8.2非齐次振动方程和输运方程
- 格式:ppt
- 大小:286.00 KB
- 文档页数:16
一、填空题1、物理规律反映同一类物理现象的共同规律,称为___________。
2、在给定条件下求解数学物理方程,叫作____________________。
3、方程20tt xx u a u -=称为_________方程4、方程20t xx u a u -=称为_________方程5、静电场的电场强度E是无旋的,可用数学表示为_____________。
6、方程0j Ñ×=称为_____________的连续性方程。
7、第二类边界条件,就是______________________________________。
8、第一类边界条件,就是______________________________________。
9、00(0,)(0,)x x u x t u x t -=+称为所研究物理量u 的_____________。
10、00(0,)(0,)u x t u x t -=+称为所研究物理量u 的_____________。
11、对于两个自变量的偏微分方程,可分为双曲型、________和椭圆型。
12、对于两个自变量的偏微分方程,可分为双曲型、抛物线型和________。
13、分离变数过程中所引入的常数l 不能为_____________。
14、方程中,特定的数值l 叫作本征值,相应的解叫作_____________。
15、分离变数法的关键是________________________代入微分方程。
16、非齐次振动方程可采用______________和冲量定理法求解。
17、处理非齐次边界条件时,处理非齐次边界条件时,可利用叠加原理,可利用叠加原理,可利用叠加原理,把非齐次边界条件问题转化另一把非齐次边界条件问题转化另一_________的齐次边界条件问题。
18、处理非齐次边界条件时,处理非齐次边界条件时,可利用叠加原理,可利用叠加原理,可利用叠加原理,把非齐次边界条件问题转化另一把非齐次边界条件问题转化另一_________的齐次边界条件问题。
《数学物理方法》课程教学大纲(供物理专业试用)课程编码:140612090学时:64 学分:4开课学期:第五学期课程类型:专业必修课先修课程:《力学》、《热学》、《电磁学》、《光学》、《高等数学》教学手段:(板演)一、课程性质、任务1.《数学物理方法》是物理教育专业本科的一门重要的基础课,它是前期课程《高等数学》的延伸,为后继开设的《电动力学》、《量子力学》和《电子技术》等课程提供必需的数学理论知识和计算工具。
本课程在本科物理教育专业中占有重要的地位,本专业学生必须掌握它们的基本内容,否则对后继课的学习将会带来很大困难。
在物理教育专业的所有课程中,本课程是相对难学的一门课,学生应以认真的态度来学好本课程。
2.本课程的主要内容包括复变函数、傅立叶级数、数学物理方程、特殊函数等。
理论力学中常用的变分法,量子力学中用到的群论以及现代物理中用到的非线性微分方程理论等,虽然也属于《数学物理方法》的内容,但在本大纲中不作要求。
可以在后续的选修课中加以介绍。
3.《数学物理方法》既是一门数学课程,又是一门物理课程。
注重逻辑推理和具有一定的系统性和严谨性。
但是,它与其它的数学课有所不同。
本课程内容有很深广的物理背景,实用性很强。
因此,在这门课的教学过程中,不能单纯地追求理论上的完美、严谨,而忽视其应用。
学生在学习时,不必过分地追求一些定理的严格证明、复杂公式的精确推导,更不能死记硬背,而应重视其应用技巧和处理方法。
4.本课程的内容是几代数学家与物理学家进行长期创造性研究的成果,几乎处处都闪耀创新精神的光芒。
教师应当提示学生注意在概念建立、定理提出的过程中所用的创新思维方法,在课堂教学中应尽可能地体现历史上的创造过程,提高学生的创造性思维能力。
二、课程基本内容及课时分配第一篇复数函数论第一章复变函数(10)教学内容:§1.1.复数与复数运算。
复平面,复数的表示式,共轭复数,无穷远点,复数的四则运算,复数的幂和根式运算,复数的极限运算。
第1篇一、波动方程波动方程是描述波动在连续介质中传播的偏微分方程。
常见的波动方程有弦振动方程、声波方程、光波方程等。
以下列举几种常见的波动方程及其表达式:1. 弦振动方程弦振动方程描述了弦在受到外力作用下的振动规律。
假设弦的线密度为λ,张力为T,弦上某点的位移为y(x,t),则弦振动方程可表示为:∂²y/∂t² = (T/λ)∂²y/∂x²其中,x表示弦的长度,t表示时间,y(x,t)表示弦上某点的位移。
2. 声波方程声波方程描述了声波在介质中的传播规律。
假设介质的密度为ρ,声速为c,声波在介质中的波动函数为p(x,t),则声波方程可表示为:∂²p/∂t² = c²∂²p/∂x²其中,x表示声波传播的距离,t表示时间,p(x,t)表示声波在介质中的波动函数。
3. 光波方程光波方程描述了光波在介质中的传播规律。
假设光波在介质中的波动函数为E(x,t),介质的折射率为n,则光波方程可表示为:∂²E/∂t² = (n²/c²)∂²E/∂x²其中,x表示光波传播的距离,t表示时间,E(x,t)表示光波在介质中的波动函数。
二、振动方程振动方程描述了物体在受到外力作用下的振动规律。
常见的振动方程有单摆运动方程、弹簧振动方程等。
以下列举几种常见的振动方程及其表达式:1. 单摆运动方程单摆运动方程描述了单摆在重力作用下的振动规律。
假设单摆的摆长为L,摆球质量为m,摆球偏离平衡位置的角度为θ,则单摆运动方程可表示为:mL²θ'' = -mgLsinθ其中,θ'表示摆球偏离平衡位置的角度对时间的导数,θ''表示摆球偏离平衡位置的角度对时间的二阶导数。
2. 弹簧振动方程弹簧振动方程描述了弹簧在受到外力作用下的振动规律。
假设弹簧的劲度系数为k,弹簧的位移为x,则弹簧振动方程可表示为:mω²x = -kx其中,ω表示弹簧振动的角频率,m表示弹簧的质量。
第八章平面坐标下的分离变量本征值问题(一)通过上一章的讨论,我们知道,在研究物理(场)量的变化时,不仅要考虑物理(场)量随时间的变化规律,有时候还需要考虑其在空间变化规律,由此便导致了反映物理规律的“偏微分方程”。
偏微分方程泛指同一类的物理规律,因此称为泛定方程。
偏微分方程若附加上边界条件、初始条件的限制,则物理过程(解)就唯一确定,此时便构成了定解问题。
对于偏微分方程用高等数学中介绍的一些方法,无法求解。
因此必须引进分离变量法。
分离变量法是把偏微分方程分解为几个常微分方程,从而达到求解之目的一个数学过程。
分离变数法的可行性问题:上一章推导出了三类偏微分方程,波动方程、输运方程和泊松方程。
第一类、第二类方程都是时间和空间的函数,我们在普通物理中曾对驻波问题进行过研究,其空间周期性和时间周期性彼此独立,由此受到启发,其解应具(,)()()的形式。
对于第三种情况——u x t X x T t泊松方程,反映的是“有源”情况下的一种作用,其效果相当于简单叠加。
由此看来,变量是可以分离的。
实际情况如何?我们可以通过实例进行验证。
§8.1 齐次方程的分离变数法一、分离变数法简介以两端固定的均匀弦的自由振动为例。
其定解问题为2000000(0)()()tt xx x x l t t t u a u u u x l u x u x ϕψ====⎧-=⎪⎪==<<⎨⎪==⎪⎩ (8.1.1) 这里研究的弦是有限长的,它有两个端点,波就在这两端点之间往复反射。
这样,驻波解的一般表示式应当为设 (,)()()u x t X x T t = (8.1.2)在(8.1.2)中,自变数x 只能出现于X 之中,自变数t 只出现于T 之中,驻波的一般表示式具有分离变数的形式。
那么,在两端固定的弦上究竟有哪些驻波呢?把驻波的一般表示式(8.1.2)代入弦振动方程(8.1.1)和相应的边界条件,得:20(0)()0()()0XT a X T X T t X l T t ''''⎧-=⎪=⎨⎪=⎩(8.1.3) 条件(8.1.3)表示,在时刻t ,)()0(t T X 和)()(t T l X 总是零。
《数学物理方法》课程教学大纲一、课程性质、地位和作用《数学物理方法》是光信息科学与技术、应用物理学、电子科学与技术本科专业的必修专业基础课程。
它是继高等数学后的一门数学基础课程。
通过该课程的学习,使学生掌握复变函数、数学物理方程和特殊函数的基本理论、建模方法和计算方法,培养学生用数学方法和物理规律解决各类物理、工程技术实际问题的能力,为后续课程的学习打下良好的基础。
二、课程教学对象、目的和要求本课程适用于光信息科学与技术,应用物理,电子科学与技术等专业。
课程教学目的、要求:(一)从内容上,使学生掌握复变函数、解析函数的概念;掌握柯西定理、积分变换、留数定理的应用;理解三种类型数学物理方程的建模思想、掌握分离变数法、傅里叶级数法;掌握轴对称球函数、一般球函数的性质。
(二)从能力方面,培养学生严密的逻辑思维能力、数学建模能力;帮助学生树立科学严谨的学习观,使学生初步具备解决简单常见物理和工程实际问题的素养。
(三)从教学方法上,结合该课程理论性强,数学推导过程复杂等特点,合理采用启发式,案例式和探究式等多种教学方法;充分结合板书,ppt,动画,matlab仿真等多种教学手段将教学内容形象直观化,以激发学生兴趣,提高教学效果。
三、相关课程及关系本课程的先修课程包括《高等数学》、《大学物理》等,为后续的《统计物理》、《量子力学》、《电动力学》、《固体物理》、《激光原理与激光技术》等课程打下必要的理论基础。
四、课程内容及学时分配总学时:64学时(一)复变函数:4学时1、复数与复数运算2、复变函数3、导数4、解析函数5、平面标量场6、多值函数要求学生:(1) 掌握复数的三种表示方式,复数的运算规则。
(2) 理解复变函数的导数和解析函数。
(3) 能应用柯西-里曼条件判断函数的解析性以及求解解析函数。
(4) 了解应用解析函数处理平面标量场的方法。
(5) 了解多值函数。
(二)复变函数的积分:4学时1、复变函数的积分2、柯西定理3、不定积分4、柯西公式要求学生:(1) 掌握复变函数的积分。