20.1 数据的代表
- 格式:doc
- 大小:56.00 KB
- 文档页数:2
第二十章数据的分析20.1数据的代表20.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法:1、重点:会求加权平均数2、难点:对“权”的理解1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值第二十章数据的分析课题20.1 数据的代表课时:六课时第一课时20.1.1 平均数【学习目标】1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
【重点难点】重点:会求加权平均数难点:对“权”的理解【导学指导】学习教材P124-P127相关内容,思考、讨论、合作交流后完成下列问题:1.你认为P124“思考”中小明的做法有道理吗?为什么?2.正确的解法应是怎样的?请谈谈你的看法。
3.什么是加权平均数?4.P125“例1”中,所求的结果已不再是各人听说读写成绩的简单平均,而是听说读写成绩的加权平均数,它们的权分别是多少?5.P126“例2”中,两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同呢?谈谈你对权的作用的体会。
【课堂练习】1.教材P127练习第1,2题。
2、在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为.3、某人打靶,有a次打中x环,b次打中y环,则这个人平均每次中靶环。
4、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:试判断谁会被公司录取,为什么?5、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。
第二十章 数据的分析20.1 数据的集中趋势20.1.1 平均数1、算术平均数:把一组数据的总和除以这组数据的个数所得的商. 公式:nx x x n +⋅⋅⋅++21 使用:当所给数据1x ,2x ,…,n x 中各个数据的重要程度相同时,一般使用该公式计算平均数.2、加权平均数:若n 个数1x ,2x ,…,n x 的权分别是1w ,2w ,…,n w ,则112212n n nx w x w x w w w w ++⋅⋅⋅+++⋅⋅⋅+,叫做这n 个数的加权平均数. 使用:当所给数据1x ,2x ,…,n x 中各个数据的重要程度(权)不同时,一般选用加权平均数计算平均数.权的意义:权就是权重即数据的重要程度.常见的权:1)数值、2)百分数、3)比值、4)频数等.20.1.2 中位数和众数1、中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 意义:在一组互不相等的数据中,小于和大于它们的中位数的数据各占一半.2、众数:一组数据中出现次数最多的数据就是这组数据的众数.特点:可以是一个也可以是多个.用途:当一组数据中有较多的重复数据时,众数往往是人们所关心的一个量.3、平均数、中位数、众数的区别:平均数能充分利用所有数据,但容易受极端值的影响;中位数计算简单,它不易受极端值的影响,但不能充分利用所有数据;当数据中某些数据重复出现时,人们往往关心众数,但当各个数据的重复次数大致相等时,众数往往没有意义.20.2 数据的波动程度1、极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差.2、方差:各个数据与平均数之差的平方的平均数,记作2s .用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是:()()()2222121n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦ 意义:方差(2s )越大,数据的波动性越大,方差越小,数据的波动性越小.结论:①当一组数据同时加上一个数a 时,其平均数、中位数、众数也增加a ,而其方差不变; ②当一组数据扩大k 倍时,其平均数、中位数和众数也扩大k 倍,其方差扩大2k 倍.3、标准差:标准差是方差的算术平方根.s =。
20.1数据的代表1.从鱼塘打捞草鱼240尾,从中任选9尾, 称得每尾的质量分另是1.5,1.6,1.4,1.6,6.2,1.7,1.8,1.3.1.4(单位:kg ),估计这240尾草鱼的总质量大约是( ) A .300kg B 、360kg C .36kg D 、30kg2.期中考试后,学习小组长算出全组5位同学数学成绩的平均分为M ,如果把M 当成另一个同学的分数,与原来的5个分数一起,算出6个分数的平均值为N ,那么M :N 为( ) A 、56 B 、1 C 、65 D 、23.已知数据x 1,x 2,x 3,的平均数是a ,那么5 x 1 +7, 5 x 3 +7,5 x 3 +7的平均数为( ) A .5a+7 B .a+7 C .7a D .5a4.一组数据:4,-1,9,5,3,x 的平均数是4,那么x 等于( ) A 、3 B .4 C .5 D .65.2004年5月16 日是世界第14 个助残日,这天某 校老师为本区的特殊教育中心捐款情况如下:该校教师平均每人捐款约_______元(精确到1元) 6.北京是一个严重缺水的城市,为鼓励居民节约每 一滴水,某小区居委会表扬了100个节水模范用 户,4月份这10 0户节约用水情况如下表:那么,4月份这100户平均每户节约用水______吨.7.某校把学生的纸笔测试、实践能力、成长记录三项成绩分别按5 0%20 0%、30%的比例计人学期总评成绩,9 0分以上为优秀,甲、乙、丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )A .甲B .乙、丙C .甲、乙D .甲、丙8.已知一组数据5,15,75,45,25,75,45,35,45,35那么40是这组数据的( ) A .平均数但不是中位数 B .平均数也是中位数 C .众数 D .中位数但不是平均数9.某地连续九天的最高气温统计如下表,则这组数据的中位数与众数分别是( )A .24,25B .24.5,25C.25,24 D.23.5,2410.为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查用么最终买什么水果,下面的调查数据最值得关注的是()A.中位数B.平均数C.众数D.加权平均数参考答案1. 解:B 点拨:先求出样本中9尾鱼的平均质量,再乘以240.2.解:B .点拨:后来6位同学的平均成绩和原来5位同学的平均成绩相同. 7. 解:C 点拨:=x 甲90×50%+83×20%+95×0%=90.1,=x 乙88×50%+90×20%+95×30%=90.5,=x 丙90×50%+88×20%+90×30%=89.68.解:B 点拨:该组数据的平均数为40,中位数也为40,故选B .9. 解:A 点拨:本组数据共9个,从小到大排列后第5 个数是24,众数为25. 10. 解:C 点拨:因为吃哪种水果的人数多就买哪种水果,所以值得关注的是众数.。
评标中的数学概念:去尾平均数
为什么许多评标办法中规定,计算投标人的某项得分时,首先要去掉一个最高分和最低分,再用其余评委打分的平均数作为该项的得分呢?
这里面涉及到一个数学概念:去尾平均数.在给出的一组数据中,首先去掉一个最大数和最小数,最后计算去掉后的其余数据的平均数叫做去尾平均数,也是根据数字特征,综合描述一组数据的聚集形态的代表数,在招标投标领域的评标中有着广泛的应用.
它的优点是保留了平均数与一组数据中的每个数据均有关系,任何数据的变动都会相应引起平均数变动的集中趋势代表性显著的特性,同时吸取了中位数,众数能够排除个别数据变动较大所带来的影响的处理极端数据的思想,防止个别评委因技术或判断偏差打分失真,也可以防止个别思想品质不高的评委给人情分、金钱分,使绝大多数的评委打分值更加真实可靠.
特别是对于只凭短时间审阅标书、凭评委个人理解、结合评分细则给分的评分项目采用了上述增加集中趋势的因素的计算平均分的办法——去尾平均数,理论上能使评标更加客观公正和公平.。
20.1.1平均数——人教版版八年级上册第二十章第一节教学设计一、学生状况分析本节课是人教版版数学教材八年级下册第二十章《数据的代表》的第1节——“平均数”的第1课时.学生在小学阶段已经初步学习过算术平均数的概念,会简单地求一组数据的算术平均数,并会单一地用算术平均数理解一组数据的平均水平.进入初中阶段后,在七年级相关知识的学习过程中,学生已经经历了一些统计活动,解决了一些简单的现实问题,感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验,具备了一定的合作与交流的能力.二、教学任务分析本节课的教学任务是:让学生理解算术平均数、加权平均数的概念;会求一组数据的算术平均数和加权平均数;能解决有关平均数的实际问题,发展学生的数学应用能力, 达成有关的情感态度目标.根据以上分析,制定本节课的教学任务入下:1.知识与技能(1)认识权、会求加权平均数,并体会权的差异对结果的影响.(2)理解简单平均数和加权平均数的区别和联系,并能利用其解决一些实际问题.2. 过程与方法(1)通过小组活动,初步经历数据的处理过程,发展学生数据处理能力.(2)经历从特殊到到一般的数学探究方法,认识加权平均数的意义和价值,解决简单的实际问题.3. 情感态度与价值观(1)通过小组合作的活动,进一步增强与他人交流的意识与能力,培养学生的合作意识和能力.(2)通过权对结果的影响,使学生体会数学与人类社会的密切联系,通过解决身边的实际问题,体会到从不同角度考虑问题的必要性,认识事物要经历从一般到特殊的过程.了解数学的价值,增进对数学的理解和学好数学的信心.在探索过程中形成实事求是的态度和勇于探索的精神.4、教学重难点 教学重点:(1)加权平均数的概念,会求加权平均数. (2)简单平均数与加权平均数的区别和联系. 教学难点:体会权的差异对结果的影响,认识到权的重要性. 三、教学过程设计本节课由五个教学环节组成,它们是“温旧孕新——探新知权——新知升华—学以致用——小结平均数”.其具体内容与分析如下:按照学生的认知规律,遵循以“学生为主体,教师为主导,数学活动为主线”的指导思教 学 内 容教师活动 学生活动 教学目的一、 温旧孕新问题1 2017年2月28日由《重庆晚报》打造的“重庆六一班”小记者培训课,在德普外国语学校开班,并授予德普为小记者培训基地. 经过激烈的比赛,学校现在要在甲、乙两名同学中选拔出一名“德普小记者”,他们的各项成绩(百分制)如下表:现在请计算两名候选者的平均成绩(百分制),如果你是评委,从他们的成绩看,应该选谁呢?展示视频图片以什么样的标准来比较他们的成绩?肯定分配中突出某项的方案具有合理性,并通过计算得出方案的可行性.在总分、平均分相等的情况下,具体该如何比较选拔?学生给出方案计算总分、平均分无法解决问题,让学生感受不同成绩在同一个问题上的重要程度不同,体会数据赋予“权”的必要性.形式变化,实质仍然反映了数据的不同重要程度.二、探新知权 1、加权平均数的概念 由小记者在四个测试中的重要程度不同,在老师的追问中,由学生自己探索出权的呈现形式,引入“权”的概念,导入课题. 权的定义: 权表示:数据的重要程度 数据的权反映数据的相对重要程度. 权形式:比例、百分比 根据不同的权重,所求的平均数就是加权平均数. 归纳: 一般地,若n 个数1x ,2x ,…,n x 的权分别提炼出权的定义:反映数据的重要程度.体会“权”的差异对“加权平均数”结果的影响.“简单平均数”可以看作是权相等的“加权平均数”.给学生一个反思自悟的过程.是 1w ,2w ,…,n w ,则 112212n nnx w x w x w x w w w ++=++叫做这n 个数的加权平均数(weighted average ) .书本171-172页“加权平均数”的相关内容.三、新知升华简单平均数与加权平均数统称为算术平均数. 当数据的权都相等时,所求的加权平均数就是简单平均数,简单平均数是加权平均数地特殊情况, 四、学以致用 一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分. 其中一位选手的单项成绩(百分制)如下表:(1)按演讲内容占60%、演讲能力占30%、演讲效果占10%,计算选手的平均成绩;(2)演讲内容、演讲能力、演讲效果按 3:2: 1的比确定,计算选手的平均成绩.五、学以致用 小组编题1. 选择你感兴趣的生活中加权平均数的例子为背景;2. 可以采用不同形式给出相应考察项目的权;3. 小组合作探究,要分工明确,设计出科学合理的求加权平均数的题目;4. 小组活动时间共18分钟;5. 活动结束后 ,每个小组派两个代表上台展示成果.六、小结—平均数 我最大的收获是…我对同学和同伴的表现感到… 我从同学身上学到了…本节课在对你今后的生活中对待一些事情进行分析时,会有什么帮助?七、布置作业.必做题:教科书第113页练习第2题;归纳概括公式(权的百分数的形式与比的形式)从加权平均数的多种形式计算巩固所学知识,并为下面生活中的加权平均例子提供素材.归纳概括公式利用刚才总结的公式列出式子.学生举例巩固所学体会“权”的对结果的影响,进一步理解“权”.感受加权平均数在生活中应用的广泛,体会数学的价值.巩固演练、反馈矫正(备用)1.(★)如果一组数据5, x, 3, 4的平均数是5, 那么x=____;2.(★★)某小区月底统计用电情况:其中有4户用电45度,有5户用电42度, 有6户用电50度, 则平均每户用电_____度;3. (★★)某校规定学生的体育成绩由三部分组成:体育课外活动占成绩的20%,体育理论测试占30%,体育技能测试占50%.小颖的上述三项成绩依次为92分、80 分、84 分,则小颖这学期的体育成绩是多少分?4. (★★★)小亮买甲种练习本a本,每本m元;买乙种练习本b本,每本n元,两种练习本平均每本多少元?你得了________颗★。
1、已知下列命题:①若|a|=﹣a,则a<0;②若a>|b|,则a2>b2;③两个位似图形一定是相似图形;④平行四边形的对边相等.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个A根据绝对值的性质以及不等式的性质即可判断出①②的原命题与真命题的正确性,以及利用位似图形的性质得出③的逆命题与原命题是否正确,再利用平行四边形的性质与判定得出答案.解:①若|a|=﹣a,则a<0;当a=0时,原命题也成立,显然原命题错误,但其逆命题正确,如a=﹣1,|﹣1|=﹣(﹣1)=1;故此选项错误;②若a>|b|,则a2>b2;显然原命题正确;但其逆命题错误,例如a2>b2;a=﹣4,b=3时,a<|b|,故此选项错误;③两个位似图形一定是相似图形;显然原命题正确;但其逆命题错误,相似的图形不一定就位似,故此选项错误;④原命题和逆命题是平行四边形的性质和判定,故此选项正确.∴其中原命题与逆命题均为真命题的个数是1个.故选:A.2、已知y=kx+b,且当x=1时,y=-2;当x=-1时,y=-4.则k,b的值是()A.k=-1,b=-3B.k=1,b=-3C.k=-1,b=3D.k=1,b=3B根据待定系数法列出二元一次方程,然后利用加减法解二元一次方程组.3、如图,数轴上A、B两点对应的实数分别是1和,若点A关于点B的对称点为点C,则点C所对应的实数为()A.2﹣1B.1+C.2+D.2+1A设点C所对应的实数是x.根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解.数轴上两点间的距离等于数轴上表示两个点的数的差的绝对值,即较大的数减去较小的数.解:设点C所对应的实数是x.则有x﹣=﹣1,x=2﹣1.故选A.4、某校七年级共320名学生参加数学测试,随机抽取50名学生的成绩进行统计,其中15名学生成绩达到优秀,估计该校七年级学生在这次数学测试中达到优秀的人数大约有()A.50人B.64人C.90人D.96人D随机抽取的50名学生的成绩是一个样本,可以用这个样本的优秀率去估计总体的优秀率,从而求得该校七年级学生在这次数学测试中达到优秀的人数.解:随机抽取了50名学生的成绩进行统计,共有15名学生成绩达到优秀,∴样本优秀率为:15÷50=30%,又∵某校七年级共320名学生参加数学测试,∴该校七年级学生在这次数学测试中达到优秀的人数为:320×30%=96人.故选D.5、某选手在青歌赛中的得分如下(单位:分):99.60,99.45,99.60,99.70,98.80,99.60,99.83,则这位选手得分的众数和中位数分别是()A.99.60,99.70B.99.60,99.60C.99.60,98.80D.99.70,99.60B根据众数和中位数的定义求解即可.解:数据99.60出现3次,次数最多,所以众数是99.60;数据按从小到大排列:99.45,99.60,99.60,99.60,99.70,99.80,99.83,中位数是99.60.故选B.6、某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是()A.50元,20元B.50元,40元C.50元,50元D.55元,50元C根据中位数的定义将一组数据从小到大(或从大到小)重新排列后,找出最中间的那个数;根据众数的定义找出出现次数最多的数即可.解:50出现了3次,出现的次数最多,则众数是50;把这组数据从小到大排列为:20,25,30,50,50,50,55,最中间的数是50,则中位数是50.故选C.7、在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是()A.1.71B.1.85C.1.90D.2.31B根据众数的概念:一组数据中出现次数最多的数据叫做众数求解即可.解:数据1.85出现2次,次数最多,所以众数是1.85.故选B.8、孔明同学参加暑假军事训练的射击成绩如下表:射击次序第一次第二次第三次第四次第五次成绩(环)98796则孔明射击成绩的中位数是()A.6B.7C.8D.9C将数据从小到大排列,根据中位数的定义即可得出答案.解:将数据从小到大排列为:6,7,8,9,9,中位数为8.故选C.9、一组数据:3,2,1,2,2的众数,中位数,方差分别是()A.2,1,0.4B.2,2,0.4C.3,1,2D.2,1,0.2B找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均)数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.利用方差公式计算方差.解:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为[(3﹣2)2+3×(2﹣2)2+(1﹣2)2]=0.4,即中位数是2,众数是2,方差为0.4.故选B.10、某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人成绩的稳定性相同D.无法确定谁的成绩更稳定B根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解:∵甲的方差是0.28,乙的方差是0.21,∴S甲2>S乙2,∴乙的成绩比甲的成绩稳定;故选B.11、某校有500名八年级学生,要知道他们在期末质量检测中成绩为A等、B等、C等、D等的人数是多少,则需要做的工作是()A.求平均成绩B.进行频数分布C.求极差D.计算方差B根据频数的概念知,把学生分成四等,进行的工作是计算频数的分布.解:由提题意可知:成绩为A等、B等、C等、D等的人数各是多少,则是计算它们的频数.故选B.12、如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点D,过点D作直线EF∥BC,交AB于E,交AC于F,图中等腰三角形的个数共有()A.3个B.4个C.5个D.6个C先由已知运用角平分线及平行线的性质找出相等的角,再根据等角对等边找出等腰三角形.解:∵AB=AC,∠ABC、∠ACB的平分线相交于点D,∴∠ABD=∠DBC=∠BCD=∠DCF,∴△EBD、△DBC、△FDC是等腰三角形,∵AB=AC,∴∠ABC=∠ACB,且△ABC是等腰三角形,∵EF∥BC,∴∠AEF=∠AFE=∠ABC,∴△AEF是等腰三角形.所以共有△EBD、△DBC、△FDC、△ABC、△AEF5个等腰三角形.故选C.13、如图所示,矩形ABCD中,AB=4,BC=,点E是折线段A﹣D﹣C上的一个动点(点E与点A不重合),点P是点A关于BE的对称点.使△PCB为等腰三角形的点E的位置共有()A.2个B.3个C.4个D.5个C根据题意,结合图形,分情况讨论:①BP为底边;②BP为等腰三角形一腰长.解:①BP为等腰三角形一腰长时,符合点E的位置有2个,是BC的垂直平分线与以B为圆心BA为半径的圆的交点即是点P;②BP为底边时,C为顶点时,符合点E的位置有2个,是以B为圆心BA为半径的圆与以C 为圆心BC为半径的圆的交点即是点P;③以PC为底边,B为顶点时,这样的等腰三角形不存在,因为以B为圆心BA为半径的圆与以B为圆心BC为半径的圆没有交点.故选C.14、如图,菱形ABCD中,对角线AC、BD相交于点O,M、N分别是边AB、AD的中点,连接OM、ON、MN,则下列叙述正确的是()A.△AOM和△AON都是等边三角形B.四边形MBON和四边形MODN都是菱形C.四边形MBCO和四边形NDCO都是等腰梯形D.四边形AMON与四边形ABCD是位似图形D在Rt△ABO中,根据直角三角形斜边上的中线等于斜边的一半可得,OM=AM=BM,但AO与OM和AM的大小却无法判断,所以无法判断△AMO和△AON是等边三角形.同样,我们也无法判断BM是否等于OB和BM是否等于OC,所以也无法判断平行四边形MBON和MODN是菱形,也无法判断四边形MBCO和NDCO是等腰梯形.根据位似图形的定义可知四边形MBCO和四边形NDCO是位似图形.解:根据位似图形的定义可知A、OA与OM和AM的大小却无法判断,所以无法判断△AMO和△AON是等边三角形,故错误;B、无法判断BM是否等于OB和BM是否等于OC,所以也无法判断平行四边形MBON和MODN是菱形,故错误;C、无法判断四边形MBCO和NDCO是等腰梯形,故此选项错误;D、四边形MBCO和四边形NDCO是位似图形,故此选项正确;故选D.15、若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形D根据三角形的中位线定理得到EH∥FG,EF=FG,EF=BD,要是四边形为菱形,得出EF=EH,即可得到答案.解:∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,∴EH∥FG,EF=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=AC,EF=BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D.16、如图,在数轴上有O、A、B、C、D五点,根据图中各点所表示的数,判断表示的点会落在数轴上OA、AB、BC、CD四条线段中线段上.BC先求出的范围,再判断即可.解:∵4<<5,4.72=22.09,3.62=12.96,3.6<<4.7而BC长表示3.6到4.7之间的数,∴表示的点在线段BC上,故答案为:BC.17、如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片______张.3拼成的大长方形的面积是(a+2b)(a+b)=a2+3ab+2b2,即需要一个边长为a的正方形,2个边长为b的正方形和3个C类卡片的面积是3ab.18、已知一次函数y=(m+1)x﹣2,y随x的增大而减小,则m的取值范围是_____.m<﹣1由一次函数y随x的增大而减小,得到该一次函数为减函数,得到m+1小于0,求出不等式的解集即可得到m的范围.解:∵一次函数y=(m+1)x﹣2,y随x的增大而减小,∴一次函数为减函数,即m+1<0,解得:m<﹣1,则m的取值范围是m<﹣1.故答案为:m<﹣1.19、对于一次函数y=kx﹣2,如果y随x增大而增大,那么k需要满足的条件是_____.k>0当一次函数y=kx﹣2的系数k>0时,函数值y随x的增大而增大.解:∵一次函数y=kx﹣2的函数值y随x的增大而增大,∴k>0.故答案是:k>0.20、在正比例函数y=(m﹣3)x中,如果y的值随自变量x的增大而减小,那么m的取值范围是_____.m<3当正比例函数y=(m﹣3)x中的系数m﹣3<0时,y随x的增大而减小.解:∵在正比例函数y=(m﹣3)x中,y的值随自变量x的增大而减小,∴m﹣3<0,解得,m<3;故答案是:m<3.21、某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是分.86利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.解:小海这学期的体育综合成绩=(80×40%+90×60%)=86(分).故答案为86.22、某次数学测验中,某班六位同学的成绩分别是:86,79,81,86,90,84,这组数据的众数是,中位数是.86,85根据众数的定义是一组数据中出现次数最多的数找出众数,再把这组数据从小到大排列,求出最中间的两个数的平均数就是中位数.解:86出现了2次,出现的次数最多,则众数是86;把这组数据从小到大排列为79,81,84,86,86,90,共有6个数,中位数是第3和4个数的平均数,则中位数是(84+86)÷2=85;故答案为:86,85.23、在综合实践课上.五名同学做的作品的数量(单位:件)分别是:5,7,3,6,4,则这组数据的中位数是件.5根据中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.解:按从小到大的顺序排列是:3,4,5,6,7.中间的是5,故中位数是5.故答案是:5.24、某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是分.88根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.解:∵笔试按60%、面试按40%,∴总成绩是(90×60%+85×40%)=88分,故答案为:88.25、为筹备班级里的新年晚会,班长对全班同学爱吃哪几种水果作了民意调查,最终买什么水果,该由调查数据的决定(在横线上填写:平均数或中位数或众数).众数班长最值得关注的应该是哪种水果爱吃的人数最多,即众数.解:平均数、中位数、众数是描述一组数据集中程度的统计量;既然是为筹备班级的初中毕业联欢会做准备,那么买的水果肯定是大多数人爱吃的才行,故最值得关注的是众数.故答案为:众数.26、学校要从小明等13名同学出选出6名学生参加数学竞赛.经过选拔赛后,小明想提前知道自己能否被选上,他除了要知道自己的成绩以外,还要知道这13名同学成绩的.中位数13人成绩的中位数是第7名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.解:由于总共有13个人,且他们的分数互不相同,第7名的成绩是中位数,要判断是否进入前6名,故小明应知道自已的成绩和中位数.故答案为:中位数.27、(1)如图,在△ABC中,AB=AC=6,AD是底边上的高,E为AC中点,则DE=cm.(2)若梯形的面积为12cm2,高为3cm,则此梯形的中位线长为cm.3;4(1)首先由高得到△ADC是直角三角形,又由E为斜边AC的中点,易得DE=AC;(2)根据梯形的面积求解公式与梯形中位线的性质,可得梯形的面积等于梯形的中位线乘以梯形的高,代入数值即可求得.解:(1)∵AB=AC=6,AD是底边上的高,∴∠ADC=90°,∵E为AC中点,∴DE=AC=3cm;(2)∵梯形的面积为12cm2,高为3cm,=•(AD+BC)•AM,∴S梯形ABCD∵EF是梯形ABCD的中位线,∴EF=(AD+BC),∴S=EF•AM,梯形ABCD∴EF=4cm.故答案为:3;4.28、读书决定一个人的休养和品位,在“文明湖北.美丽宜昌”读书活动中,某学习小组开展综合实践活动,随机调查了该校部分学生的课外阅读情况,绘制了平均每人每天课外阅读时间统计图.(1)补全扇形统计图中横线上缺失的数据;(2)被调查学生中,每天课外阅读时间为60分钟左右的有20人,求被调查的学生总人数;(3)请你通过计算估计该校学生平均每人每天课外阅读的时间.解:(1)没有阅读习惯或基本不阅读的占:1﹣10%﹣30%﹣55%=5%;(2)∵每天课外阅读时间为60分钟左右的有20人,占总数的10%,∴被调查的总人数有20÷10%=200人;(3)该校学生平均每人每天课外阅读的时间为:60×10%+40×30%+20×55%=6+12+11=29分∴估计该校学生平均每人每天课外阅读的时间为29分钟;(1)将总体看作单位1,减去其他所占的百分比即可;(2)用每天课外阅读时间为60分钟左右的除以其所占的百分比即可;(3)用加权平均数计算即可.29、如图,反比例函数的图象和一次函数的图象交于点A(﹣2,1)和点B(,m).(1)求反比例函数和一次函数的解析式.(2)O为坐标原点,求△AOB的面积.(3)当取何值时,y1>y2.解:(1)设:反比例函数的解析式是:y=,一次函数的解析式是:y=kx+b,把(A(﹣2,1)代入反比例函数的解析式得:a=﹣2,∴y=﹣,把B(,m)代入得:m=﹣4,∴B(,﹣4),把A、B的坐标代入一次函数的解析式得:,解得:k=﹣2,b=﹣3,∴y=﹣2x﹣3,答:反比例函数的解析式是y 1=﹣,一次函数的解析式是y 2=﹣2x﹣3.(2)把y=0代入y 2=﹣2x﹣3得:x=﹣,∴OC=,∴△AOB 的面积是:S △AOC +S △BOC =××1+××4=,答:△AOB 的面积是.(3)根据图象可知:当﹣2<x<0或x>时,y 1>y 2.(1)设:反比例函数的解析式是:y=,一次函数的解析式是:y=kx+b,把(A(﹣2,1)代入反比例函数的解析式求出反比例函数的解析式,求出B 的坐标,代入一次函数的解析式得到方程组,求出方程组的解即可;(2)求出直线AB 与X 轴的交点坐标,根据三角形的面积求出即可;(3)根据图象即可求出答案.30、已知y=y 1+y 2,y 1与(x﹣1)成正比例,y 2与(x+1)成反比例,当x=0时,y=﹣3,当x=1时,y=﹣1.(1)求y 的表达式;(2)求当x=时y 的值.解:(1)∵y 1与(x﹣1)成正比例,y 2与(x+1)成反比例,∴y 1=k 1(x﹣1),y 2=,∵y=y 1+y 2,当x=0时,y=﹣3,当x=1时,y=﹣1.∴,∴k 2=﹣2,k 1=1,∴y=x﹣1﹣;(2)把x=代入(1)中函数关系式得,y=﹣.(1)先根据题意得出y 1=k 1(x﹣1),y 2=,根据y=y 1+y 2,当x=0时,y=﹣3,当x=1时,y=﹣1得出x、y 的函数关系式即可;(2)把x=代入(1)中的函数关系式,求出y 的值即可.31、如图,已知正比例函数y=kx(k≠0)经过点P(2,4),(1)求这个正比例函数的解析式;(2)该直线向上平移4个单位,求平移后所得直线的解析式.解:(1)把P(2,4)代入y=kx得:4=2k,∴k=2,∴y=2x.答:这个正比例函数的解析式是y=2x.(2)设平移后所得直线的解析式是y=2x+b,把(0,4)代入得:4=b,∴y=2x+4.答:平移后所得直线的解析式是y=2x+4.(1)把P(2,4)代入y=kx得到方程,求出方程的解即可;(2)设平移后所得直线的解析式是y=2x+b,把(0,4)代入求出b即可.32、已知一次函数y=kx+b的图象经过点P(4,1)和Q(﹣2,4),求k•b的值.解:把(4,1)(﹣2,4)代入y=kx+b得:,解得:k=﹣,b=3,∴k•b=﹣×3=﹣.把(4,1)(﹣2,4)代入y=kx+b得到方程组,求出方程组的解,代入即可.33、已知一次函数y=kx+b的图象经过点A(﹣2,﹣3)及点B(1,6).(1)求此一次函数解析式;(2)画出此一次函数图象草图;(3)求此函数图象与坐标围成的三角形的面积.解:(1)将点A(﹣2,﹣3)及点B(1,6)的坐标代入一次函数y=kx+b 得,解得,∴一次函数的解析式为y=3x+3;(2)当x=0时,y=3×0+3=3,当y=0时,3x+3=0解得:x=﹣1,所以函数图象经过(0,3),(﹣1,0).(3)根据(2)中的图象知,此函数图象与坐标围成的三角形的面积是:×1×3=.(1)利用待定系数法求一次函数的解析式;(2)利用两点法作出该一次函数的图象;(3)根据该一次函数的图象,利用三角形的面积公式求得此函数图象与坐标围成的三角形的面积.34、已知一次函数图象经过点(1,2)和点(﹣1,4),求这一次函数的解析式.解:设一次函数解析式为y=kx+b(k、b是常数,且k≠0)(1分)将点(1,2),点(﹣1,4)代入上式得:(3分)解得:k=﹣1,b=3(5分)即一次函数表达式为y=﹣x+3(6分)将点(1,2)和点(﹣1,4)分别代入一次函数的解析式y=kx+b(k、b是常数,且k≠0),列出关于k、b的二元一次方程组;然后通过解方程组求得k、b的值.即利用待定系数法求一次函数的解析式.35、在对全市初中生进行的体质健康测试中,青少年体质研究中心随机抽取的10名学生的坐位体前屈的成绩(单位:厘米)如下:11.2,10.5,11.4,10.2,11.4,11.4,11.2,9.5,12.0,10.2(1)通过计算,样本数据(10名学生的成绩)的平均数是10.9,中位数是,众数是;(2)一个学生的成绩是11.3厘米,你认为他的成绩如何?说明理由;(3)研究中心确定了一个标准成绩,等于或大于这个成绩的学生该项素质被评定为“优秀”等级,如果全市有一半左右的学生能够达到“优秀”等级,你认为标准成绩定为多少?说明理由.解:(1)中位数是11.2,众数是11.4.(2)方法1:根据(1)中得到的样本数据的结论,可以估计,在这次坐位体前屈的成绩测试中,全市大约有一半学生的成绩大于11.2厘米,有一半学生的成绩小于11.2厘米,这位学生的成绩是11.3厘米,大于中位数11.2厘米,可以推测他的成绩比一半以上学生的成绩好.方法2:根据(1)中得到的样本数据的结论,可以估计,在这次坐位体前屈的成绩测试中,全市学生的平均成绩是10.9厘米,这位学生的成绩是11.3厘米,大于平均成绩10.9厘米,可以推测他的成绩比全市学生的平均成绩好.(3)如果全市有一半左右的学生评定为“优秀”等级,标准成绩应定为11.2厘米(中位数).因为从样本情况看,成绩在11.2厘米以上(含11.2厘米)的学生占总人数的一半左右.可以估计,如果标准成绩定为11.2厘米,全市将有一半左右的学生能够评定为“优秀”等级.(1)利用中位数、众数的定义进行解答即可;(2)将其成绩与中位数比较即可得到答案;(3)用中位数作为一个标准即可衡量是否有一半学生达到优秀等级.36、某销售公司员工的工资如下表:(1)分别计算该公司员工月工资的平均数、中位数和众数;(2)你认为用上题中计算出的哪个数据来代表该公司员工的月工资水平更为合适?请简要说明理由.解:(1)在这一组数据中1500元是出现次数最多的,故众数是1500元;处于这组数据中间位置的数是1500元、1500元,所以这组数据的中位数是(1500+1500)÷2=1500(元);这组数据的平均数为(5000+4200+20×1500+800×8)÷(1+1+20+8)≈1333(元).故该公司员工月工资的平均数、中位数和众数分别是1500元,1500元,1333元.(2)众数代表该公司员工的月工资水平更为合适.因为1500出现的次数最多,能代表大部分人的工资水平.(1)根据平均数、中位数和众数的定义求解.(2)众数,因为它出现的次数最多,能代表大部分人的工资水平.37、如图,已知E为平行四边形ABCD中DC边的延长线上的一点,且CE=DC,连接AE分别交BC、BD于点F、G.(1)求证:△AFB≌△EFC;(2)若BD=12cm,求DG的长.(1)证明:在平行四边形ABCD中,∵AB∥CD,∴∠BAF=∠CEF,∠ABF=∠ECF,∵AB=CD,CE=CD,∴AB=CE,在△AFB和△EFC中,∴△AFB≌△EFC.(2)解:∵ED=2CD=2AB,∴,∵AB∥CD,∴,又∵BD=12,∴DG=BD=8cm,答:DG的长是8cm.(1)根据平行四边形性质推出AB=CD=CE,AB∥CD,推出∠ABF=FCE,∠BAF=∠FEC,根据全等三角形的判定证出即可;(2)求出==,把BD的长代入求出即可.38、如图,在直角梯形OABC中,OA∥CB,A、B两点的坐标分别为A(15,0)B(10,12),动点P、Q分别从O、B两点出发,点P以每秒2个单位的速度沿OA向终点A运动,点Q以每秒1个单位的速度沿BC向C运动,当点P停止运动时,点Q也同时停止运动.线段OB、PQ相交于点D,过点D作DE∥OA,交AB于点E,射线QE交x轴于点F.设动点PQ 运动时间为t(单位:秒).(1)当t为何值时,四边形PABQ是等腰梯形,请写出推理过程;(2)当t=2秒时,求梯形OFBC的面积;(3)当t为何值时,△PQF是等腰三角形?请写出推理过程.解:(1)如图,过B作BG⊥OA于G,则AB==13.过Q作QH⊥OA于H,则QP=.要使四边形PABQ是等腰梯形,则AB=QP,即.∴t=,或t=5(此时PABQ是平行四边形,不合题意,舍去);∴t=.(2)当t=2时,OP=4,CQ=10﹣2=8,QB=2.∵CB∥DE∥OF,∴.∴AF=2QB=2×2=4.∴OF=15+4=19.∴S=(10+19)×12=174.梯形OFBC(3)①当QP=PF时,则=15+2t﹣2t,∴t=或t=.②当QP=QF时,则=,即,∴t=.③当QF=PF时,则=15,∴t=或t=﹣,综上,当t=,t=,t=,t=时,△PQF是等腰三角形.(1)可通过构建直角三角形来求解.过B作BG⊥OA于G,过Q作QH⊥OA于H.可根据勾股定理,求出AB的值,用t表示出QP,让QP=AB,求出t的值;(2)有了t的值,即可求出OP,CQ,QB的值,根据平行线段成比例,可以得出AF,进而求出OF的值,这样就可以求出梯形的面积;(3)分三种情况进行讨论,让△PQF的三边两两相等,求出t的值.39、如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么.(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?(3)在(2)的条件下,若EF=2,求四边形ABCD的面积.解:(1)连接四边形的对角线,∵E是AB的中点,H是AD的中点,∴EH∥BD,EH=BD∵F是BC的中点,G是CD的中点∴GF∥BD,GF=BD∴GF平行且等于EH,∴四边形EFGH是平行四边形.(2)若加AC=BD且AC⊥BD,则四边形EFGH会是正方形在(1)的条件下,∵AC=BD∴EF=FG=GH=HE∴四边形EFGH是菱形.又∵AC⊥BD,EH∥BD,EF∥AC∴∠HEF=90°∴四边形EFGH是正方形(3)在(2)的条件下若EF=2,则AC=BD=4且BD⊥AC,若四边形对角线垂直的话,四边形的面积可以是对角线乘积的一半.则×4×4=8.故四边形ABCD的面积为8.(1)连接四边形的对角线,根据题目所给四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,可得四边形对边平行且相等,从而判断平行四边形;(2)只要加对角线相等且互相垂直就可证明是正方形;(3)在(2)的条件下可知四边形ABCD的对角线互相垂直,对角线的乘积就是四边形ABCD的面积.40、已知:如图,在平行四边形ABCD中,对角线AC、BD相交于点O,点M、N分别在边AO和边OD上,且AM=AO,ON=OD,设=,=,试用、的线性组合表示向量和向量.解:根据平行四边形法则,=+=+,∵平行四边形ABCD,∴AO=AC,∴==(+),∵AM=AO,∴OM=AO,∴=﹣,∴=﹣×(+)=﹣﹣;∵AM=AO,ON=OD,∴==,∴MN∥AD,∴==,∴=,又∵平行四边形ABCD,∴==,∴=.根据平行四边形法则求出,再根据平行四边形的对角线互相平分表示,然后根据OM=AO,再表示出即可;根据平行线分线段成比例定理求出MN∥AD,并求出=,然后根据向量的表示=即可得解.教师出题相关试题库:/teacher/paper/new?source=fromwk学生查看相关知识点:/teacher/lesson/prepare?source=fromwk寻找同班同学,自己的老师:/home/class?source=fromwk。
20.1数据的代表同步练习
2、公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁)甲群:1
3、13、1
4、1
5、15、15、1
6、1
7、17.
乙群:3、4、4、5、5、6、6、54、57.
(1)、甲群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是 .
(2)、乙群游客的平均年龄是岁,中位数是岁,众数是岁.其中能较好反映乙群游客年龄特征的是 .
3、某商场服装部为了调动营业员的积极性,决定实行目标管理,即确定一个月销售目标,根据目标完成的情况对营业员进行适当的奖惩.为了确定一个适当的
是多少?
(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.
(3)如果想让一半左右的营业员都能达到目标,你认为月销售额定为多少合适?说明理由.
(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到元)(3)、
你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平?
(1) 该公司每人所创年利润的平均数是 万元. (2) 该公司每人所创年利润的中位数是 万元.
(3) 你认为应该使用平均数和中位数中哪一个来描述该公司每人所创年利润的一般水平?答
6、某公司欲招聘公关人员,对甲、乙候选人进行了面视和笔试,他们的成绩如
(2)如果公司认为,作为公关人员面试的成绩应该比笔试更重要,并分别赋予它们6和4的权,计算甲、两人各自的平均成绩,看看谁将被录取.
答案:1、90 80 84.6 2、(1)15 15 15 15(2)16 5 (4、5、6) 3、4、5、略
861901882x ⨯+⨯==甲92183187.5
2
x ⨯+⨯==乙x x >乙甲 甲将被录用6
.8710
4
90686=⨯+⨯=
甲x 4
.8810
4
83692=⨯+⨯=
乙x 乙将被录用
甲乙x x >。