2015届高三数学第一次(12月)诊断联考试题 理
- 格式:doc
- 大小:1.45 MB
- 文档页数:13
上海市十二校2015届高三12月联考数学(理)试题学校:上海市朱家角中学学校:三林中学 南汇一中 2014年12月一、填空题 (本大题满分56分,每题4分)1.设集合21{|2},{1}2A x xB x x =-<<=≤,则A B =_______.2. 已知{}n a 为等差数列,1a +3a +5a =9,246a a a ++=15,则=+43a a .3.在行列式3541113a --中,元素a 的代数余子式值为 .4. 如果函数⎩⎨⎧<>-=)0( )()0( 32 x x f x x y 是奇函数,则=-)2(f5.设()f x 的反函数为1()f x -,若函数()f x 的图像过点(1,2),且1(21)1f x -+=,则x = .6.方程cos2x+sinx=1在),0(π上的解集是_______________.7.,侧棱长为1,则此三棱锥的体积为 . 8. 函数()x x x f 2cos 222cos 3-⎪⎭⎫ ⎝⎛-=π在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围是 .92, 与的夹角为3π,则+在上的投影为 . 10. 在锐角ABC ∆中,角B 所对的边长10=b ,ABC ∆的面积为10,外接圆半径13=R ,则ABC ∆的周长为 .11. 已知等比数列{}n a 的首项11=a ,公比为)0(>q q ,前n 项和为n S ,若1lim1=+∞→nn n S S ,则公比q 的取值范围是 . 12.已知函数())(0)3f x x πωω=+>,若()(3)g x f x =在(0 )3π,上是增函数,则ω的最大值 .13. 记数列{}n a 是首项1a a =,公差为2的等差数列;数列{}n b 满足2(1)n n b n a =+,若对任意*n N ∈都有5n b b ≥成立,则实数a 的取值范围为 .14.若平面向量i a 满)4,3,2,1(1=i 且)3,2,1(01==⋅+i a a i i ,则32a a +++可能的值有 个.二、选择题(本大题满分20分,每题5分)15. 设,p q 是两个命题,1:0,:|21|1,x p q x p q x+≤+<则是 ( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16. 数列{a n }中,已知S 1 =1, S 2=2 ,且S n +1-3S n +2S n -1 =0(2≥n ,n ∈N*),则此数列为( ) A .等差数列 B .等比数列 C .从第二项起为等差数列 D .从第二项起为等比数列17.关于函数31)212()(x x f x x⋅-=和实数n m 、的下列结论中正确的是( )A .若n m <<-3,则)()(n f m f <B .若0<<n m ,则)()(n f m f <C .若)()(n f m f <,则22n m <D .若)()(n f m f <,则33n m < 18. 函数()⎩⎨⎧>≤+=0,ln 0,1x x x kx x f ,下列关于函数()[]1+=x f f y 的零点个数的判断正确的是( )A .无论k 为何值,均有2个零点B .无论k 为何值,均有4个零点C .当0k >时,有3个零点;当0k <时,有2个零点D .当0k >时,有4个零点;当0k <时,有1个零点三、简答题 (本大题满分74分)19.(本题满分12分) 本题共有2个小题,第1小题满分6分, 第2小题满分6分. 如图,四棱锥ABCD S -中,底面ABCD 为正方形,⊥SA 平面ABCD ,AB=3,SA=4 (1)求直线SC 与平面SAB 所成角;(2)求SAB ∆绕棱SB 旋转一圈形成几何体的体积。
达州市普通高中2015届高三第一次诊断性测试数学试题(理科)本试卷分选择题和非选择题两部分,全卷共4页,第Ⅰ卷(选择题)1至2页,第Ⅱ卷(非选择题)3至4页,满分150分.考试时间120分钟.注意事项:1. 答题前,考生务必将自己的姓名、考号用0.5毫米黑色字迹的签字笔或钢笔填写在答题卡上,将条形码贴在答题卡规定的位置上.2. 选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上,非选择题用0.5毫米黑色字迹的签字笔或钢笔书写在答题卡的对应框内,超出答题区书写的答案无效;在草稿纸、试题卷上的答案无效. 3. 考试结束后,将答题卡收回.第Ⅰ卷(选择题,共50分) 一.选择题:本大题共10个小题;每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的。
1.若U ={1,2,3,4,5,6},M ={1,2,4},N ={2,3,6},则∁U (M ∪N)=( ) A .{1,2,3} B .{5} C .{1,3,4} D .{2} 2.已知复数11z i=+,则Z 在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.以下说法错误的是( )A .“33log log a b >”是 “11()()22a b <充分不必要条件;B .∃α,β∈R ,使sin(α+β)=sin α+sin β;C .∃m ∈R ,使f(x)=m m mx 22+是幂函数,且在(0,+∞)上单调递增; D .命题“∃x ∈R ,x 2+1>3x ”的否定是“∀x ∈R ,x 2+1<3x ”;4.阅读下边的程序框图,若输出S 的值为-14,则判断框内可填写( )A .i<6?B .i<8?C .i<5?D .i<7?5.若f(x)是R 上周期为5的奇函数,且满足f(1)=1,f(2)=3,则f(8)-f(4)的值为( )A .-1B .1C .-2D .26.达州市举行汉字书写决赛,共有来自不同县的5位选手参赛,其中3位女生,2位男生,如果2位男生不许连续出场,且女生甲不能第一个出场,则不同的出场顺序有( )A .120种B .90种C .60种D .36种8.函数f(x)=sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,如果x 1,x 2∈(-π6,π3),且f(x 1)=f(x 2),则f(x 1+x 2)=( )A. 12B.22C. 1 D .329.已知正项等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +9n的最小值为( )A. 83B.114C. 176D. 14510.已知函数|1|)(-=x e x f ,⎩⎨⎧≤+->-=)0(|1|1)0)(2(2)(x x x x g x g ,则)()()(x g x f x F -=的零点的个数为A .2 B.3 C.4 D5第Ⅱ卷(非选择题,共100分)二、填空题11. 一个总体分为甲、乙两层,用分层抽样方法从总体中抽取一个容量为20的样本.已知乙层中每个个体被抽到的概率都为19,则总体中的个体数为 .12. 二项式73)12(xx +的展开式中常数项为 。
广东省实验中学2015届高三第一次阶段考试数学(理)试题(解析版)【试卷综析】这套试题基本符合高考复习的特点,稳中有变,变中求新,适当调整了试卷难度,体现了稳中求进的精神.,重视学科基础知识和基本技能的考察,同时侧重考察了学生的学习 方法和思维能力的考察,有相当一部分的题目灵活新颖,知识点综合与迁移. 一.选择题(5*8=40分)1.设集合A ={(x ,y )|x 24+y 216=1},B ={(x ,y )|y =3x},则A ∩B 的子集的个数是( )A .4B .3C .2D .1【知识点】交集及其运算;子集与真子集.A1【答案解析】A 解析:∵集合A ={(x ,y )|x 24+y 216=1},∴x 24+y 216=1为椭圆和指数函数y =3x 图象,如图,可知其有两个不同交点,记为A 1、A 2,则A∩B 的子集应为∅,{A 1},{A 2},{A 1,A 2}共四种,故选A .【思路点拨】由题意集合A ={(x ,y )|x 24+y 216=1},B ={(x ,y )|y =3x},画出A ,B 集合所表示的图象,看图象的交点,判断A∩B 的子集的个数. 【题文】2. 22log sinlog cos1212ππ+的值为( )A .-2B .–l C.12D .1 【知识点】对数的运算性质.B7 【答案解析】A 解析:====﹣2.故选A .【思路点拨】利用对数的运算法则进行计算即可.先结合对数运算法则:log a (MN )=log a M+log a N ,利用二倍角的正弦公式将两个对数式的和化成一个以2为底的对数的形式,再计算即得.【题文】3.已知x ,y ∈R ,则“1x y +=”是“14xy ≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【知识点】必要条件、充分条件与充要条件的判断.A2 【答案解析】A 解析:∵x,y ∈R ,当1x y +=时,y=1﹣x ,∴xy=x(1﹣x )=x ﹣x 2=2111424x ,∴充分性成立; 当xy≤时,如x=y=0,x+y=0≠1,∴必要性不成立;∴“1x y +=”是“14xy ≤”的充分不必要条件.故选:A . 【思路点拨】由1x y +=,推出14xy ≤,判定充分性成立;由14xy ≤,不能得出1x y +=,判定必要性不成立即可. 【题文】4.已知函数cos21()sin 2x f x x-=,则有( )A .函数()f x 的图像关于直线2x π=对称 B .函数()f x 的图像关关于点(,0)2π对称C .函数()f x 的最小正周期为2πD .函数()f x 在区间(0,)π内单调递减【知识点】函数y=Asin (ωx+φ)的图象变换.C4【答案解析】B 解析:∵cos21()sin 2x f x x-==∴函数f (x )不是轴对称图形,∴A 不正确; ∵函数f (x )的最小正周期为π,∴C 不正确; ∵函数在区间(0,)π不单调,∴D 不正确; ∵函数f (x )的对称中心为()k ∈Z ,∴函数f (x )的图象关关于点(,0)2π对称正确,故选B .【思路点拨】分析函数cos21()sin 2x f x x-=性质,要先利用公式化成正弦型、余弦型或正切型函数的标准形式,然后再研究性质. 【题文】5.已知0<a<b<l .则( ) A.11b a > B. 11()()22a b < C. 22(lg )(lg )a b < D.11lg lg a b > 【知识点】不等式的基本性质.E1【答案解析】D 解析:∵0<a <b <1,∴,可得; ;(lga )2>(lgb )2;lga <lgb <0,可得.综上可知:只有D 正确.故选:D .【思路点拨】利用不等式的基本性质和指数函数、对数函数的单调性即可得出.【题文】6.已知函数 2()2cos f x x x =+,若 '()f x 是 ()f x 的导函数,则函数 '()f x 在原点附近的图象大致是( )A B C D【知识点】函数的图象.B8【答案解析】A 解析:函数f (x )=x 2+2cosx ,∴f′(x )=2x ﹣2sinx=2(x ﹣sinx ), f′(﹣x )=﹣2x+2sinx=﹣(2x ﹣2sinx )=﹣f′(x ),导函数是奇函数, ∵x∈(0,),x >sinx >0,∴B、C 、D 不正确.故选:A .【思路点拨】由题可得f′(x )=2x ﹣2sinx ,判断导函数的奇偶性,利用特殊值的函数值推出结果即可.【题文】7.已知函数213,1()log , 1x x x f x x x ⎧-+≤⎪=⎨>⎪⎩ ,若对任意的R x ∈,不等式23()4f x m m≤-恒成立,则实数m 的取值范围是( ) 111.(,].(,][1,).[1,).[,1]444A B C D -∞--∞-+∞+∞-【知识点】分段函数的应用.B1【答案解析】B 解析:对于函数f (x )=,当x≤1时,f (x )=﹣(x ﹣)2+;当x >1时,f (x )=<0.则函数f (x )的最大值为.则要使不等式f (x )≤m 2﹣m 恒成立, 则m 2﹣m 恒成立,即m 或m≥1.故选B .【思路点拨】求出分段函数的最大值,把不等式f (x )≤m 2﹣m 恒成立转化为m 2﹣m 大于等于f (x )的最大值恒成立,然后求解不等式得到实数m 的取值范围. 【题文】8.已知关于x 的方程cos xk x=在(0,)+∞有且仅有两根,记为,()αβαβ<,则下列的四个命题正确的是( ) A .2sin 22cosααα= B .2cos 22sin ααα= C .2sin 22sin βββ=- D .2cos 22sin βββ=-【知识点】余弦函数的图象.C3【答案解析】C 解析:∵cos xk x=,∴|cosx|=kx, ∴要使方程cos xk x=(k >0)在(0,+∞)上有两个不同的解,则y=|cosx|的图象与直线y=kx (k >0)在(0,+∞)上 有且仅有两个公共点,所以直线y=kx 与y=|cosx|在(,π)内相切,且切于点(β,﹣cosβ),此时y=|cosx|=﹣cosx .∴切线的斜率为sinβ=,∴βsinβ=﹣cosβ,∴2βsinβsinβ=2sinβcosβ,∴sin 2β=﹣2βsin 2β,故选:C .【思路点拨】将方程cos xk x=转化为|cosx|=kx ,作出两个函数的图象,利用数形结合,以及导数的几何意义即可得到结论.二.填空题(6*5=30分)(一)必做题:第9、10、11、12、13题为必做题,每道试题考生都必须作答。
河北省保定市重点高中2015届高三12月联考数学(理)试题1.已知复数z=312ii-+(i 为虚数单位),则复数z 为( ) A .17i - B .1755i - C .1755i -+ D .1755i +2.已知2{|log 2}A x x =<,1{|33xB x =<<,则A I B 为( )A .(0,12) B .(0C .(-1,12) D .(-1)3.若等比数列{}n a 的前n 项和为n S ,且314S =,12a =,则4a =( ) A .16 B .16或-16 C .-54D .16或-544. 已知命题x x R x p lg 2,:>-∈∃,命题0,:2>∈∀x R x q ,则( ) A.命题q p ∨是假命题 B.命题q p ∧是真命题 C.命题)(q p ⌝∧是真命题 D.命题)(q p ⌝∨是假命题 5.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是 A .2B. 92C. 32D. 36.阅读程序框图,若输入4,6m n ==,则输出,a i 分别是( ) A .12,3a i == B .12,4a i == C .8,3a i == D .8,4a i == 7.若将函数x x x f cos 41sin 43)(-=的图象向右平移(0)m m π<<个单位长度,得到的图象关于原点对称,则m =( ) A .65π B .6π C .32π D .3π(第6题图)8.在△ABC 中,AD 为BC 边上的高,给出下列结论: ①()0AD AB AC -=;②||2||AB AC AD +≥; ③||sin ||ADAC AB B AD =。
以上结论正确的个数为( )A .0B .1C .2D .39. 已知数列}{n a 中满足151=a ,21=-+n a a nn ,则na n 的最小值为( ) A. 7 B. 1152- C.9 D. 42710.若函数12()1sin 21x xf x x +=+++在区间[,](0)k k k ->上的值域为[,]m n ,则m n +=( ) A .0B .1C .2D .411.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A.11DC D P ⊥B.平面11D A P ⊥平面1A APC.1APD ∠的最大值为90D.1AP PD +12.已知圆221:(2)16O x y -+=和圆2222:(02)O x y r r +=<<,动圆M 与圆1O 和圆2O 都相切,动圆圆心M 的轨迹为两个椭圆,设这两个椭圆的离心率分别为1e 和2e (12e e >),则122e e +的最小值为( )AB .32CD .38二、填空题:(本大题共4小题,每小题5分,共20分)13.记直线310x y --=的倾斜角为α,曲线ln y x =在(2,ln 2)处切线的倾斜角为β,则αβ+=。
高 三 数 学(文)本试卷共5页,分第I 卷(选择题)和第II 卷(非选择题)两部分.共150分,检测时间120分钟.第I 卷(选择题,共50分)注意事项:1.答第I 卷前,考生务必将自己的姓名、学号、学校、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试卷上.一、选择题:本大题10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若{}{}21,20A x x B x x x =<=+>,则A B ⋂= A.()0,1 B.(),2-∞- C.()2,0-D.()(),20,1-∞-⋃2.若复数z 的实部为1,且z =2,则复数z 的虚部是A.B.C.3.已知,,a b c R ∈,命题“若3a b c ++=,则2223a b c ++≥”的否命题是 A.若22233a b c a b c ++≠++<,则 B.若22233a b c a b c ++=++<,则 C.若22233a b c a b c ++≠++≥,则D.若22233a b c a b c ++≥++=,则4.执行如右图所示的程序框图,若输入的x 的值为2,则输出的x 的值为A.3B.126C.127D.128 5.在ABC ∆中,内角A ,B ,C 所对的边长分别为,,,a b c 1sin cos sin cos 2a B C c B Ab a b +=<∠,且,则B= A.6πB.3πC.23πD.56π6.函数()sin ln f x x x =⋅的部分图象为7.设0,1a b >>,若3121a b a b +=+-,则的最小值为A. B.8C.D.4+8.下列说法正确..的是 A.样本10,6,8,5,6的标准差是3.3.B.“p q ∨为真”是“p q ∧为真”的充分不必要条件;C.已知点()2,1A -在抛物线()220y px p =>的准线上,记其焦点为F ,则直线AF 的斜率等于4-D.设有一个回归直线方程为ˆ2 1.5yx =-,则变量x 每增加一个单位,ˆy 平均减少1.5个单位; 9.将函数()()sin 222f x x ππθθ⎛⎫=+-<< ⎪⎝⎭的图象向右平移()0ϕϕ>个单位长度后得到函数()g x 的图象,若()(),f x g x 的图象都经过点P ⎛ ⎝,则ϕ的值可以是A.53πB.56π C.2π D.6π10.双曲线221x y m-=的离心率2e =,则以双曲线的两条渐近线与抛物线2y mx =的交点为顶点的三角形的面积为B.C. D.第II 卷(非选择题 共100分)注意事项:1.第II 卷包括填空题和解答题共两个大题;2.第II 卷所有题目的答案考生需用中性笔答在答题卡指定的位置上. 二、填空题:本大题共5小题,每小题5分,共25分,把答案填在横线上. 11.在区间[]2,3-上随机选取一个数X ,则1X ≥的概率等于__________.12.若实数,x y 满足24010,1x y x y x y x +-≤⎧⎪--≤+⎨⎪≥⎩则的取值范围为____________.13.某三棱锥的主视图与俯视图如图所示,则其左视图的面积为___________.14.已知圆O 过椭圆22162x y +=的两焦点且关于直线10x y -+=对称,则圆O 的方程为_________.15.定义在R 上的奇函数()()()[]()402f x f x f x f x +==满足,且在,上 ()1,01294146sin ,12x x x f f x x π⎧-≤≤⎪⎛⎫⎛⎫+=⎨⎪ ⎪<≤⎝⎭⎝⎭⎪⎩,则_______.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知函数()()4cos sin 04f x x x πωωω⎛⎫=⋅+> ⎪⎝⎭的最小正周期为π. (I )求ω的值;(II )讨论()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的单调性.参加市数学调研抽测的某高三学生成绩分析的茎叶图和频率分布直方图均受到不同程度的破坏,但可见部分信息如下,据此解答如下问题:(I )求参加数学抽测的人数n 、抽测成绩的中位数及分数分别在[)80,90,[]90,100内的人数;(II )若从分数在[]80,100内的学生中任选两人进行调研谈话,求恰好有一人分数在[]90,100内的概率.18.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且248,40a S ==.数列{}n b 的前n 项和为*230n n n T T b n N -+=∈且,.(I )求数列{}{},n n a b 的通项公式;(II )设n n na n cb n ⎧=⎨⎩为奇数为偶数,求数列{}n c 的前21n +项和21n P +.19.(本小题满分12分)如图几何体中,四边形ABCD 为矩形,36,2,AB BC BF CF DE EF ======4,//EF AB ,G 为FC 的中点,M 为线段CD 上的一点,且2CM =.(I )证明:AF//面BDG ;(II )证明:面BGM ⊥面BFC ; (III )求三棱锥F BMC -的体积V.已知函数()1ln 1.a f x x ax x+=++- (I )当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (II )当102a -≤≤时,讨论()f x 的单调性.21.(本小题满分12分)已知椭圆()2222:10x y C a b a b +=>>的离心率为12,右焦点2F 到直线1:340l x y +=的距离为35.(I )求椭圆C 的方程;(II )过椭圆右焦点2F 斜率为()0k k ≠的直线l 与椭圆C 相交于E 、F 两点,A 为椭圆的右顶点,直线AE ,AF 分别交直线3x =于点M ,N ,线段MN 的中点为P ,记直线2PF 的斜率为k ',求证:k k '⋅为定值.数学(文)参考答案及评分标准一、选择题(每小题5分,共50分) DBACA ADDBC二、填空题(每小题5分,共25分)11.25 12.[1,3] 13.2 14.22(1)5x y +-= 15.516 三、解答题:16.(本小题满分12分)解:(Ⅰ) 2()4cos sin()cos 4f x x x x x x πωωωωω=⋅+=⋅+2cos 2)x x ωω=++2sin(2)4x πω=++,…………3分因为()f x 的最小正周期为π,且0ω>, 从而有22ππω=,故1ω=. ………………………6分(Ⅱ) 由(Ⅰ)知,()2sin(2)4f x x π=++,,时,当]45,4[)42(]2,0[ππππ∈+∈x x ………………………8分 当2442x πππ≤+≤,即08x π≤≤时,()f x 单调递增;当52244x πππ≤+≤,即82x ππ≤≤时,()f x 单调递减. ……………11分 综上可知,上单调递减,上单调递增;在在]28[]8,0[)(πππx f .………………12分17.(本小题满分12分)解:(Ⅰ)分数在[)50,60内的频数为2,由频率分布直方图可以看出,分数在[]90,100内同样有2人. ……………………………………………2分, 由2100.008n=⨯, 得25n = , ……………………………………………3分 茎叶图可知抽测成绩的中位数为73 . …………………………………4分∴分数在[)80,90之间的人数为()25271024-+++= ……………………5分参加数学竞赛人数25n =,中位数为73,分数在[)80,90、[]90,100内的人数分别为4 人、2 人. ………………………………………6分(Ⅱ)设“在[]80,100内的学生中任选两人,恰好有一人分数在[]90,100内”为事件M ,将[)80,90内的4人编号为a b c d ,,, ;[]90,100内的2人编号为A B ,, 在[]80,100内的任取两人的基本事件为:,,ab ac ad aA aB ,,,bc bd ,,,bA bB ,cd cA cB dA dB AB ,,,,,共15个,…………………………………………9分其中,恰好有一人分数在[]90,100内的基本事件有,aA aB ,,bA bB ,,cA cB dA ,,dB ,共8个,故所求的概率得()8=15P M , …………………11分 答:恰好有一人分数在[]90,100内的概率为815. (12)18.(本小题满分12分) 解:(Ⅰ)由题意,1184640a d a d +=⎧⎨+=⎩,得14,44n a a n d =⎧∴=⎨=⎩. ………3分230n n T b -+=,113n b ∴==当时,,…………4分112230n n n T b --≥-+=当时,,两式相减,得12,(2)n n b b n -=≥数列{}n b 为等比数列,132n n b -∴=⋅. ………7分(Ⅱ)14 32n n nn c n -⎧=⎨⋅⎩为奇数为偶数, 211321242()()n n n P a a a b b b ++=+++++++ …………9分[44(21)]6(14)(1)214n n n ++-=⋅++-……………10分 2122482n n n +=+++ …………12分19.(本小题满分12分) 解:(Ⅰ)连接AC 交BD 于O 点,则O 为AC 的中点,连接OG ,因为点G 为CF 中点,所以OG 为AFC ∆的中位线,所以//OG AF ,……2分AF ⊄面BDG , OG ⊂面BDG ,∴//AF 面BDG ……………………………………5分(Ⅱ)连接FM ,2BF CF BC ===,G 为CF的中点,BG CF ∴⊥,2CM =,4DM ∴=,//EF AB ,ABCD 为矩形, ………………7分//EF DM ∴,又4EF =,EFMD ∴为平行四边形, ………………8分2FM ED ∴==,FCM ∴∆为正三角形 MG CF ∴⊥,MG BG G =CF ∴⊥面BGM ,CF ⊂面BFC ,∴面BGM ⊥面BFC . …………………………10分(Ⅲ)11233F BMC F BMG C BMG BMG BMG V V V S FC S ---=+=⨯⨯=⨯⨯, 因为GM BG ==,BM =,所以112BMG S =⨯=,所以23F BMC BMC V S -=⨯=…………………………12分C ABDE FGMO202分 …………………………5分()f x 在(1,)a-上'()0f x >单调递增; ……………………12分 单调递减,()f x 在(1,)+∞单调递增;单调递减,()f x 在13分解:(Ⅰ)由题意得21==a c e 35=,……………………………2分 所以1c =,2=a ,所求椭圆方程为13422=+y x . …………………… 4分(Ⅱ)设过点()21,0F 的直线l 方程为:)1(-=x k y ,设点),(11y x E ,点),(22y x F , …………………………………5分将直线l 方程)1(-=x k y 代入椭圆134:22=+y x C , 整理得:01248)34(2222=-+-+k x k x k ………………………………… 6分因为点2F 在椭圆内,所以直线l 和椭圆都相交,0∆>恒成立,且3482221+=+k k x x 341242221+-=⋅k k x x …………………………8分 直线AE 的方程为:)2(211--=x x y y ,直线AF 的方程为:)2(222--=x x y y 令3=x ,得点11(3,)2y M x -,22(3,)2yN x -, 所以点P 的坐标12121(3,())222y y x x +--, ………………………………… 10分 直线2PF 的斜率为)22(41130)22(21'22112211-+-=---+-=x y x yx y x y k4)(24)(32414)(2)(241212121212121211212++-++-⋅=++-+-+=x x x x k x x k x kx x x x x y y y x x y ,……… 12分将34124,34822212221+-=+=+k k x x k k x x 代入上式得: 222222224128234134343'412844244343k k k k k k k k k k kk k -⋅-⋅+++=⋅=---+++, 所以'k k ⋅为定值43-. ………………………………… 14分。
沂水一中12月份学情调查考试数学(理)试题本试卷分第I 卷(选择题)和第II 卷两部分。
共150分,考试时间120分钟。
第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集{0,1,2,3,4,5,6}U =,集合{2,4,5}A =,{1,3,4,6}B =,则()u C A B 为( ) A. {0,1,3,6} B. {0,2,4,6} C. {0,1,6} D. {1,3,6} 2.给出如下四个命题:①若“p 且q ”为假命题,则p 、q 均为假命题;②命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b ≤-”; ③“2,11x x ∀∈+≥R ”的否定是“2,11x x ∃∈+≤R ”;④在△ABC 中,“A B >”是“sin sin A B >”的充要条件.其中不正确...的命题的个数是( )A .4B .3C .2D .1 3. 下列四个几何体中,各几何体的三视图有且仅有两个视图相同的是 ( )A.①②B.②③C.②④D.①③4. 已知向量(1,2),m x =-+(3,21),n y =-若m n ⊥,则18()16x y +的最小值为( )A .2B .4C .. 5. 已知双曲线2221x y a-=(0)a >的一个焦点与抛物线218x y =的焦点重合,则此双曲线的离心率为( )A .2B C .3D .36. 已知变量,x y 满足约束条件2823y x x y x y ≤⎧⎪-≤⎨⎪+≥⎩,则目标函数62z x y =-的最小值为( )A .32B .4C .8D .2 7. 已知数列{},{}n n a b 满足113a b ==,113n n n nb a a b ++-==,n N +∈,若数列{}nc 满足n n a c b =,则2013c =( )A. 20129 B .201227 C . 20139 D. 2013278. 已知ABC ∆的外接圆半径为1,圆心为O ,且3450OA OB OC ++=,则 OC AB ⋅的值为A 15- B15 C 65- D659. 在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若22245b c b c +=+-且222a b c bc =+-,则△ABC 的面积为( )10. 定义域为R 的函数()f x 满足()()22f x f x +=,当[)0,2x ∈时,()[)[)232,0,1,1,1,2,2x x x x f x x -⎧-∈⎪⎪=⎨⎛⎫⎪-∈ ⎪⎪⎝⎭⎩则当[)4,2x ∈--时,函数()2142t f x t ≥-+恒成立,则实数t 的取值范围为( )A. 23t ≤≤B. 13t ≤≤C. 14t ≤≤D. 24t ≤≤第II 卷(非选择题 共90分)二、填空题:本大题共5小题,每小题5分,共20分.11、已知向量a ()()4,3,1,2==-b ,若向量k +a b 与-a b 垂直,则k 的值为__________ 12.在平面直角坐标系xoy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =+上至少存在一点,使得以该点为圆心,半径为1的圆与圆C 有公共点,则k 的最小值是__________13. 若函数22()1xf x x =+在点(2,(2))f 处的切线为l ,则直线l 与y 轴的交点坐标为_________.14. 已知10(2)x a e x d x =+⎰(e 为自然对数的底数),函数l n ,0()2,0x x x f x x ->⎧=⎨≤⎩,则21()(l o g )6f a f +=__________. 15. 对于函数lg |3|y x =-和sin2xy π=(410)x -≤≤,下列说法正确的是 .(1)函数lg |3|y x =-的图像关于直线3x =-对称; (2)sin2xy π=(410)x -≤≤的图像关于直线3x =对称;(3)两函数的图像一共有10个交点;(4)两函数图像的所有交点的横坐标之和等于30; (5)两函数图像的所有交点的横坐标之和等于24.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知函数21()sin cos sin cos cos cos()(0)2f x x x x ϕϕπϕϕπ=+++<<,其图象过点1(,).34π(1)求ϕ的值;(2)将函数)(x f y =图象上各点向左平移6π个单位长度,得到函数)(x g y =的图象,求函数)(x g 在2[,]43ππ-上的单调递增区间.17 (本小题满分12分)已知函数()|21||23|3f x x x a =+--+(Ⅰ)当a =0时,写出不等式f (x )≥2的解集;(Ⅱ)若不等式f (x )≤2a 对一切实数x 恒成立时,求实数a 的取值范围。
福州市2014-2015学年度第一学期高三质量检查理科数学试卷(满分:150分;完卷时间:120分钟)注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答,答题前,请在答题卷的密封线内填写学校、班级、准考证号、姓名;2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟.第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给的四个选项中有且只有一个选项是正确的.把正确选项涂在答题卡的相应位置上.)1. 如图,复平面上的点1234,,,Z Z Z Z 到原点的距离都相等.若复数z 所对应的点为1Z ,则复数z 的共轭复数所对应的点为( ). A .1Z B .2Z C .3ZD .4Z2. 已知πtan()34+=α,则tan α的值是( ).A .2B .12C .1-D .3-3. 已知A ⊂≠B ,则“x A ∈”是“x B ∈”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 某班有49位同学玩“数字接龙”游戏,具体规则按如图所示的程序框图执行(其中a 为座位号),并以输出的值作为下一个输入的值. 若第一次输入的值为8,则第三次输出的值为( ). A .8 B .15 C .29 D .365. 如图,若在矩形OABC 中随机撒一粒豆子,则豆子落在图中阴影部分的概率为( ). A .1π B .2π C .3πD .126. 已知函数()lg(1)=-f x x 的值域为(,1]-∞,则函数()f x 的定义域为( ).A .[9,)-+∞B .[0,)+∞C .(9,1)-D .[9,1)-7. 已知抛掷一枚质地均匀的硬币,正面朝上的概率为0.5.现采用随机模拟试验的方法估计抛掷这枚硬币三次恰有两次正面朝上的概率:先由计算器产生0或1的随机数,用0表第1题图第4题图第5题图xy Z 3Z 1Z 4O Z 2示正面朝上,用1表示反面朝上;再以每三个随机数做为一组,代表这三次投掷的结果.经随机模拟试验产生了如下20组随机数:101 111 010 101 010 100 100 011 111 110 000 011 010 001 111 011 100 000 101 101 据此估计,抛掷这枚硬币三次恰有两次正面朝上的概率为( ). A .0.30B .0.35C .0.40D .0.658. ABC △的三个内角,,A B C 所对的边分别为,,a b c . 若cos 2cos A bB a==,则角C 的大小为( ). A .60︒B . 75︒C .90︒D .120︒9. 若双曲线2222:1x y a bΓ-=(0,0a b >>)的右焦点()4,0到其渐近线的距离为23,则双曲线Γ的离心率为( ). A .2B .3C .2D .410.定义运算“*”为:,0,2,0a b ab a a b a +<⎧⎪*=⎨⎪⎩≥.若函数()(1)f x x x =+*,则该函数的图象大致是( ).xy –1–2–3112345Oxy –1–2–3112345OABCD11.已知ABC ∆的三个顶点,,A B C 的坐标分别为()()()0,1,2,0,0,2-,O 为坐标原点,动点P满足1CP =,则OA OB OP ++的最小值是( ). A .423-B .31-C .31+D .312.已知直线:l y ax b =+与曲线:Γ1x y y=+没有公共点.若平行于l 的直线与曲线Γ有且只有一个公共点,则符合条件的直线l ( ). A .不存在B .恰有一条C .恰有两条D .有无数条第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置上.) 13.若变量,x y 满足约束条件0,0,2x y y x ⎧⎪⎨⎪-⎩≤≥≤,则z x y =+的最小值为 ★★★ .14.已知6234560123456(1)x a a x a x a x a x a x a x +=++++++,则016,,,a a a ⋅⋅⋅中的所有偶数..的和等于 ★★★ .15.已知椭圆2239x y +=的左焦点为1F ,点P 是椭圆上异于顶点的任意一点,O 为坐标原点.若点D 是线段1PF 的中点,则1FOD ∆的周长为 ★★★ . 16. 若数列{}n a 满足112n n n a a a +-+≥(2n ≥),则称数列{}n a 为凹数列.已知等差数 列{}n b 的公差为d ,12b =,且数列n b n ⎧⎫⎨⎬⎩⎭是凹数列,则d 的取值范围为 ★★★ .三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知等比数列{}n a 的公比1q >,1a ,2a 是方程2320x x -+=的两根. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}2n n a ⋅的前n 项和n S .18.(本小题满分12分)“ALS 冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.(Ⅰ)若某被邀请者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?(Ⅱ)假定(Ⅰ)中被邀请到的3个人中恰有两人接受挑战.根据活动规定,现记X 为接下来被邀请到的6个人中接受挑战的人数,求X 的分布列和均值(数学期望).19.(本小题满分12分)已知函数()23sin 4f x x π⎛⎫= ⎪⎝⎭在同一半周期内的图象过点,,O P Q ,其中O 为坐标原点,P为函数()f x 图象的最高点,Q 为函数()f x 的图象与x 轴的正半轴的交点.(Ⅰ)试判断OPQ ∆的形状,并说明理由.(Ⅱ)若将OPQ ∆绕原点O 按逆时针方向旋转角02ααπ⎛⎫<< ⎪⎝⎭时,顶点,P Q ''恰好同时落在曲线ky x=()0x >上(如图所示),求实数k 的值.20.(本小题满分12分)一种药在病人血液中的含量不低于2克时,它才能起到有效治疗的作用.已知每服用m (14m ≤≤且m ∈R )个单位的药剂,药剂在血液中的含量y (克)随着时间x (小时)变xyP'Q'QPO第19题图化的函数关系式近似为)(x f m y ⋅=,其中()10,06,4.4,682x xf x x x ⎧<⎪⎪+=⎨⎪-⎪⎩≤≤≤ (Ⅰ)若病人一次服用3个单位的药剂,则有效治疗时间可达多少小时?(Ⅱ)若病人第一次服用2个单位的药剂,6个小时后再服用m 个单位的药剂,要使接下来的2小时中能够持续有效治疗,试求m 的最小值.21.(本小题满分12分)已知抛物线Γ的顶点为坐标原点,焦点为(0,1)F . (Ⅰ)求抛物线Γ的方程;(Ⅱ)若点P 为抛物线Γ的准线上的任意一点,过点P 作抛物线Γ的切线PA 与PB ,切点分别为,A B ,求证:直线AB 恒过某一定点;(Ⅲ)分析(Ⅱ)的条件和结论,反思其解题过程,再对命题(Ⅱ)进行变式和推广.请写出一个你发现的真命题...,不要求证明(说明:本小题将根据所给出的命题的正确性和一般性酌情给分).22.(本小题满分14分)已知函数()()e sin cos ,cos 2e x x f x x x g x x x =-=-,其中e 是自然对数的底数.(Ⅰ)判断函数()y f x =在π(0,)2内的零点的个数,并说明理由;(Ⅱ)12ππ0,,0,22x x ⎡⎤⎡⎤∀∈∃∈⎢⎥⎢⎥⎣⎦⎣⎦,使得不等式12()()f x g x m +≥成立,试求实数m 的取值范围;(Ⅲ)若1x >-,求证:()()0f x g x ->.福州市2014-2015学年度第一学期高三质量检查理科数学试卷参考答案及评分细则一、选择题:本大题共12小题,每小题5分,共60分. 1.C 2.B 3.A 4.A 5.B 6.D 7.B 8.C 9.C 10.D 11.B 12.C二、填空题:本大题共4小题,每小题4分,共16分,13.2- 14.32 15.36+ 16.(,2]-∞ 三、解答题:本大题共6小题,共74分.17. 本题主要考查一元二次方程的根、等比数列的通项公式、错位相减法求数列的和等基础知识,考查应用能力、运算求解能力,考查函数与方程思想. 解:(Ⅰ)方程2320x x -+=的两根分别为1,2, ····························································· 1分 依题意得11a =,22a =. ····································································································· 2分 所以2q =, ···························································································································· 3分 所以数列{}n a 的通项公式为12n n a -=. ············································································· 4分 (Ⅱ)由(Ⅰ)知22n n n a n ⋅=⋅, ······················································································· 5分 所以212222n n S n =⨯+⨯+⋅⋅⋅+⨯, ·············································· ①23121222(1)22n n n S n n +⋅=⨯+⨯+⋅⋅⋅+-⋅+⨯, ·························· ② 由①-②得23222n S -=+++⋅⋅⋅122n n n ++-⨯, ··················································································· 8分 即 1222212nn n S n +-⋅-=-⨯-, ··························································································· 11分 所以12(1)2n n S n +=+-⋅. ································································································· 12分 18.本题主要考查离散型随机变量的概率、分布列、数学期望等基础知识,考查运算求解能力以及应用意识,考查必然与或然思想等.解法一:(Ⅰ)这3个人接受挑战分别记为A 、B 、C ,则,,A B C 分别表示这3个人不接受挑战.这3个人参与该项活动的可能结果为:{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C .共有8种; ··································································· 2分 其中,至少有2个人接受挑战的可能结果有:{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,共有4种. ······························································································································· 3分根据古典概型的概率公式,所求的概率为4182P ==. ···················································· 4分(说明:若学生先设“用(),,x y z 中的,,x y z 依次表示甲、乙、丙三人接受或不接受挑战的情况”,再将所有结果写成(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,不扣分.) (Ⅱ)因为每个人接受挑战与不接受挑战是等可能的,所以每个人接受挑战的概率为12,不接受挑战的概率也为12. ····································· 5分 所以()060611102264P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()51611631226432P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭,()2426111522264P X C ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭,()3336112053226416P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭,()4246111542264P X C ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭,()515611635226432P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭, ()6661116.2264P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭··························································································· 9分 故X 的分布列为:X0 1 2 3 4 5 6 P164 332 1564 516 1564 332 16410分所以()1315515310123456364326416643264E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯=.故所求的期望为3. ············································································································ 12分 解法二:因为每个人接受挑战与不接受挑战是等可能的,所以每个人接受挑战的概率为12,不接受挑战的概率也为12. ····································· 1分 (Ⅰ)设事件M 为“这3个人中至少有2个人接受挑战”,则2323331111()2222P M C C ⎛⎫⎛⎫⎛⎫=⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ············································································· 4分 (Ⅱ)因为X 为接下来被邀请的6个人中接受挑战的人数,所以1~6,2X B ⎛⎫⎪⎝⎭. ··············································································································· 5分 所以()060611102264P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()51611631226432P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭, ()2426111522264P X C ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭,()3336112053226416P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭, ()4246111542264P X C ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭,()515611635226432P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭, ()6661116.2264P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭··························································································· 9分 故X 的分布列为:X0 1 2 3 4 5 6 P164 332 1564 516 1564 332 16410分所以()1632E X =⨯=.故所求的期望为3. ·········································································································· 12分 19.本题主要考查反比例函数、三角函数的图象与性质、三角函数的定义、同角三角函数的基本关系式、二倍角公式、两角和的正弦公式等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想. 解法一:(Ⅰ)OPQ ∆为等边三角形.················································································ 1分理由如下:因为函数()23sin 4f x x π⎛⎫= ⎪⎝⎭,所以2π84T ==π,所以函数()f x 的半周期为4,所以4OQ =. ······················································································································· 2分 又因为P 为函数()f x 图象的最高点,所以点P 坐标为(223),,所以4OP =, ······································································· 4分 又因为Q 坐标为(4,0),所以22(24)(230)4PQ =-+-=,所以OPQ ∆为等边三角形. ······························································································· 6分 (Ⅱ)由(Ⅰ)知,4OP OQ ==,所以点P ',Q '的坐标分别为4cos 4sin 33αα⎛⎫ππ⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,(4cos 4sin )αα,, ················ 7分代入k y x =,得216cos sin 8sin(2π)333k αααππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭,且16sin cos 8sin 2k ααα==, ····························································································· 9分所以2sin 2sin(2π)3αα=+,结合22sin (2)cos (2)1αα+=,02απ<<,解得1sin 22α=,·················································································································· 11分所以4k =,所以所求的实数k 的值为4. ········································································ 12分 解法二:(Ⅰ)OPQ ∆为等边三角形. ·············································································· 1分 理由如下:因为函数()23sin 4f x x π⎛⎫= ⎪⎝⎭,所以2π84T ==π,所以函数()f x 的半周期为4,所以4OQ =, ····································· 2分 因为P 为函数()f x 的图象的最高点,所以点P 坐标为(223),,所以4OP =,所以OP OQ =. ········································ 4分 又因为直线OP 的斜率2332k ==,所以60POQ ∠=︒, 所以OPQ ∆为等边三角形. ······························································································· 6分(Ⅱ)由(Ⅰ)知,4OP OQ ==,所以点P ',Q '的坐标分别为4cos 4sin 33αα⎛⎫ππ⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,(4cos 4sin )αα,, ·················· 7分因为点P ',Q '在函数(0)ky x x=>的图象上,所以16cos sin ,3316sin cos k k ⎧ππ⎛⎫⎛⎫=++⎪ ⎪ ⎪⎝⎭⎝⎭⎨⎪=⎩αααα, ···················································································· 8分 所以28sin(2π),38sin 2k k ⎧=+⎪⎨⎪=⎩αα,······································································································· 9分 消去k 得, 2sin 2sin(2π)3αα=+,所以22sin 2sin 2cos πcos2sin π33ααα=+,所以33sin 2cos 222αα=,所以3tan 23α=, ······························································· 10分又因为 02απ<<,所以26απ=,所以1sin 22α=, ······················································ 11分 所以4k =.所以所求的实数k 的值为4. ········································································ 12分 解法三:(Ⅰ)同解法一或同解法二;(Ⅱ)由(Ⅰ)知,OPQ ∆为等边三角形.因为函数(0)ky x x=>的图象关于直线y x =对称, ·························································· 8分由图象可知,当12απ=时,点P ',Q '恰在函数(0)ky x x=>的图象上. ······················· 10分此时点Q '的坐标为(4cos 4sin )1212ππ,, ············································································· 11分 所以16sin cos 8sin 412126k πππ===,所以所求的实数k 的值为4. ······························ 12分20. 本题主要考查分段函数模型的应用问题、一元二次函数的最值、解不等式等基础知识,考查应用意识、运算求解能力,考查化归与转化思想、分类讨论思想等.解:(I )因为3m =,所以30,06,4312,682x xy x x ⎧<⎪⎪+=⎨⎪-⎪⎩≤≤≤. ························································· 1分当06x <≤时,由3024x+≥,解得x ≤11,此时06x <≤; ········································· 3分 当68x ≤≤时,由31222x -≥,解得203x ≤,此时2063x ≤≤. ······························ 5分综上所述,2003x ≤≤.故若一次服用3个单位的药剂,则有效治疗的时间可达203小时. ································ 6分(Ⅱ)当6x ≤≤8时,110102(4)[]824(6)2my x m x x x =⨯-+=-++--, ························ 8分因为10822mx x -+-≥对6x ≤≤8恒成立,即281210x x m -+≥对6x ≤≤8恒成立,等价于2max 812)10x x m -+≥(,6x ≤≤8. ········································································· 9分 令2812()10x x g x -+=,则函数2(4)4()10x g x --=在[6,8]是单调递增函数, ··············· 10分当x =8时,函数2812()10x x g x -+=取得最大值为65, ·················································· 11分所以65m ≥,所以所求的m 的最小值为65. ··································································· 12分解法二:(Ⅰ)同解法一;(Ⅱ)当6x ≤≤8时,110102(4)[]824(6)2my x m x x x =⨯-+=-++--, ························ 8分注意到18y x =-及2102my x =-(14m ≤≤且m ∈R )均关于x 在[6,8]上单调递减,则1082my x x =-+-关于x 在[6,8]上单调递减, ································································ 10分。
2015届高三12月月考数学(理)试题4、设,,αβγ是三个互不重合的平面,,m n 是两条不同的直线,给出下列命题: (1),αββγ⊥⊥,则αγ⊥; (2)若α∥β,m β⊄,m ∥α,则m ∥β; (3)若,m n 在γ内的射影互相垂直,则m n ⊥;(4)若m ∥α,n ∥β,αβ⊥,则m n ⊥ 其中正确命题的个数为( )A .0 B. 1 C. 2 D. 3 5已知()f x 是定义域为正整数集的函数,对于定义域内任意的k ,若 ()2f k k ≥成立, 则()()211f k k +≥+成立,下列命题成立的是 ( )A.若()39f ≥成立,则对于任意1k ≥,均有()2f k k ≥成立; B.若()416f ≥成立,则对于任意的4k ≥,均有()2f k k <成立; C.若()749f ≥成立,则对于任意的7k <,均有()2f k k <成立; D.若()425f =成立,则对于任意的4k ≥,均有()2f k k ≥成立。
6. 已知,,a b c 分别为ABC ∆内角,,A B C 的对边,且,,a b c 成等比数列,且3B π=,则11tan tan A C+=( ) A.3 B.23 C.332 D.3347.设数列{}n a 的前n 项和为n S ,11,2(1)()n n S a a n n N n*==+-∈,若2321(1)402723n S S S S n n++++--=,则n 的值为( )A 4027B 2013C 2014D 40268.已知实数,x y 满足不等式20403x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则3322x y x y +的取值范围是( )A 19]3B 1[,2]3C 19[3,]3D 55[3,]99. 已知函数)0,0)(cos()(πθωθω<<>+=x x f 的最小正周期为π,且0)()(=+-x f x f ,若2tan =α,则)(αf 等于( )A. 54B. 54- C. 53- D. 5310.已知正实数b a ,满足12=+b a ,则aba b 2+的最小值为( )A.221+B.21+C.4D.2211.给定下列命题:(1) 在△ABC 中,B A ∠<∠是B A 2cos 2cos >的充要条件; (2) λ,μ为实数,若μλ=,则与共线; (3)若向量,满足||=||,则=或=-;(4)函数sin 2sin 236y x x ππ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭的最小正周期是π; (5)若命题p 为:011>-x ,则011:≤-⌝x p (6)由1131n a a n =,=-,求出123S S S ,,猜想出数列的前n 项和n S 的表达式的推理是归纳推理.其中正确的命题的个数为:( )A . 1B . 2C . 3D .412.已知函数xxe x f =)(,方程)(01)()(2R t x tf x f ∈=++. 有四个不同的实数根,则t 的取值范围为 ( ).A )1,(2e e +--∞ .B (),2-∞- .C 21,2e e ⎛⎫+-- ⎪⎝⎭ .D ),1(2+∞+e e 二、填空题(每题5分共20分)13.已知数列}{n a 满足)2,(*112≥∈=+-n N n a a a n n n ,若4,111164654==++a a a a a ,则 =++654a a a .14.已知四棱锥BCDE A -的底面是边长为2的正方形,面ABC ⊥底面BCDE ,且2==AC AB ,则四棱锥BCDE A -外接球的表面积为________15.在ABC ∆中,已知232BC AC AB ==⋅,则=∠C _______________ 16.在△ABC 中,E 为AC 上一点,且4AC AE =,P 为BE 上一点,且满足(0,0)AP mAB nAC m n =+>>,则11m n+取最小值时,向量(),a m n =的模为 .三、解答题SEDCBA17. 已知函数()()21cos cos 02f x x x x ωωωω=+->,其最小正周期为.2π (I )求()f x 的表达式;(II )将函数()f x 的图象向右平移8π个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()y g x =的图象,若关于x 的方程()0g x k +=,在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个实数解,求实数k 的取值范围18. 已知三棱柱ABC —A 1B 1C 1的直观图和三视图如图所示,其主视图BB 1A 1A 和侧视图A 1ACC 1均为矩形,其中AA 1=4。
2014—2015学年度湖北省部分高中12月调考高三数学(理科)参考答案一、选择题(共50分)1—5 CBBCA 6—10 CBABD二、填空题(25分)11、32- 12、10 13、514、22221111OD OA OB OC =++ 15、1077 16、433- 三、解答题(共75分)(Ⅱ)22cos cos22cos 2cos 1m n A A A A ⋅=-+=--…………………8分 故当1cos 2A =时,m n ⋅取最小值…………………………………9分 又203A π<<…………………………………………………………10分 故3A π=………………………………………………………………11分 A B C ∴==,ABC ∆为等边三角形………………………………12分18、解:(Ⅰ)21441(1)n n a S n n +=++≥2144(1)1(2)n n a S n n -∴=+-+≥……………………………1分相减,得22144(2)n n n a a a n +-=+≥221(2)(2)n n a a n +∴=+≥…………………………………………………2分 又102(2)n n n a a a n +>=+≥,故………………………………………3分又25214a a a =⋅,即2222(6)(24)a a a +=+,解得23a =……………4分又221441a S =++,故111a S ==……………………………………5分21312a a ∴-=-=,故数列1{}1n a a =是以为首项,2为公差的等差数列,故21n a n =-………………………………………………………………6分易知3n n b =,21,3n n n a n b ∴=-=……………………………………7分 (Ⅱ)13(13)33132n n n T +--==-…………………………………………8分 1333()36122n k n n +-∴+⋅≥-≥对恒成立, 即243n n k -≥对1n ≥恒成立……………………………………………9分 令243n n n C -=,则1124262(27)(2)333n n n n n n n n C C n -------=-=≥ 故23n ≤≤时,1n n C C ->,4n ≥时,1n n C C -<,3227C ∴=最大…………………………………………………………11分 227k ∴≥…………………………………………………………………12分 19、解:(Ⅰ)根据茎叶图知,甲部门人选有10人,乙部分人选也有10人,故从20人中选8人,用分层抽样,知选中的甲部门人选4人,选中的乙部门人选也是4人。
湖北省部分重点中学2015届高三第一次联考数学试卷(理)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、复数11z i=+的共轭复数是( )A .1i --B .1i -+C .1i -D .1i +2、已知实数,x y 满足1212y y x x ≥⎧⎪≥-⎨⎪≤⎩,则目标函数22z x y =+的最小值为( )A.2 C .1 D .53、模几何体的正视图与俯视图都是边长为1的正方形,且体积为12,则该几何体的侧视图可以 是( )4、阅读程序框图,运行相应的程序,输出的结果为( ) A .6 B .-6 C .0 D .185、已知()2(,)f x x bx c b c R =++∈,命题甲:函数()()2log g x f x =的值域为R ;命题乙:0x R∃∈使0()0f x <成立,则甲是乙的( )条件。
A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要6、过双曲线2222:1(0,0)x y C a b a b-=>>上任意一点P 作与实轴平行的直线,交两渐近线于,M N 两点,若23PM PN b ⋅=,则双曲线C 的离心率为( )A .3B .3 D .37、从编号为001,002,,500的500个产品中用系统抽样的的方法抽取一个样本,已知样本编号从小到大依次为007,032,,则样本中最大的编号应该为( )A .483B .482C .481D .4808、已知函数()23420151(0)2342015x x x x f x x x =+-+-++>,则()f x 在定义域上的单调性是( ) A .在()0,+∞单调递增 B .在()0,+∞单调递减C .在(0,1)单调递增,()1,+∞单调递减D .在(0,1)单调递减,()1,+∞单调递增 9、设函数()4sin(31)f x x x =+-,则下列区间中()f x 不存在零点的是( ) A .[]0,1 B .[]2,1-- C .[]3,4 D .[]3,2-- 10、非空数集123{,,,,}n A a a a a =(,0)n n N a *∈>中,所有元素的算术平均数即为()E A ,即()123na a a a E A n++++=,若非空数集B 满足下列两个条件:①B A ⊆;②()()E B E A =,则称B 为A 的一个“包均值子集”,据此,集合{}1,2,3,4,5,6,7的子集中是“包均值子集”的概率是( ) A .15128 B .19128 C .1164D .63128二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分,把答案填在答题卡对应的题号的位置上,答错位置,书写不清,模棱两可均不得分。
张掖市2014-2015年度高三第一次诊断考试数学(理科)第I 卷 (选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合U={1,2,3,4,5,6},M={1,2,4},则∁UM=( )A .UB .{1,3,5}C .{3,5,6}D .{2,4,6}2.若复数i ia 213++(i R a ,∈为虚数单位)是纯虚数,则实数a 的值为 ( )A. 6-B. 2-C. 4D. 63.等差数列{}1418161042,30,a a a a a a n -=++则中的值为( )A .20B .-20C .10D .-104.已知4(,0),cos ,tan 225x x x π∈-==则 ( )A .24-7B .7-24C .724D .2475.某三棱锥的三视图如图所示,则该三棱锥的体积是()A.16B.13C.23D .16.若一条直线与一个平面成720角,则这条直线与这个平面内经过斜足的直线所成角中最大角等于 ( )A .720B .900C .1080D .18007.已知M 是ABC ∆内的一点,且AB AC 23⋅=,BAC 30∠=,若M BC ∆,MCA ∆,MAB ∆的面积分别为x y1,,2,则x y 14+的最小值为( ) A.20 B.18 C.16D.98.函数cos y x x =+的大致图像是( )9.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是( ) A. 0.42B. 0.28C. 0.3D. 0.710.如图所示的程序框图输出的结果是S =720,则判断框内应填的条件是()A .i≤7B .i>7C .i≤9D .i>911.椭圆M: 22221(0)x y a b a b +=>>左右焦点分别为1F ,2F ,P 为椭圆M 上任一点且1PF 2PF 最大值取值范围是222,3c c ⎡⎤⎣⎦,其中22c a b =-,则椭圆离心率e 取值范围 ( )A.2,12⎡⎫⎪⎢⎪⎣⎭B.32,32⎡⎤⎢⎥⎣⎦C.3,13⎡⎫⎪⎢⎪⎣⎭D.11,32⎡⎫⎪⎢⎣⎭12.给出定义:若1122m x m -<≤+(其中m 为整数),则m 叫做离实数x 最近的整数,记作{x},即{}.x m = 在此基础上给出下列关于函数(){}f x x x =-的四个命题:①11()22f -=;②(3.4)0.4f =-;③11()()44f f -<;④()y f x =的定义域是R ,值域是11[,]22-. 则其中真命题的序号是 ( )A .①②B .①③C .②④D .③④ 第II 卷(非选择题共90分)二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置。
13.已知9)(x x a-的展开式中3x 的系数为49,则常数a 的值为 .14.设函数()()()220log 0xx f x x x ⎧≤⎪=⎨>⎪⎩,函数()1y f f x =-⎡⎤⎣⎦的零点个数为 .15.如图3.在△ABC 中,AB=5,AC=9,若O 为△ABC 内一点,且满足OCOB OA ==,则BC AO ⋅的值是.16.抛物线241xy -=上的动点M 到两定点(0,-1)、(1,-3)的距离之和的最小值为_____________________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本大题12分)已知函数()()211sin 2cos cos sin cos()0222f x x x πωϕωϕϕϕπ=+++<<,其图象上相邻两条对称轴之间的距离为π,且过点1(,)62π.(I )求ω和ϕ的值;(II )求函数()2,[0,]2y f x x π=∈的值域. 18.(本大题12分)在长方体1111ABCD AB C D -中,2AB BC ==,过1A 、1C 、B 三点的平面截去长方体的一个角后,得到如图所示的几何体111ABCD ACD -,且这个几何体的体积为10.(I )求棱1A A 的长;(II )若11AC的中点为1O ,求异面直线1BO 与11A D 所成角的余弦值.19.(本大题12分)一个袋中装有大小相同的球10个,其中红球8个,黑球2个,现从袋中有放回地取球,每次随机取1个. 求:(I )连续取两次都是红球的概率;(II )如果取出黑球,则取球终止,否则继续取球,直到取出黑球,取球次数最多不超过4次,求取球次数ξ的概率分布列及期望. 20.(本大题12分)已知椭圆:()222210y x a b a b +=>>,离心率为22,焦点()()120,,0,F c F c -过1F 的直线交椭圆于,M N 两点,且△MN F 2的周长为4. (I) 求椭圆方程;(II) 与y 轴不重合的直线l 与y 轴交于点P(0,m)(m ≠0),与椭圆C 交于相异两点A,B 且AP PB λ= .若4OA OB OP λ+=,求m 的取值范围。
21.(本大题12分)已知函数)ln ()(x a x x f +=有极小值2--e .(I )求实数a 的值; (II )若Z k ∈,且1)(-<x x f k 对任意1>x 恒成立,求k 的最大值.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑. 22.(本小题满分10分)如图,AB 是⊙O 的直径,C ,F 为⊙O 上的点,CA 是∠BAF 的角平分线,过点C 作CD⊥AF 交AF 的延长线于D 点,CM ⊥AB,垂足为点M. (I )求证:DC 是⊙O 的切线; (II )求证:AM·MB=DF·DA.23.(本小题满分10分)极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知直线l 的参数方程为12232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为2sin 8cos ρθθ=.(I )求C 的直角坐标方程;(II )设直线l 与曲线C 交于,A B 两点,求弦长||AB . 24.(本小题满分10分)选修4-5:不等式选讲 已知函数()1.f x x xa =-+-(I )若1a =-,解不等式()3f x ≥; (II )如果,()2x R f x ∀∈≥,求a 的取值范围.张掖市2014-2015年度高三第一次诊断考试 数学(理科)答案 1.C解析∵集合U={1,2,3,4,5,6},M={1,2,4},则∁UM={3,5,6}, 故选C . 2.A解析:3(3)(12)63212(12)(12)55a i a i i a a i i i i ++-+-==+++-,所以6320,0,655a a a +-=≠∴=-3.D解析:1410161011814111,30109102(17)2(13)(9)10n a a a a a a a d a a a d a d a d D++=∴=+=-=+-+=-+=- 设等差数列的首项为公差为d 即故选4.A 解析:略 5. B解析:由三视图知底面是边长为1的等腰直角三角形,三棱锥的高为2.∴V=13×12×1×1×2=13.6.A 解析略 7.B 解:coA B⋅=4A∴= 1s 2ABCS AB AC A ∆∴==12x y ∴+=,x y 14+=()()144225252418y x x y x y x y ⎛⎫⎛⎫++=++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当4y xx y =时等号成立取最值考点:向量数量积及均值不等式点评:均值不等式求最值验证等号成立条件 8.B解析:因为1sin 0y x '=-≥,所以函数cos y x x =+在R 上单调递增,故可排除C 选项;又因为0x =时,0cos01y =+=,故可排除A 选项;当(,)22x ππ∈-时,cos y x x x =+>,故此时函数cos y x x =+的图像在直线y x =的上方,故D 错误,B 正确.考点:函数的图像.9. C解析:1(0.420.28)0.3-+=10. B解析:程序框图所示的运算是10×9×8×7×…,若输出结果是S =720,则应是10×9×8=720,所以i =10,9,8时累乘,即当i>7时执行循环体. 11.B 解析:设0x 为点P 的横坐标,则10PF a ex =+ ,20PF a ex =-222120PF PF a e x ⋅=- , (-a≤0x ≤a)所以1PF 2PF 取值范围是[22,b a ],而1PF 2PF 最大值取值范围是222,3c c ⎡⎤⎣⎦,所以22223c a c ≤≤ 于是得到221132c a≤≤, 故椭圆的离心率的取值范围是32,32⎡⎤⎢⎥⎣⎦,选B 。
考点:主要考查椭圆的几何性质及不等式性质。
点评:解答中灵活运用了椭圆的焦半径公式,从已知出发,建立了关于22c a 的不等式,达到解题目的。
12.B解析:因为111111111(){}2222222--<≤-+∴-=--=f 故命题1正确111111111(){}2222222113 3.43{3.4} 3.430.4222111111110-0{}0(),()24244444311,(,]2211(){}(,],422--<≤-+∴-=--=-<≤+∴=-=∴<≤+∴-=∴-=-==+∈-∴=-=∈- 命题错误同理可得命题正确令命题错误f f f x m a a f x x x a 13.41【解析】略 14.2解析:试题分析:当0≤x 时,()1y f f x =-⎡⎤⎣⎦=112log 1)2(2-=-=-x f x x ,令,01=-x 则,1=x 显然与0≤x 矛盾,表明此时()1y f f x =-⎡⎤⎣⎦无零点.当0>x 时,分两种情况:当1>x 时,,0l o g2>x ()1y f f x =-⎡⎤⎣⎦=()1log log 1)(log 222-=-x x f ,令(),01lo g lo g 22=-x (),2log 1lo g lo g 222==x ,2l o g2=x .解得4=x ;当10≤<x 时,,0l o g 2≤x ()1y f f x =-⎡⎤⎣⎦=1121)(log 2log 2-=-=-x x f x ,令01=-x ,解得1=x .因此函数()1y f f x =-⎡⎤⎣⎦的零点个数为2.考点:函数的零点定理,指数函数和对数函数的计算.15.28 16.4三、解答题17.(Ⅰ)12ω=,3πϕ=(Ⅱ)31[,]42-【解析】试题分析:(Ⅰ)首先根据二倍角公式和诱导公式进行化简可得 1()sin(2)2f x x ωϕ=+,然后根据周期公式222T ππω==,求得12ω=;把点1(,)62π代入1()sin(2)2f x x ωϕ=+中,可得2,3k k Zπϕπ=+∈,而0ϕπ<<解得3πϕ=.(Ⅱ)由首先求出()2y f x =的表达式,再由02x π≤≤求出42333x πππ≤+≤,最后根据正弦函数的性质求得值域.试题解析:(Ⅰ)11cos 21()sin 2cos sin sin 222x f x x ωωϕϕϕ+=+- 11(sin 2cos cos 2sin )sin(2)22x x x ωϕωϕωϕ=+=+ 3分由题有:222T ππω==,则12ω=, 4分代入点1(,)62π有sin()16πϕ+=,则2,3k k Z πϕπ=+∈,又0ϕπ<<,则3πϕ=6分(Ⅱ)由题有:1(2)sin(2)23f x x π=+ 7分 4022333x x ππππ≤≤∴≤+≤, 9分则函数()f x 的值域为31[,]42-. 12分考点:正弦型函数的性质和图象.18.(1)3(2)1111【解析】本题主要考查了点,线和面间的距离计算.解题的关键是利用了法向量的方法求点到面的距离。