向(二)一、确定物体位置的方法:1、先找观测点;2、再定方向(看方向夹角的度数);3、最后确定距离(看比例尺)二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
三、位置关系的相对性:1、两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
四、相对位置:东--西;南--北;南偏东--北偏西。
第三单元分数除法三、倒数1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数:把小数化为分数,再求倒数。
3、 1的倒数是1;因为1×1=1;0没有倒数,因为0乘任何数都得0,(分母不能为0)4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
5、运用,a×2/3=b×1/4求a和b是多少。
把a×2/3=b×1/4看成等于1,也就是求2/3的倒数和求1/4的倒数。
1、分数除法的意义:乘法:因数×因数 = 积除法:积÷一个因数 = 另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
例如:1/2÷3/5意义是:已知两个因数的积是1/2与其中一个因数3/5,求另一个因数的运算。
2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
3、分数除法比较大小时的规律:(1)当除数大于1,商小于被除数;(2)当除数小于1(不等于0),商大于被除数;(3)当除数等于1,商等于被除数。
“[ ]”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
二、分数除法解决问题1,解法:(1)方程:根据数量关系式设未知量为X,用方程解答。
解:设未知量为X (一定要解设),再列方程用 X×分率=具体量例如:公鸡有20只,是母鸡只数的1/3,母鸡有多少只。
(单位一是母鸡只数,单位一未知.)解:设母鸡有X只。
列方程为:X×1/3=20(2)算术(用除法):单位“1”的量未知用除法:即已知单位“1”的几分之几是多少,求单位“1”的量。
分率对应量÷对应分率 = 单位“1”的量例如:公鸡有20只,是母鸡只数的1/3,母鸡有多少只。
(单位一是母鸡只数,单位一未知,)用除法,列式是:20÷1/32、看分率前有没有比多或比少的问题;分率前是“多或少”的关系式:(比少):具体量÷ (1-分率)= 单位“1”的量;例如:桃树有50棵,比苹果树少1/6,苹果树有多少棵。
列式是:50÷(1-1/6)(比多):具体量÷ (1+分率)= 单位“1”的量例如:一种商品现在是80元,比原价增加了1/7,原价多少?列式是:80÷(1+1/7)3、求一个数是另一个数的几分之几是多少:用一个数除以另一个数,结果写为分数形式。
例如:男生有20人,女生有15人,女生人数占男生人数的几分之几。
列式是:15÷20=15/20=3/44、求一个数比另一个数多几分之几的方法:用两个数的相差量÷单位“1”的量 =分数即①求一个数比另一个数多几分之几:用(大数–小数)÷另一个数(比那个数就除以那个数),结果写为分数形式。
例如:5比3多几分之几?(5-3)÷3=2/3②求一个数比另一个数少几分之几:用(大数–小数)÷另一个数(比那个数就除以那个数),结果写为分数形式。
例如:3比5少几分之几?(5-3)÷5=2/5说明:多几分之几不等于少几分之几,因为单位一不同。
5、工程问题:把工作总量看作单位“1”,合做多长时间完成一项工程用1÷效率和,即1÷(1/时间+1/时间),(工作效率=1/时间)例如:一项工程甲单独做要5天完成,乙单独做要10天完成,甲单独做要3天完成,三人合做几天可以完成?列式:1÷(1/5+1/10+1/3)第四单元比(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
例如15 :10 = 15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示) 15 ∶ 10= 3/2前项比号后项比值3、比可以表示两个相同量的关系,即倍数关系。
例:长是宽的几倍。
也可以表示两个不同量的比,得到一个新量。
例:路程÷速度=时间。
4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、比和除法、分数的联系:比前项比号“:”后项比值除法被除数除号“÷”除数商分数分子分数线“—”分母分数值7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
9、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
10、求比值:用前项除以后项,结果最好是写为分数(不会约分的就不约分)例如:15∶ 10 =15÷10=15/10=3/2(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:(2)用求比值的方法。
注意:最后结果要写成比的形式。
例如: 15∶10 = 15÷10 =15/10= 3/2 = 3∶2还可以15∶10 = 15÷10 = 3/2 最简整数比是3∶25、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。
6.按比例分配:把一个数量按照一定的比来进行分配。
这种方法通常叫做按比例分配。
一般有两种解题法1,用分率解:按比例分配通常把总量看作单位一,即转化成分率。
要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。
例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?1+4=5 糖占1/5 用 25×1/5得到糖的数量,水占4/5 用 25×4/5得到水的数量。
2,用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。
例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?糖和水的份数一共有1+4=5 一份就是25÷5=5糖有1份就是5×1水有4分就是5×4第五单元圆的认识一、认识圆形1、圆的定义:圆是由曲线围成的一种平面图形。