大数据技术原理与应用第九章Hadoop架构再探讨
- 格式:ppt
- 大小:5.09 MB
- 文档页数:42
Hadoop的体系结构1. 介绍Hadoop是一个开源的分布式计算框架,主要用于存储和处理大规模数据集。
它采用了一种适用于大规模集群的可扩展性设计,能够在廉价的硬件上运行并处理TB到PB级别的数据。
Hadoop的体系结构包括了多个模块和组件,下面将详细探讨每个模块的功能和相互关系。
2. Hadoop体系结构图Hadoop体系结构的主要组成部分如下所示:+------------------+| Hadoop |+------------------+/ | \/ | \+-----------+ +-----------+ +-----------+| HDFS | | MapReduce | | YARN |+-----------+ +-----------+ +-----------+| | || | |+---------+ +---------+ +---------+| Name | | Data | | Application || Node | | Node | | Master/Node |+---------+ +---------+ +---------+3. HDFS (Hadoop分布式文件系统)HDFS是Hadoop的分布式文件系统,它用于存储大规模数据集,并提供了高可靠性、高性能和高容错性。
HDFS的体系结构包括以下组件:3.1 NameNodeNameNode是HDFS的主节点,负责管理整个文件系统的命名空间和元数据。
它维护了文件和目录树的结构,并保存了文件的属性(如权限、所有者等)。
NameNode还负责将文件划分为数据块,并记录每个数据块所在的DataNode。
3.2 DataNodeDataNode是HDFS中的工作节点,负责实际存储数据。
它接收来自客户端或其他DataNode的数据写请求,并将数据块存储在本地磁盘上。
DataNode还负责提供数据读取服务,将数据块传输给客户端或其他DataNode。
基于Hadoop的大数据技术研究与应用一、概述随着互联网的迅速发展和普及,大数据已经成为互联网行业中一个不可忽视的重要领域。
如何高效地对大数据进行收集、存储、分析和应用,是当前互联网行业中急需解决的问题。
基于Hadoop的大数据技术在这方面发挥了非常重要的作用,本文将从Hadoop的基本架构、数据存储、数据处理、数据安全等方面对基于Hadoop的大数据技术进行深入研究,并对其应用进行分析。
二、Hadoop基本架构Hadoop的基本架构主要由两个部分组成:HDFS和MapReduce。
其中,HDFS是Hadoop分布式文件系统,用于存储大量数据,具有高可靠性、高扩展性和高容错性等特点。
MapReduce是Hadoop的并行处理框架,用于将大量数据分解为多个小块,并将这些小块分配给不同的计算节点进行处理,最终将处理结果收集起来。
Hadoop中还有一个重要的组件是YARN,即“Yet Another Resource Negotiator”,它用于管理Hadoop的计算资源,包括CPU、内存等。
通过YARN,Hadoop可以更加灵活地利用计算资源,提高计算效率和数据处理速度。
三、数据存储在Hadoop中,数据存储和计算是分开的,数据存储在HDFS 中,而计算则由MapReduce执行。
由于HDFS是一个分布式文件系统,数据可以被分散存储在多个计算节点上,这样可以大大提高数据的可靠性和容错性。
Hadoop中的数据一般都是以键值对(key-value)形式进行存储,这种方式可以更方便地进行数据的查询和处理。
同时,Hadoop还支持多种数据存储格式,如文本、序列化、二进制、JSON、CSV 等,可以根据实际需求选择适合的存储格式。
四、数据处理Hadoop最重要的功能就是数据处理,它通过MapReduce框架实现对大规模数据的分布式处理。
其中,Map阶段主要用于对数据进行拆分和处理,Reduce阶段则用于将各个Map节点处理的结果进行汇总。
大数据技术原理与应用第1章大数据概述1单选(2分)第三次信息化浪潮的标志是:A.个人电脑的普及B.云计算、大数据、物联网技术的普及C.虚拟现实技术的普及D.互联网的普及正确答案:B你选对了2单选(2分)就数据的量级而言,1PB数据是多少TB?A.2048B.1000C.512D.1024正确答案:D你选对了3单选(2分)以下关于云计算、大数据和物联网之间的关系,论述错误的是:A.云计算侧重于数据分析B.物联网可借助于云计算实现海量数据的存储C.物联网可借助于大数据实现海量数据的分析D.云计算、大数据和物联网三者紧密相关,相辅相成正确答案:A你选对了4单选(2分)以下哪个不是大数据时代新兴的技术:A.SparkB.HadoopC.HBaseD.MySQL正确答案:D你选对了5单选(2分)每种大数据产品都有特定的应用场景,以下哪个产品是用于批处理的:A.MapReduceB.DremelC.StormD.Pregel正确答案:A你选对了6单选(2分)每种大数据产品都有特定的应用场景,以下哪个产品是用于流计算的:A.GraphXB.S4C.ImpalaD.Hive正确答案:B你选对了7单选(2分)每种大数据产品都有特定的应用场景,以下哪个产品是用于图计算的:A.PregelB.StormC.CassandraD.Flume正确答案:A你选对了8单选(2分)每种大数据产品都有特定的应用场景,以下哪个产品是用于查询分析计算的:A.HDFSB.S4C.DremelD.MapReduce正确答案:C你选对了9多选(3分)数据产生方式大致经历三个阶段,包括:A.运营式系统阶段B.感知式系统阶段C.移动互联网数据阶段D.用户原创内容阶段正确答案:ABD你选对了10多选(3分)大数据发展三个阶段是:A.低谷期B.成熟期C.大规模应用期D.萌芽期正确答案:BCD你选对了11多选(3分)大数据的特性包括:A.价值密度低B.处理速度快C.数据类型繁多D.数据量大正确答案:ABCD你选对了12多选(3分)图领奖获得者、著名数据库专家Jim Gray博士认为,人类自古以来在科学研究上先后经历哪几种范式:A.计算科学B.数据密集型科学C.实验科学D.理论科学正确答案:ABCD你选对了13多选(3分)大数据带来思维方式的三个转变是:A.效率而非精确B.相关而非因果C.精确而非全面D.全样而非抽样正确答案:ABD你选对了14多选(3分)大数据主要有哪几种计算模式:B.图计算C.查询分析计算D.批处理计算正确答案:ABCD你选对了15多选(3分)云计算的典型服务模式包括三种:A.SaaSB.IaaSC.MaaSD.PaaS正确答案:ABD你选对了第2章大数据处理架构Hadoop1单选(2分)启动hadoop所有进程的命令是:A.start-dfs.shB.start-all.shC.start-hadoop.shD.start-hdfs.sh正确答案:B你选对了2单选(2分)以下对Hadoop的说法错误的是:A.Hadoop是基于Java语言开发的,只支持Java语言编程B.Hadoop2.0增加了NameNode HA和Wire-compatibility两个重大特性C.Hadoop MapReduce是针对谷歌MapReduce的开源实现,通常用于大规模数据集的并行计算D.Hadoop的核心是HDFS和MapReduce正确答案:A你选对了3单选(2分)以下哪个不是Hadoop的特性:A.成本高B.支持多种编程语言C.高容错性正确答案:A你选对了4单选(2分)以下名词解释不正确的是:A.Zookeeper:针对谷歌Chubby的一个开源实现,是高效可靠的协同工作系统B.HBase:提供高可靠性、高性能、分布式的行式数据库,是谷歌BigTable的开源实现C.Hive:一个基于Hadoop的数据仓库工具,用于对Hadoop文件中的数据集进行数据整理、特殊查询和分析存储D.HDFS:分布式文件系统,是Hadoop项目的两大核心之一,是谷歌GFS的开源实现正确答案:B你选对了5多选(3分)以下哪些组件是Hadoop的生态系统的组件:A.HBaseB.OracleC.HDFSD.MapReduce正确答案:ACD你选对了6多选(3分)以下哪个命令可用来操作HDFS文件:A.hadoop fsB.hadoop dfsC.hdfs fsD.hdfs dfs正确答案:ABD你选对了第3章分布式文件系统HDFS1单选(2分)HDFS的命名空间不包含:A.字节B.文件C.块D.目录正确答案:A你选对了2单选(2分)对HDFS通信协议的理解错误的是:A.客户端与数据节点的交互是通过RPC(Remote Procedure Call)来实现的B.客户端通过一个可配置的端口向名称节点主动发起TCP连接,并使用客户端协议与名称节点进行交互C.名称节点和数据节点之间则使用数据节点协议进行交互D.HDFS通信协议都是构建在IoT协议基础之上的正确答案:D你选对了3单选(2分)采用多副本冗余存储的优势不包含:A.保证数据可靠性B.容易检查数据错误C.加快数据传输速度D.节约存储空间正确答案:D你选对了4单选(2分)假设已经配置好环境变量,启动Hadoop和关闭Hadoop的命令分别是:A.start-dfs.sh,stop-hdfs.shB.start-hdfs.sh,stop-hdfs.shC.start-dfs.sh,stop-dfs.shD.start-hdfs.sh,stop-dfs.sh正确答案:C你选对了5单选(2分)分布式文件系统HDFS采用主从结构模型,由计算机集群中的多个节点构成的,这些节点分为两类,一类存储元数据叫,另一类存储具体数据叫 :A.名称节点,主节点B.从节点,主节点C.名称节点,数据节点D.数据节点,名称节点正确答案:C你选对了6单选(2分)下面关于分布式文件系统HDFS的描述正确的是:A.分布式文件系统HDFS是Google Bigtable的一种开源实现B.分布式文件系统HDFS是谷歌分布式文件系统GFS(Google File System)的一种开源实现C.分布式文件系统HDFS比较适合存储大量零碎的小文件D.分布式文件系统HDFS是一种关系型数据库正确答案:B你选对了7多选(3分)以下对名称节点理解正确的是:A.名称节点作为中心服务器,负责管理文件系统的命名空间及客户端对文件的访问B.名称节点用来负责具体用户数据的存储C.名称节点通常用来保存元数据D.名称节点的数据保存在内存中正确答案:ACD你选对了8多选(3分)以下对数据节点理解正确的是:A.数据节点通常只有一个B.数据节点用来存储具体的文件内容C.数据节点的数据保存在磁盘中D.数据节点在名称节点的统一调度下进行数据块的创建、删除和复制等操作正确答案:BCD你选对了9多选(3分)HDFS只设置唯一一个名称节点带来的局限性包括:A.集群的可用性B.性能的瓶颈C.命名空间的限制D.隔离问题正确答案:ABCD你选对了10多选(3分)以下HDFS相关的shell命令不正确的是:A.hadoop dfs mkdir <path>:创建<path>指定的文件夹B.hdfs dfs -rm <path>:删除路径<path>指定的文件C.hadoop fs -copyFromLocal <path1> <path2>:将路径<path2>指定的文件或文件夹复制到路径<path1>指定的文件夹中D.hadoop fs -ls <path>:显示<path>指定的文件的详细信息正确答案:AC你选对了第4章分布式数据库HBase1单选(2分)HBase是一种数据库A.行式数据库B.关系数据库C.文档数据库D.列式数据库正确答案:D你选对了2单选(2分)下列对HBase数据模型的描述错误的是:A.每个HBase表都由若干行组成,每个行由行键(row key)来标识B.HBase是一个稀疏、多维度、排序的映射表,这张表的索引是行键、列族、列限定符和时间戳C.HBase中执行更新操作时,会删除数据旧的版本,并生成一个新的版本D.HBase列族支持动态扩展,可很轻松地添加一个列族或列正确答案:C你选对了3单选(2分)下列说法正确的是:A.如果不启动Hadoop,则HBase完全无法使用B.HBase的实现包括的主要功能组件是库函数,一个Master主服务器和一个Region服务器C.如果通过HBase Shell插入表数据,可以插入一行数据或一个单元格数据D.Zookeeper是一个集群管理工具,常用于分布式计算,提供配置维护、域名服务、分布式同步等正确答案:D你选对了4单选(2分)在HBase数据库中,每个Region的建议最佳大小是:A.2GB-4GBB.100MB-200MBC.500MB-1000MBD.1GB-2GB正确答案:D你选对了5单选(2分)HBase三层结构的顺序是:A.Zookeeper文件,.MEATA.表,-ROOT-表B.-ROOT-表,Zookeeper文件,.MEATA.表C.Zookeeper文件,-ROOT-表,.MEATA.表D..MEATA.表,Zookeeper文件,-ROOT-表正确答案:C你选对了6单选(2分)客户端是通过级寻址来定位Region:A.三B.二C.一D.四正确答案:A你选对了7单选(2分)关于HBase Shell命令解释错误的是:A.create:创建表B.put:向表、行、列指定的单元格添加数据C.list:显示表的所有数据D.get:通过表名、行、列、时间戳、时间范围和版本号来获得相应单元格的值正确答案:C你选对了8多选(3分)下列对HBase的理解正确的是:A.HBase是针对谷歌BigTable的开源实现B.HBase是一种关系型数据库,现成功应用于互联网服务领域C.HBase是一个行式分布式数据库,是Hadoop生态系统中的一个组件D.HBase多用于存储非结构化和半结构化的松散数据正确答案:AD你选对了9多选(3分)HBase和传统关系型数据库的区别在于哪些方面:A.数据操作B.数据索引C.数据模型D.存储模式正确答案:ABCD你选对了10多选(3分)访问HBase表中的行,有哪些方式:A.通过某列的值区间B.全表扫描C.通过一个行健的区间来访问D.通过单个行健访问正确答案:BCD你选对了第5章 NoSQL数据库1单选(2分)下列关于NoSQL数据库和关系型数据库的比较,不正确的是:A.NoSQL数据库很容易实现数据完整性,关系型数据库很难实现数据完整性B.NoSQL数据库缺乏统一的查询语言,而关系型数据库有标准化查询语言C.NoSQL数据库的可扩展性比传统的关系型数据库更好D.NoSQL数据库具有弱一致性,关系型数据库具有强一致性正确答案:A你选对了2单选(2分)以下对各类数据库的理解错误的是:A.键值数据库的键是一个字符串对象,值可以是任意类型的数据,比如整型和字符型等B.文档数据库的数据是松散的,XML和JSON 文档等都可作为数据存储在文档数据库中C.图数据库灵活性高,支持复杂的图算法,可用于构建复杂的关系图谱D.HBase数据库是列族数据库,可扩展性强,支持事务一致性正确答案:D你选对了3单选(2分)下列数据库属于文档数据库的是:A.MySQLB.RedisC.MongoDBD.HBase正确答案:C你选对了4单选(2分)NoSQL数据库的三大理论基石不包括:A.最终一致性B.BASEC.ACIDD.CAP正确答案:C你选对了5多选(3分)关于NoSQL数据库和关系数据库,下列说法正确的是:A.NoSQL数据库可支持超大规模数据存储,具有强大的横向扩展能力B.NoSQL数据库和关系数据库各有优缺点,但随着NoSQL的发展,终将取代关系数据库C.大多数NoSQL数据库很难实现数据完整性D.关系数据库有关系代数理论作为基础,NoSQL数据库没有统一的理论基础正确答案:ACD你选对了6多选(3分)NoSQL数据库的类型包括:A.键值数据库B.列族数据库C.文档数据库D.图数据库正确答案:ABCD你选对了7多选(3分)CAP是指:A.一致性B.可用性C.持久性D.分区容忍性正确答案:ABD你选对了8多选(3分)NoSQL数据库的BASE特性是指:A.软状态B.持续性C.最终一致性D.基本可用正确答案:ACD你选对了第6章云数据库1单选(2分)下列Amazon的云数据库属于关系数据库的是:A.Amazon SimpleDBB.Amazon DynamoDBC.Amazon RDSD.Amazon Redshift正确答案:C你选对了2单选(2分)下列关于UMP系统的说法不正确的是:A.Controller服务器向UMP集群提供各种管理服务,实现集群成员管理、元数据存储等功能B.Agent服务器部署在运行MySQL进程的机器上,用来管理每台物理机上的MySQL实例C.UMP系统是低成本和高性能的MySQL云数据库方案D.Mnesia是UMP系统的一个组件,是一个分布式数据库管理系统,且不支持事务正确答案:D你选对了3多选(3分)UMP依赖的开源组件包括A.LVSB.ZooKeeperC.MnesiaD.RabbitMQ正确答案:ABCD你选对了4多选(3分)在UMP系统中,Zookeeper主要发挥的作用包括:A.监控所有MySQL实例B.负责集群负载均衡C.提供分布式锁,选出一个集群的“总管”D.作为全局的配置服务器正确答案:ACD你选对了5多选(3分)UMP系统设计了哪些机制来保证数据安全:A.记录用户操作日志B.数据访问IP白名单C.SSL数据库连接D.SQL拦截正确答案:ABCD你选对了第7章 MapReduce1单选(2分)下列说法错误的是:A.Map函数将输入的元素转换成<key,value>形式的键值对B.Hadoop框架是用Java实现的,MapReduce应用程序则一定要用Java来写C.MapReduce框架采用了Master/Slave架构,包括一个Master和若干个SlaveD.不同的Map任务之间不能互相通信正确答案:B你选对了2单选(2分)在使用MapReduce程序WordCount进行词频统计时,对于文本行“hello hadoop hello world”,经过WordCount程序的Map函数处理后直接输出的中间结果,应是下面哪种形式:A.<"hello",1,1>、<"hadoop",1>和<"world",1>B.<"hello",2>、<"hadoop",1>和<"world",1>C.<"hello",<1,1>>、<"hadoop",1>和<"world",1>D.<"hello",1>、<"hello",1>、<"hadoop",1>和<"world",1>正确答案:D你选对了3单选(2分)对于文本行“hello hadoop hello world”,经过WordCount的Reduce函数处理后的结果是:A.<"hello",<1,1>><"hadoop",1><"world",1>B.<"hello",1><"hello",1><"hadoop",1><"world",1>C.<"hello",1,1><"hadoop",1><"world",1>D.<"hello",2><"hadoop",1><"world",1>正确答案:B你选对了4多选(3分)下列关于传统并行计算框架(比如MPI)和MapReduce并行计算框架比较正确的是:A.前者所需硬件价格贵,可扩展性差,后者硬件便宜,扩展性好B.前者相比后者学习起来更难C.前者是共享式(共享内存/共享存储),容错性差,后者是非共享式的,容错性好D.前者适用于实时、细粒度计算、计算密集型,后者适用于批处理、非实时、数据密集型正确答案:ABCD你选对了5多选(3分)MapReduce1.0的体系结构主要由哪几个部分组成:A.JobTrackerB.TaskTrackerC.ClientD.Task正确答案:ABCD你选对了第8章 Hadoop再探讨1单选(2分)下列说法正确的是:A.HDFS HA可用性不好B.第二名称节点是热备份C.HDFS HA提供高可用性,可实现可扩展性、系统性能和隔离性D.第二名称节点无法解决单点故障问题正确答案:D你选对了2单选(2分)HDFS Federation设计不能解决“单名称节点”存在的哪个问题:A.单点故障问题B.HDFS集群扩展性C.性能更高效D.良好的隔离性正确答案:A你选对了3多选(3分)下列哪些是Hadoop1.0存在的问题:A.抽象层次低B.表达能力有限C.开发者自己管理作业之间的依赖关系D.执行迭代操作效率低正确答案:ABCD你选对了下列对Hadoop各组件的理解正确的是:A.Oozie:工作流和协作服务引擎B.Pig:处理大规模数据的脚本语言C.Kafka:分布式发布订阅消息系统D.Tez:支持DAG作业的计算框架正确答案:ABCD你选对了5多选(3分)对新一代资源管理调度框架YARN的理解正确的是:A.YARN既是资源管理调度框架,也是一个计算框架B.MapReduce2.0是运行在YARN之上的计算框架,由YARN来为MapReduce提供资源管理调度服务C.YARN可以实现“一个集群多个框架”,即在一个集群上部署一个统一的资源调度管理框架D.YARN的体系结构包含三个组件:ResourceManager,NodeManager,ApplicationMaster正确答案:BCD你选对了第9章数据仓库Hive1单选(2分)下列有关Hive和Impala的对比错误的是:A.Hive与Impala中对SQL的解释处理比较相似,都是通过词法分析生成执行计划B.Hive与Impala使用相同的元数据C.Hive适合于长时间的批处理查询分析,而Impala适合于实时交互式SQL查询D.Hive在内存不足以存储所有数据时,会使用外存,而Impala也是如此正确答案:D你选对了2单选(2分)下列关于Hive基本操作命令的解释错误的是:A.create table if not exists usr(id bigint,name string,age int);//如usr表不存在,创建表usr,含三个属性id,name,ageB.load data local inpath ‘/usr/local/data’ overwrite into table usr; //把目录’/usr/local/data’下的数据文件中的数据以追加的方式装载进usr表C.create database userdb;//创建数据库userdbD.insert overwrite table student select * from user where age>10; //向表usr1中插入来自usr表的age大于10的数据并覆盖student表中原有数据正确答案:B你选对了下列说法正确的是:A.Impala和Hive、HDFS、HBase等工具可统一部署在一个Hadoop平台上B.数据仓库Hive不需要借助于HDFS就可完成数据的存储C.Hive本身不存储和处理数据,依赖HDFS存储数据,依赖MapReduce处理数据D.HiveQL语法与传统的SQL语法很相似正确答案:ACD你选对了4多选(3分)Impala主要由哪几个部分组成:A.HiveB.ImpaladC.State StoreD.CLI正确答案:BCD你选对了5多选(3分)以下属于Hive的基本数据类型是:A.BINARYB.STRINGC.FLOATD.TINYINT正确答案:ABCD你选对了第10章 Spark1单选(2分)Spark SQL目前暂时不支持下列哪种语言:A.PythonB.JavaC.ScalaD.Lisp正确答案:D你选对了2单选(2分)RDD操作分为转换(Transformation)和动作(Action)两种类型,下列属于动作(Action)类型的操作的是:A.groupByB.filterC.countD.map正确答案:C你选对了3单选(2分)下列说法错误的是:A.在选择Spark Streaming和Storm时,对实时性要求高(比如要求毫秒级响应)的企业更倾向于选择流计算框架StormB.RDD采用惰性调用,遇到“转换(Transformation)”类型的操作时,只会记录RDD生成的轨迹,只有遇到“动作(Action)”类型的操作时才会触发真正的计算C.Spark支持三种类型的部署方式:Standalone,Spark on Mesos,Spark on YARND.RDD提供的转换接口既适用filter等粗粒度的转换,也适合某一数据项的细粒度转换正确答案:D你选对了4单选(2分)下列关于常见的动作(Action)和转换(Transformation)操作的API解释错误的是:A.filter(func):筛选出满足函数func的元素,并返回一个新的数据集B.map(func):将每个元素传递到函数func中,并将结果返回为一个新的数据集C.count():返回数据集中的元素个数D.take(n):返回数据集中的第n个元素正确答案:D你选对了5单选(2分)下列大数据处理类型与其对应的软件框架不匹配的是:A.复杂的批量数据处理:MapReduceB.基于历史数据的交互式查询:ImpalaC.基于实时数据流的数据处理:StormD.图结构数据的计算:Hive正确答案:D你选对了6多选(3分)Apache软件基金会最重要的三大分布式计算系统开源项目包括:A.OracleB.HadoopC.StormD.Spark正确答案:ABC你选对了7多选(3分)Spark的主要特点包括:A.运行模式多样B.运行速度快C.通用性好D.容易使用正确答案:ABCD你选对了8多选(3分)下列关于Scala的说法正确的是:A.Scala运行于Java平台,兼容现有的Java程序B.Scala具备强大的并发性,支持函数式编程C.Scala是一种多范式编程语言D.Scala是Spark的主要编程语言,但Spark还支持Java、Python、R作为编程语言正确答案:ABCD你选对了9多选(3分)Spark的运行架构包括:A.运行作业任务的工作节点 Worker NodeB.每个工作节点上负责具体任务的执行进程 ExecutorC.每个应用的任务控制节点 DriverD.集群资源管理器 Cluster Manager正确答案:ABCD你选对了第11章流计算1单选(2分)流计算秉承一个基本理念,即数据的价值随着时间的流逝而,如用户点击流:A.降低B.不确定C.不变D.升高正确答案:A你选对了2单选(2分)Hadoop运行的是MapReduce任务,类似地,Storm运行的任务叫做A.SpoutB.BoltC.TupleD.Topology正确答案:D你选对了3多选(3分)对于一个流计算系统来说,它应达到如下哪些需求:A.海量式B.高性能C.分布式D.实时性正确答案:A、B、C、D你选对了4多选(3分)数据采集系统的基本架构包括哪些部分:A.ControllerB.StoreC.AgentD.Collector正确答案:B、C、D你选对了5多选(3分)以下哪些是开源的流计算框架:A.Facebook PumaB.Yahoo! S4C.IBM InfoSphere StreamsD.Twitter Storm正确答案:B、D你选对了6多选(3分)下面哪几个属于Storm中的Stream Groupings的分组方式:A.按照字段分组B.广播发送C.随机分组D.全局分组正确答案:A、B、C、D你选对了第12章 Flink1单选(2分)以下哪个不是Flink的优势:A.同时支持高吞吐、低延迟、高性能B.不支持增量迭代C.同时支持流处理和批处理D.支持有状态计算正确答案:B你选对了2单选(2分)在Flink中哪个是基于批处理的图计算库:A.SQL&Table库B.FlinkMLC.GellyD.CEP正确答案:C你选对了3多选(3分)下面关于Flink的说法正确的是:A.Flink起源于Stratosphere 项目,该项目是在2010年到2014年间由柏林工业大学、柏林洪堡大学和哈索普拉特纳研究所联合开展的B.Flink可以同时支持实时计算和批量计算C.Flink不是Apache软件基金会的项目D.Flink是Apache软件基金会的5个最大的大数据项目之一正确答案:A、B、D你选对了4多选(3分)Flink的主要特性包括:A.精确一次的状态一致性保障B.批流一体化C.精密的状态管理D.事件时间支持正确答案:A、B、C、D你选对了5多选(3分)下面论述正确的是:A.Spark Streaming通过采用微批处理方法实现高吞吐和容错性,但是牺牲了低延迟和实时处理能力B.Storm虽然可以做到低延迟,但是无法实现高吞吐,也不能在故障发生时准确地处理计算状态C.流处理架构需要具备低延迟、高吞吐和高性能的特性,而目前从市场上已有的产品来看,只有Flink 可满足要求D.Flink实现了Google Dataflow流计算模型,是一种兼具高吞吐、低延迟和高性能的实时流计算框架,并且同时支持批处理和流处理正确答案:A、B、C、D你选对了6多选(3分)Flink常见的应用场景包括:A.数据流水线应用B.事件驱动型应用C.地图应用D.数据分析应用正确答案:A、B、D你选对了7多选(3分)Flink核心组件栈分为哪三层:A.物理部署层B.Runtime核心层C.Core层D.API&Libraries层正确答案:A、B、D你选对了8多选(3分)Flink有哪几种部署模式:A.运行在GCE(谷歌云服务)和EC2(亚马逊云服务)上B.YARN集群模式C.Standalone集群模式D.Local模式正确答案:A、B、C、D你选对了9多选(3分)Flink系统主要由两个组件组成,分别为:A.JobManagerB.JobSchedulerC.TaskSchedulerD.TaskManager正确答案:A、D你选对了10多选(3分)在编程模型方面,Flink 提供了不同级别的抽象,以开发流或批处理作业,主要包括哪几个级别的抽象:A.DataStream API(有界或无界流数据)以及 DataSet API(有界数据集)B.Table APIC.状态化的数据流接口D. SQL正确答案:A、B、C、D你选对了第13章图计算1单选(2分)Pregel是一种基于模型实现的并行图处理系统:A.TSPB.STPC.BSPD.SBP正确答案:C你选对了2单选(2分)谷歌在后Hadoop时代的新“三驾马车”不包括:A.CaffeineB.DremelC. PregelD.Hama正确答案:D你选对了3多选(3分)下列哪些是以图顶点为中心的,基于消息传递批处理的并行图计算框架:A.HamaB.GiraphC.PregelD.Neo4j正确答案:A、B、C你选对了4多选(3分)以下关于Pregel图计算框架说法正确的是:A.通常只对满足交换律和结合律的操作才会开启Combiner功能B.Pregel采用检查点机制来实现容错C.对于全局拓扑改变,Pregel采用了惰性协调机制D.Aggregator提供了一种全局通信、监控和数据查看的机制正确答案:A、B、C、D你选对了第14章大数据在不同领域的应用1单选(2分)下列说法错误的是:A.ItemCF算法推荐的是那些和目标用户之前喜欢的物品类似的其他物品B.基于用户的协同过滤算法(简称UserCF算法)是目前业界应用最多的算法erCF算法推荐的是那些和目标用户有共同兴趣爱好的其他用户所喜欢的物品erCF算法的推荐更偏向社会化,而ItemCF算法的推荐更偏向于个性化正确答案:B你选对了2多选(3分)推荐方法包括哪些类型:A.专家推荐B.协同过滤推荐C.基于内容的推荐D.基于统计的推荐正确答案:A、B、C、D你选对了期末试卷1单选(2分)数据产生方式的变革主要经历了三个阶段,以下哪个不属于这三个阶段:A.运营式系统阶段B.感知式系统阶段C.数据流阶段D.用户原创内容阶段正确答案:C你选对了2单选(2分)第三次信息化浪潮的发生标志是以下哪种技术的普及:A.互联网B.CPUC.物联网、云计算和大数据D.个人计算机正确答案:C你选对了3单选(2分)在Flink中哪个是基于批处理的图计算库:A.SQL&Table库B.CEPC. GellyD. FlinkML正确答案:C你选对了4单选(2分)Hadoop的两大核心是和A.MapReduce; HBaseB. HDFS; HBaseC.HDFS; MapReduceD.GFS; MapReduce正确答案:C你选对了5单选(2分)HDFS默认的一个块大小是A.64MBB.8KBC. 32KBD.16KB正确答案:A你选对了6单选(2分)在分布式文件系统HDFS中,负责数据的存储和读取:A.数据节点B.第二名称节点C.名称节点D.主节点正确答案:A你选对了7单选(2分)上传当前目录下的本地文件file.txt到分布式文件系统HDFS的“/path”目录下的Shell命令是:A.hdfs dfs -put /path file.txtB.hadoop dfs -put /path file.txtC.hdfs fs -put file.txt /pathD.hdfs dfs -put file.txt /path正确答案:D你选对了8单选(2分)在HDFS根目录下创建一个文件夹/test,且/test文件夹内还包含一个文件夹dir,正确的shell命令是:A.hadoop fs -mkdir -p /test/dirB.hdfs fs -mkdir -p /test/dirC.hadoop dfs -mkdir /test/dirD.hdfs dfs *mkdir -p /test/dir正确答案:A你选对了9单选(2分)下列有关HBase的说法正确的是:A.在向数据库中插入记录时,HBase和关系数据库一样,每次都是以“行”为单位把整条记录插入数据库B.HBase是针对谷歌BigTable的开源实现,是高可靠、高性能的图数据库C.HBase是一种NoSQL数据库。
hadoop基本架构和工作原理Hadoop是一个分布式开源框架,用于处理海量数据。
它能够使用廉价的硬件来搭建集群,同时还提供了高度可靠性和容错性。
Hadoop基本架构包括Hadoop Common、Hadoop Distributed File System (HDFS)和Hadoop MapReduce三个部分,下面将详细介绍Hadoop的工作原理。
1. Hadoop CommonHadoop Common是整个Hadoop架构的基础部分,是一个共享库,它包含了大量的Java类和应用程序接口。
Hadoop集群的每一台机器上都要安装Hadoop Common,并保持相同版本。
2. HDFSHadoop Distributed File System(HDFS)是Hadoop的分布式文件存储部分。
它的目的是将大型数据集分成多个块,并且将这些块在集群中的多个节点间分布式存储。
HDFS可以实现高度可靠性,因为它将每个块在存储节点之间备份。
HDFS可以在不同的节点中进行数据备份,这确保了数据发生故障时,可以轻松恢复。
3. MapReduceHadoop MapReduce是一种编程模型,用于处理大型数据集。
它将处理任务分成两个主要阶段,即Map阶段和Reduce阶段。
在Map阶段,MapReduce将数据集分成小块,并将每个块分配给不同的节点进行处理。
在Reduce阶段,结果被聚合,以生成最终的输出结果。
总的来说,MapReduce作为Hadoop的核心组件,负责对数据集进行处理和计算。
它充当的角色是一个调度员,它会将不同的任务分发到集群中的不同节点上,并尽力保证每个任务都可以获得足够的计算资源。
Hadoop采用多种技术来提供MapReduce的分布式计算能力,其中包括TaskTracker、JobTracker和心跳机制等。
TaskTracker是每个集群节点的一个守护程序,负责处理MapReduce任务的具体实现。
hadoop大数据原理与应用Hadoop大数据原理与应用随着信息技术的飞速发展,大数据成为当今社会的热门话题之一。
而Hadoop作为大数据处理的重要工具,因其可靠性和高效性而备受关注。
本文将介绍Hadoop大数据的原理和应用。
一、Hadoop的原理Hadoop是一个开源的分布式计算框架,可以处理大规模数据集。
其核心组件包括Hadoop分布式文件系统(HDFS)和Hadoop分布式计算框架(MapReduce)。
HDFS是一个可靠的分布式文件系统,能够将大文件分成多个块并存储在不同的计算机节点上,以实现高容错性和高可用性。
而MapReduce是一种编程模型,将大规模数据集分成多个小的子集,然后在分布式计算集群上进行并行处理。
Hadoop的工作流程如下:首先,将大文件切分成多个块,并将这些块存储在不同的计算机节点上。
然后,在计算机节点上进行并行计算,每个节点都可以处理自己所存储的数据块。
最后,将每个节点的计算结果进行整合,得到最终的结果。
Hadoop的优势在于其可扩展性和容错性。
由于其分布式计算的特性,Hadoop可以轻松地处理大规模数据集。
同时,Hadoop还具有高容错性,即使某个计算机节点发生故障,整个计算任务也不会中断,系统会自动将任务分配给其他可用节点。
二、Hadoop的应用Hadoop广泛应用于大数据分析和处理领域。
以下是几个典型的应用场景:1.数据仓库:Hadoop可以存储和处理海量的结构化和非结构化数据,为企业提供全面的数据仓库解决方案。
通过使用Hadoop,企业可以轻松地将各种类型的数据整合到一个统一的平台上,从而更好地进行数据分析和挖掘。
2.日志分析:随着互联网的普及,各种网站和应用产生的日志数据越来越庞大。
Hadoop可以帮助企业对这些日志数据进行实时分析和处理,从而发现潜在的问题和机会。
3.推荐系统:在电子商务和社交媒体领域,推荐系统起着重要的作用。
Hadoop可以帮助企业分析用户的行为和偏好,从而提供个性化的推荐服务。
《大数据技术基础》课程教学大纲一、课程基本信息课程代码:16176903课程名称:大数据技术基础英文名称:Fundamentals of Big Data Technology课程类别:专业课学时:48学分:3适用对象: 软件工程,计算机科学与技术,大数据管理考核方式:考核先修课程:计算机网络,云计算基础,计算机体系结构,数据库原理,JA V A/Python 程序设计二、课程简介当前在新基建和数字化革命大潮下,各行各业都在应用大数据分析与挖掘技术,并紧密结合机器学习深度学习算法,可为行业带来巨大价值。
这其中大数据处理与开发框架等大数据技术是进行数字化,数智化应用建设的核心和基础,只有努力提升大数据处理与开发技术与性能,建立行业数字化和智能化转型升级才能成功。
大数据处理与开发技术是新基建和数字化革命核心与基础。
大数据技术基础课程,为学生搭建起通向“大数据知识空间”的桥梁和纽带,以“构建知识体系、阐明基本原理、引导初级实践、了解相关应用”为原则,为学生在大数据领域“深耕细作”奠定基础、指明方向。
课程将系统讲授大数据的基本概念、大数据处理架构Hadoop、分布式文件系统HDFS、分布式数据库HBase、NoSQL数据库、云数据库、分布式并行编程模型MapReduce、基于内存的大数据处理架构Spark、大数据在互联网、生物医学和物流等各个领域的应用。
在Hadoop、HDFS、HBase、MapReduce、Spark等重要章节,安排了入门级的实践操作,让学生更好地学习和掌握大数据关键技术。
同时本课程将介绍最前沿的业界大数据处理与开发技术和产品平台,包括阿里大数据服务平台maxcompute,华为大数据云服务平台FusionInsight,华为高性能分布式数据库集群GaussDB等业界最先进技术,以及国家大数据竞赛平台网站和鲸社区。
让学生学以致用,紧跟大数据领域最领先技术水平,同时,面对我国民族企业,头部公司在大数据领域取得的巨大商业成功与前沿技术成果应用产生强烈民族自豪感,为国家数字化经济与技术发展努力奋斗,勇攀知识高峰立下志向。
第9章课后习题答案一、选择题1.下列语句中,描述错误的是( ) 。
A.可以通过 CLI 方式、Java Api 方式调用 Sqoop。
B.Sqoop 底层会将 Sqoop 命令转换为 MapReduce 任务,并通过 Sqoop 连接器进行数据的导入导出操作。
C.Sqoop 是独立的数据迁移工具,可以在任何系统上执行。
D.如果在Hadoop 分布式集群环境下,连接MySQL 服务器参数不能是“ localhost” 或“127. 0. 0. 1” 。
参考答案:C2.下列选项中,属于 Sqoop 命令的参数有() 。
A. importB. outputC. inputD. export参考答案:AD二、判断题1.Sqoop 工具的使用,依赖 Java 环境和 Hadoop 环境。
( )参考答案:对2.Sqoop 从 Hive 表导出 MySQL 表时,首先需要在 MySQL 中创建表结构。
( )参考答案:对3.如果没有指定“ --num-mappers 1”( 或“ -m 1”,即 Map 任务个数为“1”),那么在命令中必须还要添加“ --split-by” 参数。
( )参考答案:对4.如果指定了“ \n” 为 Sqoop 导入的换行符,当 MySQL 的某个 string 字段的值如果包含了“ \n”, 则会导致 Sqoop 导入多出一行记录。
( )参考答案:对5.在导入开始之前,Sqoop 使用 JDBC 来检查将要导入的表,检索出表中所有的列以及列的SQL 数据类型。
( )参考答案:对6.merge 是将两个数据集合并的工具,对于相同的 value 会覆盖新值。
( )参考答案:错7.metastore 文件的存储位置可以通过“conf / sqoop-site. xml” 配置文件修改。
()参考答案:对8.$CONDITIONS相当于一个动态占位符,动态的接收传过滤后的子集数据,然后让每个Map 任务执行查询的结果并进行数据导入。
基于Hadoop的大数据平台架构设计随着互联网的普及和各种数字化设备的普及,现代社会已经进入了信息时代。
数据普及了每个角落,数据正在成为信息化时代的核心资源。
数据的速度、容量和多样性已经远远超出了人类处理的极限,人们需要采用更加高效和智能的方式来处理庞大的数据,这时候大数据技术就应运而生了。
而Hadoop的出现,正是为了解决大数据存储和处理的问题,它是目前使用最广泛的大数据平台之一。
本文将介绍如何基于Hadoop构建一个高效的大数据平台,以满足组织和企业的不同需求。
一、Hadoop架构Hadoop由HDFS(分布式文件系统)和MapReduce(分布式计算)构成,其架构如下图所示。
图一:Hadoop架构HDFS是Hadoop的存储组件,它将文件拆分成块(block),并将它们存储在集群的不同节点上。
MapReduce是Hadoop的计算组件,其中Map任务和Reduce任务是将大数据拆分成小块并进行分布式计算的核心算法。
二、大数据平台构建流程1.架构设计在构建大数据平台时,首先应该根据数据的特征、业务需求以及架构要求来设计架构。
根据Hadoop的架构特点,大数据平台的架构可以概括为以下几个层次:(1)数据层:数据是大数据平台的核心,数据层是大数据平台的基础,它包括数据采集、存储、清洗、预处理等环节;在Hadoop中,该层的实现可以通过HDFS、Sqoop、Flume等工具来完成。
(2)计算层:计算层是处理大数据的核心,它可以根据业务需求来编写MapReduce、Hive、Pig等计算框架,以实现对数据的处理。
(3)服务层:服务层是将计算结果整合为可视化、操作性强的服务。
比如通过HBase实现实时查询、通过Impala进行SQL分析等。
(4)接口层:接口层是大数据平台和外部系统进行交互的入口。
通过接口层,外部系统可以调用大数据平台提供的服务,通过数据的交换来实现信息的共享。
(5)安全层:安全层是保障大数据平台安全和合法性的重要保障,它可以通过Kerberos、Apache Ranger、Apache Sentry等工具来实现。