高中数学选修1-1 合情推理练习题
- 格式:doc
- 大小:67.50 KB
- 文档页数:2
第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理A级基础巩固一、选择题1.下列推理是归纳推理的是()A.F1,F2为定点,动点P满足|PF1|+|PF2|=2a>|F1F2|,得P 的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n 项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇解析:由归纳推理的定义知,B项为归纳推理.答案:B2.根据给出的数塔猜测123 456×9+7等于()1×9+2=1112×9+3=111123×9+4=1 1111 234×9+5=11 11112 345×9+6=111 111A.111 1110B.1 111 111C.1 111 112 D.1 111 113解析:由1×9+2=11;12×9+3=111;123×9+4=1 111;1 234×9+5=111 111;…归纳可得,等式右边各数位上的数字均为1,位数跟等式左边的第二个加数相同,所以123 456×9+7=1 111 111.答案:B3.观察图形规律,在其右下角的空格内画上合适的图形为()解析:观察可发现规律:①每行、每列中,方、圆、三角三种形状均各出现一次,②每行、每列有两个阴影一个空白,应为黑色矩形.答案:A4.设n是自然数,则18(n2-1)[1-(-1)n]的值()A.一定是零B.不一定是偶数C.一定是偶数D.是整数但不一定是偶数解析:当n为偶数时,18(n2-1)[1-(-1)n]=0为偶数;当n为奇数时(n=2k+1,k∈N),18(n2-1)[1-(-1)n]=18(4k2+4k)·2=k(k+1)为偶数.所以18(n 2-1)[1-(-1)n ]的值一定为偶数. 答案:C5.在平面直角坐标系内,方程x a +y b=1表示在x 轴,y 轴上的截距分别为a 和b 的直线,拓展到空间,在x 轴,y 轴,z 轴上的截距分别为a ,b ,c (abc ≠0)的平面方程为( )A.x a +y b +z c=1 B.x ab +y bc +z ca =1 C.xy ab +yz bc +zx ca =1 D .ax +by +cz =1解析:从方程x a +y b=1的结构形式来看,空间直角坐标系中,平面方程的形式应该是x a +y b +z c=1. 答案:A二、填空题6.已知a 1=1,a n +1>a n ,且(a n +1-a n )2-2(a n +1+a n )+1=0,计算a 2,a 3,猜想a n =________.解析:计算得a 2=4,a 3=9,所以猜想a n =n 2.答案:n 27.在平面上,若两个正三角形的边长比为1∶2.则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.解析:V 1V 2=13S 1h 113S 2h 2=S 1S 2·h 1h 2=14×12=18. 答案:1∶88.观察下列各式:①(x3)′=3x2;②(sin x)′=cos x;③(e x-e-x)′=e x+e-x;④(x cos x)′=cos x-x sin x.根据其中函数f(x)及其导数f′(x)的奇偶性,运用归纳推理可得到的一个命题是__________________________________________.解析:对于①,f(x)=x3为奇函数,f′(x)=3x2为偶函数;对于②,g(x)=sin x为奇函数,f′(x)=cos x为偶函数;对于③,p(x)=e x-e-x为奇函数,p′(x)=e x+e-x为偶函数;对于④,q(x)=x cos x 为奇函数,q′(x)=cos x-x sin x为偶函数.归纳推理得结论:奇函数的导函数是偶函数.答案:奇函数的导函数是偶函数三、解答题9.有以下三个不等式:(12+42)(92+52)≥(1×9+4×5)2;(62+82)(22+122)≥(6×2+8×12)2;(132+52)(102+72)≥(13×10+5×7)2.请你观察这三个不等式,猜想出一个一般性结论,并证明你的结论.解:一般性结论为(a2+b2)(c2+d2)≥(ac+bd)2.证明:因为(a2+b2)(c2+d2)-(ac+bd)2=a2c2+b2c2+a2d2+b2d2-(a2c2+2abcd+b2d2)=b2c2+a2d2-2abcd=(bc-ad)2≥0,所以(a2+b2)(c2+d2)≥(ac+bd)2.10.如图所示,在△ABC中,射影定理可表示为a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,类比上述定理,写出对空间四面体性质的猜想.解:如右图所示,在四面体PABC中,设S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示平面PAB,平面PBC,平面PCA与底面ABC所成二面角的大小.猜想射影定理类比推理到三维空间,其表现形式应为S=S1·cos α+S2·cos β+S3·cos γ.B级能力提升1.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n个“金鱼”图需要火柴的根数为() A.6n-2 B.8n-2C.6n+2 D.8n+2解析:从①②③可以看出,从图②开始每个图中的火柴棒都比前一个图中的火柴棒多6根,故火柴棒数成等差数列,第一个图中火柴棒为8根,故可归纳出第n个“金鱼”图需火柴棒的根数为6n+2.答案:C2.等差数列{a n}中,a n>0,公差d>0,则有a4·a6>a3·a7,类比上述性质,在等比数列{b n}中,若b n>0,q>1,写出b5,b7,b4,b8的一个不等关系________.解析:将乘积与和对应,再注意下标的对应,有b4+b8>b5+b7.答案:b4+b8>b5+b73.观察下列等式: ①sin 210°+cos 240°+sin 10°cos 40°=34; ②sin 26°+cos 236°+sin6°cos36°=34. 由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.解:由①②知,两角相差30°,运算结果为34, 猜想:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 证明:左边=1-cos 2α2+1+cos (2α+60°)2+sin αcos(α+30°)=1-cos 2α2+cos 2αcos 60°-sin 2αsin 60°2+ sin α⎝ ⎛⎭⎪⎫32cos α-sin α2 =1-12cos 2α+14cos 2α-34sin 2α+34sin 2α-1-cos 2α4=34=右边 故sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 2.1.2 演绎推理A 级 基础巩固一、选择题1.若大前提是“任何实数的平方都大于0”,小前提是“a∈R”,结论是“a2>0”,那么这个演绎推理()A.大前提错误B.小前提错误C.推理形式错误D.没有错误解析:因为“任何实数的平方非负”,所以“任何实数的平方都大于0”是错误的,即大前提错误.答案:A2.在“△ABC中,E,F分别是边AB,AC的中点,则EF∥BC”的推理过程中,大前提是()A.三角形的中位线平行于第三边B.三角形的中位线等于第三边长的一半C.E,F为AB,AC的中点D.EF∥BC解析:大前提是“三角形的中位线平行于第三边”.答案:A3.下列四个推导过程符合演绎推理“三段论”形式且推理正确的是()A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数解析:对于A,小前提与结论互换,错误;对于B,符合演绎推理过程且结论正确;对于C和D,均为大小前提及结论颠倒,不符合演绎推理“三段论”形式.答案:B4.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足f(x+y)=f(x)·f(y)”的是()A.幂函数B.对数函数C.指数函数D.余弦函数解析:只有指数函数f(x)=a x(a>0,a≠1)满足条件.答案:C5.有这样一段演绎推理:“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,这是因为() A.大前提错误B.小前提错误C.推理形式错误D.非以上错误解析:用小前提“S是M”,判断得到结论“S是P”时,大前提“M是P”必须是所有的M,而不是部分,因此此推理不符合演绎推理规则.答案:C二、填空题6.已知△ABC中,∠A=30°,∠B=60°,求证a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的________.解析:结合三段论的特征可知,该证明过程省略了大前提“在同一个三角形中大角对大边”,因此画线部分是演绎推理的小前提.答案:小前提7.在求函数y =log 2x -2的定义域时,第一步推理中大前提是当a 有意义时,a ≥0;小前提是log 2x -2有意义;结论是________.解析:要使函数有意义,则log 2x -2≥0,解得x ≥4,所以函数y =log 2x -2的定义域是[4,+∞).答案:函数y =log 2x -2的定义域是[4,+∞)8.下面几种推理过程是演绎推理的是________(填序号).①两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行线的同旁内角,那么∠A +∠B =180°②由平面三角形的性质,推测空间四面体的性质③某高校共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人④在数列{a n }中,a 1=1,a n =12⎝ ⎛⎭⎪⎫a n -1+1a n -1(n ≥2),由此归纳出{a n }的通项公式.解析:①为演绎推理,②为类比推理,③④为归纳推理.答案:①三、解答题9.设m 为实数,利用三段论求证方程x 2-2mx +m -1=0有两个相异实根.证明:如果一元二次方程ax 2+bx +c =0(a ≠0)的判别式Δ=b 2-4ac >0,那么方程有两相异实根.(大前提)一元二次方程x 2-2mx +m -1=0的判别式Δ=(2m )2-4(m -1)=4m 2-4m +4=(2m -1)2+3>0,(小前提)所以方程x 2-2mx +m -1=0有两相异实根.(结论)10.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )的图象的一条对称轴是直线x =π8. (1)求φ;(2)求函数f (x )的单调增区间.解:(1)∵x =π8是函数y =f (x )的图象的对称轴, ∴sin ⎝ ⎛⎭⎪⎫2×π8+φ=±1.∴π4+φ=k π+π2,k ∈Z. ∵-π<φ<0,∴φ=-3π4. (2)由(1)知φ=-3π4,因此y =sin ⎝⎛⎭⎪⎫2x -3π4. 由题意,得2k π-π2≤2x -3π4≤2k π+π2,k ∈Z , ∴k π+π8≤x ≤5π8+k π,k ∈Z. 故函数f (x )的增区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8,k ∈Z. B 级 能力提升1.某人进行了如下的“三段论”:如果f ′(x 0)=0,则x =x 0是函数f (x )的极值点,因为函数f (x )=x 3在x =0处的导数值f ′(0)=0,所以x =0是函数f (x )=x 3的极值点.你认为以上推理的( )A .大前提错误B .小前提错误C .推理形式错误D .结论正确解析:若f ′(x 0),则x =x 0不一定是函数f (x )的极值点,如f (x )=x 3,f ′(0)=0,但x =0不是极值点,故大前提错误.答案:A2.设a >0,f (x )=e x a +a e x 是R 上的偶函数,则a 的值为________. 解析:因为f (x )是R 上的偶函数,所以f (-x )=f (x ),所以⎝ ⎛⎭⎪⎫a -1a ⎝ ⎛⎭⎪⎫e x -1e x =0对于一切x ∈R 恒成立,由此得a -1a =0,即a 2=1.又a >0,所以a =1.答案:13.在数列{a n }中,a 1=2,a n +1=4a n -3n +1(n ∈N *).(1)证明数列{a n -n }是等比数列;(2)求数列{a n }的前n 项和S n ;(3)证明不等式S n +1≤4S n 对任意n ∈N *皆成立.(1)证明:由已知a n +1=4a n -3n +1,得a n +1-(n +1)=4(a n -n ),n ∈N *,又a 1-1=2-1=1≠0,所以数列{a n -n }是首项为1,公比为4的等比数列.(2)解:由(1)得a n -n =4n -1,所以a n =4n -1+n .所以S n =a 1+a 2+a 3+…+a n =1+4+42+…+4n -1+(1+2+3+…+n )=4n -13+n (n +1)2. (3)证明:对任意的n ∈N *,S n +1-4S n =4n +1-13+(n +1)(n +2)2-4⎣⎢⎡⎦⎥⎤4n -13+n (n +1)2=-12(3n 2+n -4)=-12(3n +4)(n -1)≤0. 所以不等式S n +1≤4S n 对任意n ∈N *皆成立.2.2 直接证明与间接证明2.2.1 综合法和分析法第1课 时综合法A 级 基础巩固一、选择题1.在下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)解析:由题设知,f (x )在(0,+∞)上是减函数,由f (x )=1x,得f ′(x )=-1x2<0,所以f (x )=1x 在(0,+∞)上是减函数. 答案:A2.已知函数f (x )=lg 1-x 1+x,若f (a )=b ,则f (-a )等于( ) A .bB .-b C.1b D .-1b解析:f (x )定义域为(-1,1),f (-a )=lg 1+a 1-a =lg ⎝ ⎛⎭⎪⎫1-a 1+a -1=-lg 1-a 1+a =-f (a )=-b .答案:B3.命题“如果数列{a n }的前n 项和S n =2n 2-3n ,那么数列{a n }一定是等差数列”是否成立( )A .不成立B .成立C .不能断定D .与n 取值有关解析:当n ≥2时,a n =S n -S n -1=4n -5又a 1=S 1=2×12-3×1=-1适合上式.∴a n =4n -5(n ∈N *),则a n -a n -1=4(常数)故数列{a n }是等差数列.答案:B4.若a ,b ∈R ,则下面四个式子中恒成立的是( )A .lg(1+a 2)>0B .a 2+b 2≥2(a -b -1)C .a 2+3ab >2b 2 D.a b <a +1b +1解析:在B 中,因为a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0,所以a 2+b 2≥2(a -b -1)恒成立.答案:B5.在△ABC 中,已知sin A cos A =sin B cos B ,则该三角形是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:由sin A cos A =sin B cos B 得sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2.所以该三角形是等腰或直角三角形.答案:D二、填空题6.命题“函数f(x)=x-x ln x在区间(0,1)上是增函数”的证明过程“对函数f(x)=x-x ln x求导,得f′(x)=-ln x,当x∈(0,1)时,f′(x)=-ln x>0,故函数f(x)在区间(0,1)上是增函数”,应用了________的证明方法.解析:本命题的证明,利用题设条件和导数与函数单调性的关系,经推理论证得到了结论,所以应用的是综合法的证明方法.答案:综合法7.角A,B为△ABC内角,A>B是sin A>sin B的________条件(填“充分”“必要”“充要”或“即不充分又不必要”).解析:在△ABC中,A>B⇔a>b由正弦定理asin A=bsin B,从而sin A>sin B.因此A>B⇔a>b⇔sin A>sin B,为充要条件.答案:充要8.已知p=a+1a-2(a>2),q=2-a2+4a-2(a>2),则p,q的大小关系为________.解析:因为p=a+1a-2=(a-2)+1a-2+2≥2(a-2)·1a-2+2=4,又-a2+4a-2=2-(a-2)2<2(a>2),所以q=2-a2+4a-2<4≤p.答案:p>q三、解答题9.已知a>0,b>0,且a+b=1,求证:1a+1b≥4.证明:因为a >0,b >0且a +b =1,所以1a +1b =a +b a +a +b b =2+b a +a b≥2+2 b a ·a b =4. 当且仅当b a =a b,即a =b 时,取等号, 故1a +1b≥4. 10.设函数f (x )=ax 2+bx +c (a ≠0),若函数y =f (x +1)与y =f (x )的图象关于y 轴对称,求证:函数y =f ⎝ ⎛⎭⎪⎫x +12为偶函数. 证明:∵函数y =f (x )与y =f (x +1)的图象关于y 轴对称.∴f (x +1)=f (-x )则y =f (x )的图象关于x =12对称 ∴-b 2a =12,∴a =-b . 则f (x )=ax 2-ax +c =a ⎝ ⎛⎭⎪⎫x -122+c -a 4 ∴f ⎝ ⎛⎭⎪⎫x +12=ax 2+c -a 4为偶函数. B 级 能力提升1.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( )A .恒为负值B .恒等于零C .恒为正值D .无法确定正负解析:由f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,可知f (x )是R 上的单调递减函数,由x 1+x 2>0,可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2),则f (x 1)+f (x 2)<0.答案:A2.已知sin x=55,x∈⎝⎛⎭⎪⎫π2,3π2,则tan⎝⎛⎭⎪⎫x-π4=________.解析:∵sin x=55,x∈⎝⎛⎭⎪⎫π2,3π2,∴cos x=-45,∴tan x=-12,∴tan⎝⎛⎭⎪⎫x-π4=tan x-11+tan x=-3.答案:-33.(2016·江苏卷)如图,在直三棱柱ABC A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明:(1)在直三棱柱ABC A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,所以DE∥A1C1.因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC A1B1C1中,A1A⊥平面A1B1C1,因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.又因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.第2课时分析法A级基础巩固一、选择题1.关于综合法和分析法的说法错误的是()A.综合法和分析法是直接证明中最基本的两种证明方法B.综合法又叫顺推证法或由因导果法C.综合法和分析法都是因果分别互推的两头凑法D.分析法又叫逆推证法或执果索因法解析:由综合法和分析法的意义与特点,知C错误.答案:C2.分析法又叫执果索因法,若使用分析法证明:设a>b>c,且a+b+c=0,求证:b2-ac<3a,则证明的依据应是() A.a-b>0B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0解析:b2-ac<3a⇔b2-ac<3a2⇔(a+c)2-ac<3a2⇔(a-c)·(2a +c)>0⇔(a-c)(a-b)>0.答案:C3.在不等边△ABC中,a为最大边,要想得到A为钝角的结论,对三边a,b,c应满足的条件,判断正确的是()A.a2<b2+c2B.a2=b2+c2C.a2>b2+c2D.a2≤b2+c2解析:要想得到A为钝角,只需cos A<0,因为cos A=b2+c2-a22bc,所以只需b2+c2-a2<0,即b2+c2<a2.答案:C4.对于不重合的直线m,l和平面α,β,要证明α⊥β,需要具备的条件是()A.m⊥l,m∥α,l∥βB.m⊥l,α∩β=m,l⊂αC.m∥l,m⊥α,l⊥βD.m∥l,l⊥β,m⊂α解析:对于选项A,与两相互垂直的直线平行的平面的位置关系不能确定;对于选项B,平面内的一条直线与另一个平面的交线垂直,这两个平面的位置关系不能确定;对于选项C,这两个平面有可能平行或重合;根据面面垂直的判定定理知选项D正确.答案:D5.设P=2,Q=7-3,R=6-2,则P,Q,R的大小关系是()A.P>Q>R B.P>R>QC.Q>P>R D.Q>R>P解析:先比较Q与R的大小.Q-R=7-3-(6-2)=(7+2)-(6+3).因为(7+2)2-(6+3)2=7+2+214-(6+3+218)=2(14-18)<0,所以Q<R.又P=2>R=2(3-1),所以P>R>Q.答案:B二、填空题6.如果a a+b b>a b+b a,则实数a,b应满足的条件是________.解析:a a+b b>a b+b a⇔a a-a b>b a-b b⇔a(a-b)>b(a-b)⇔(a-b)(a-b)>0⇔(a+b)(a-b)2>0,故只需a≠b且a,b都不小于零即可.答案:a≥0,b≥0且a≠b7.当x>0时,sin x与x的大小关系为________.解析:令f(x)=x-sin x(x>0),则f′(x)=1-cos x≥0,所以f(x)在(0,+∞)上是增函数,因此f(x)>f(0)=0,则x>sin x.答案:x>sin x8.如图,在直四棱柱A1B1C1D1ABCD(侧棱与底面垂直)中,当底面四边形ABCD满足条件________时,有A1C⊥B1D1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).解析:要证明A 1C ⊥B 1D 1只需证明B 1D 1⊥平面A 1C 1C因为CC 1⊥B 1D 1只要再有条件B 1D 1⊥A 1C 1,就可证明B 1D 1⊥平面A 1CC 1 从而得B 1D 1⊥A 1C 1.答案:B 1D 1⊥A 1C 1(答案不唯一)三、解答题9.已知a >1,求证:a +1+a -1<2a .证明:因为a >1,要证a +1+a -1<2a ,只需证(a +1+a -1)2<(2a )2,只需证a +1+a -1+2(a +1)(a -1)<4a , 只需证(a +1)(a -1)<a ,只需证a 2-1<a 2,即证-1<0.该不等式显然成立,故原不等式成立.10.求证:2cos(α-β)-sin (2α-β)sin α=sin βsin α. 证明:欲证原等式2cos(α-β)-sin (2α-β)sin α=sin βsin α成立. 只需证2cos(α-β)sin α-sin(2α-β)=sin β,①因为①左边=2cos(α-β)sin α-sin[(α-β)+α]=2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)sin α =cos(α-β)sin α-sin(α-β)cos α=sin β=右边.所以①成立,所以原等式成立.B 级 能力提升1.设a ,b ,c ,d 为正实数,若a +d =b +c 且|a -d |<|b -c |,则有( )A .ad =bcB .ad <bcC .ad >bcD .ad ≤bc解析:∵|a -d |<|b -c |⇔(a -d )2<(b -c )2⇔a 2+d 2-2ad <b 2+c 2-2bc ①又a +d =b +c∴a 2+d 2+2ad =b 2+c 2+2bc ②由②-①,得4ad >4bc ,即ad >bc .答案:C2.设函数f (x )是定义在R 上的以3为周期的奇函数,若f (1)>1,f (2)=3a -4a +1,则实数a 的取值范围是________. 解析:因为f (x )是周期为3的奇函数,且f (1)>1,所以f (2)=f (-1)=-f (1),因此3a -4a +1<-1,则4a -3a +1<0, 解之得-1<a <34. 答案:⎝ ⎛⎭⎪⎫-1,34 3.设实数a ,b ,c 成等比数列,非零实数x ,y 分别为a 与b ,b 与c 的等差中项,证明:a x +c y=2.证明:要证明ax+cy=2,只要证ay+cx=2xy,也就是证明2ay+2cx=4xy.由题设条件b2=ac,2x=a+b,2y=b+c,所以2ay+2cx=a(b+c)+(a+b)c=ab+2ac+bc,4xy=(a+b)(b+c)=ab+b2+bc+ac=ab+2ac+bc,所以2ay+2cx=4xy成立,故ax+cy=2成立.2.2.2 反证法A级基础巩固一、选择题1.应用反证法推出矛盾的推导过程中,要把下列哪些作为条件使用()①结论的否定即假设;②原命题的条件;③公理、定理、定义等;④原命题的结论.A.①②B.①②④C.①②③D.②③解析:由反证法的定义知,可把①②③作为条件使用,而④原命题的结论是不可以作为条件使用的.答案:C2.用反证法证明命题:“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根解析:“方程x2+ax+b=0至少有一个实根”的反面是“方程x2+ax+b=0没有实根.”答案:A3.用反证法证明命题“若直线AB、CD是异面直线,则直线AC、BD也是异面直线”的过程归纳为以下三个步骤:①则A、B、C、D四点共面,所以AB、CD共面,这与AB、CD是异面直线矛盾;②所以假设错误,即直线AC、BD也是异面直线;③假设直线AC、BD是共面直线.则正确的序号顺序为()A.①②③B.③①②C.①③②D.②③①解析:结合反证法的证明步骤可知,其正确步骤为③①②.答案:B4.否定结论“自然数a,b,c中恰有一个偶数”时,正确的反设为()A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c都是奇数或至少有两个偶数解析:自然数a,b,c中奇数、偶数的可能情况有:全为奇数,恰有一个偶数,恰有两个偶数,全为偶数.除去结论即为反设,应选D.答案:D5.设实数a 、b 、c 满足a +b +c =1,则a ,b ,c 中至少有一个数不小于( )A .0B.13C.12 D .1解析:假设a ,b ,c 都小于13,则a +b +c <1,与a +b +c =1矛盾,选项B 正确.答案:B二、填空题6.已知平面α∩平面β=直线a ,直线b ⊂α,直线c ⊂β,b ∩a =A ,c ∥a ,求证:b 与c 是异面直线,若利用反证法证明,则应假设________.解析:∵空间中两直线的位置关系有3种:异面、平行、相交, ∴应假设b 与c 平行或相交.答案:b 与c 平行或相交7.完成反证法证题的全过程.设a 1,a 2,…,a 7是1,2,…,7的一个排列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则a 1-1,a 2-2,…,a 7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=________=0.但0≠奇数,这一矛盾说明p 为偶数.解析:由假设p 为奇数可知(a 1-1),(a 2-2),…,(a 7-7)均为奇数,故(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…a 7)-(1+2+…+7)=0为偶数.答案:(a 1-1)+(a 2-2)+…+(a 7-7)8.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数,且a >b ),那么这两个数列中序号与数值均对应相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,所以不存在n 使a n =b n .答案:0三、解答题9.设x ,y 都是正数,且x +y >2,试用反证法证明:1+x y <2和1+y x<2中至少有一个成立.证明:假设1+x y <2和1+y x <2都不成立,即1+x y ≥2,1+y x≥2. 又因为x ,y 都是正数,所以1+x ≥2y ,1+y ≥2x .两式相加,得2+x +y ≥2x +2y ,则x +y ≤2,这与题设x +y >2矛盾,所以假设不成立.故1+x y <2和1+y x<2中至少有一个成立. 10.已知三个正数a ,b ,c ,若a 2,b 2,c 2成公比不为1的等比数列,求证:a ,b ,c 不成等差数列.证明:假设a ,b ,c 成等差数列,则有2b =a +c ,即4b 2=a 2+c 2+2ac ,又a2,b2,c2成公比不为1的等比数列,且a,b,c为正数,所以b4=a2c2且a,b,c互不相等,即b2=ac,因此4ac=a2+c2+2ac,所以(a-c)2=0,从而a=c=b,这与a,b,c互不相等矛盾.故a,b,c不成等差数列.B级能力提升1.设a,b,c大于0,则3个数:a+1b,b+1c,c+1a的值()A.都大于2 B.至少有一个不大于2 C.都小于2 D.至少有一个不小于2解析:假设a+1b,b+1c,c+1a都小于2则a+1b<2,b+1c<2,c+1a<2∴a+1b+b+1c+c+1a<6,①又a,b,c大于0所以a+1a≥2,b+1b≥2,c+1c≥2.∴a+1b+b+1c+c+1a≥6.②故①与②式矛盾,假设不成立所以a+1b,b+1c,c+1a至少有一个不小于2.答案:D2.对于定义在实数集R上的函数f(x),如果存在实数x0,使f(x0)=x0,那么x0叫作函数f(x)的一个好点.已知函数f(x)=x2+2ax+1不存在好点,那么a的取值范围是()A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,12 C .(-1,1) D .(-∞,-1)∪(1,+∞)解析:假设函数f (x )存在好点,则x 2+2ax +1=x 有实数解,即x 2+(2a -1)x +1=0有实数解.所以Δ=(2a -1)2-4≥0,解得a ≤-12或a ≥32. 所以f (x )不存在好点时,a 的取值范围是⎝ ⎛⎭⎪⎫-12,32. 答案:A3.已知二次函数f (x )=ax 2+bx +c (a >0,c >0)的图象与x 轴有两个不同的交点,若f (c )=0且0<x <c 时,恒有f (x )>0.(1)证明:1a是f (x )=0的一个根; (2)试比较1a与c 的大小. (1)证明:因为f (x )的图象与x 轴有两个不同的交点,所以f (x )=0有两个不等实根x 1,x 2.因为f (c )=0,所以x 1=c 是f (x )=0的根,又x 1x 2=c a, 所以x 2=1a ⎝ ⎛⎭⎪⎫1a ≠c , 所以1a是f (x )=0的一个根. (2)解:假设1a<c ,又1a>0,且0<x <c 时,f (x )>0, 所以知f ⎝ ⎛⎭⎪⎫1a >0,这与f ⎝ ⎛⎭⎪⎫1a =0矛盾, 因此1a≥c , 又因为1a≠c , 所以1a>c .。
合情推理与演绎推理一、归纳推理 例1.(1)观察圆周上n 个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,你由此可以归纳出什么规律?变式1.设平面内有n 条直线)3(≥n ,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用)(n f 表示这n 条直线交点的个数,则)4(f =____________;当4>n 时,=)(n f .(用n 表示)变式2.在圆内画一条线段,将圆分成两部分;画两条线段,彼此最多分割成4条线段,同时将圆分割成4部分;画三条线段,彼此最多分割成9条线段,同时将圆分割成7部分.那么 (1)在圆内画四条线段,彼此最多分割成 条线段?同时将圆分割成 部分?(2)猜想:圆内两两相交的n (n ≥2)条线段,彼此最多分割成 条线段?同时将圆分割成 部分?强化训练1.某同学在电脑上打下了一串黑白圆,如图所示,○○○●●○○○●●○○○…,按这种规律往下排,那么第36个圆的颜色应是 .2.由107>85,119>108,2513>219,…若a >b >0,m >0,则m a m b ++与a b 之间的大小关系为 .3.下列推理是归纳推理的是 (填序号).①A ,B 为定点,动点P 满足|PA |+|PB |=2a >|AB |,得P 的轨迹为椭圆 ②由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式 ③由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆2222b y a x +=1的面积S =πab④科学家利用鱼的沉浮原理制造潜艇4.已知整数的数对列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…则第60个数对是 .二、类比推理(一)数列中的类比例1.在等差数列{}n a 中,若010=a ,则有等式n a a a +⋅⋅⋅++21),19(1921+-∈<+⋅⋅⋅++=N n n a a a n 成立,类比上述性质,相应地:在等比数列{}n b 中,若19=b ,则有等式 成立.强化练习1.定义“等和数列”,在一个数列中,如果每一项与它的后一项的和都为同一常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。
4.合情推理与演绎推理教学目标 班级______姓名_________1.了解合情推理的含义,能利用归纳和类比等进行简单的推理.2.理解演绎推理的意义,掌握演绎推理的基本模式,能进行简单推理.3.了解合情推理与演绎推理的区别和联系.教学过程一、合情推理.1.归纳推理:(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理;或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).【B A ⊆,且A 具有特征P ⇒B 具有特征P 】(2)特征:部分⇒整体;个别⇒一般.(3)举例:①铜、铁、铝等金属能导电⇒一切金属都能导电;②哥德巴赫猜想:336+=;538+=;5510+=;......8631391002+=......⇒任何一个不小于6的偶数都等于两个奇质数之和.2.类比推理:(1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理(简称类比).【A 、B 具有相同性质P ,且A 具有特征Q ⇒B 具有特征Q 】(2)特征:相似⇒相似.(3)举例:①加法运算与乘法运算都满足交换律,且加法运算满足结合律⇒乘法运算满足结合律; ②平面内和空间内,平行于同一条直线的两条直线相互平行,且平面内,垂直于同一条直线的两条直线相互平行⇒空间内,垂直于同一条直线的两条直线相互平行.3.合情推理:根据已有事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理.(1)归纳推理与类比推理都属于合情推理;(2)合情推理能帮我们猜测和发现结论,能为我们提供证明的思路和方向;(3)一般来说,由合情推理所获得的结论,仅仅是一种猜想,未必可靠.二、演绎推理.1.定义:从一般性的原理出发,推出某个特殊情况下的结论的推理,称为演绎推理.【B A ⊇,且A 具有特征P ⇒B 具有特征P 】2.特征:一般⇒特殊;整体⇒部分.3.举例:①所有的金属都能导电,铀是金属⇒铀能导电;②所有奇数都不能被2整除,101是奇数⇒101不能被2整除.4.结构:演绎推理三段论:(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况作出的判断.(应用三段论解决问题时,若大前提是显而易见的,则可省略)5.在演绎推理中,只要大前提和推理形式是正确的,结论必定是正确的。
2.1合情推理与演绎推理1、观察下列各式:a + b =1 a 2+ b 2=3, a 3+ b 3=4, a 4+ b 4=7, a 5+ b 5=11,…,则 a"+ b ° =()A. 28B. 76C.123D. 199 2、数列2 5,2 ..2, ..11…的一个通项公式是()A. a . = 3n 3B. a n 3n 1C. a n = 3n TD. a n = . 3n 亠33、如下图所示,将若干个点摆成三角形图案,每条边 (包括两个端点)有n 个点,相应的图 案中总的点数记为a n 9 9 9 ,则 9 9 9 9()a 2a 3 a 3 a 4 a 4 a 5 a 2015 a2016 *厲玉确云 • • • ■ *• • • • v ■ « ■* • « * « ■ « ■ • ・ ■ n=4 n=5八2012A B 2013 C 2014 D 2015 2013 2014 2015 2016 4、设数列 「2心[按第 n 组有n 个数(n 是正整数)的规则分组如下:(1),(2,4),(8,16,32),…,则 第101组中的第一个数位()5、某种树的分枝规律如图所示 ,则预计到第6年树的分枝数为()6、下列表述正确的是()① 归纳推理是由部分到整体的推理② 归纳推理是由一般到一般的推理③ 演绎推理是由一般到特殊的推理④ 类比推理是由特殊到一般的推理⑤ 类比推理是由特殊到特殊的推理A. 24951B. 24950C. 25051D. 2 5050第1年B.6C.7D.87、若大前提:a,b E R+, a +b F2jOb,小前提:x+1 32 x ■-,结论:x+- >2 ,以上推理X Y X x过程中的错误为()A.大前提B.小前提C.结论D.无错误8、有一段“三段论”,推理是这样的:对于可导函数f (x),如果f '(X。
人教版A版高中数学选修1-2课后习题解答高中数学选修1-2课后题答案第一章统计案例1.1 回归分析的基本思想及其初步应用回归分析是一种统计分析方法,用于探究自变量与因变量之间的关系。
它的基本思想是通过建立数学模型,利用已知数据进行拟合,从而预测或解释未知数据。
回归分析的初步应用包括简单线性回归和多元线性回归。
1.2 独立性检验的基本思想及其初步应用独立性检验是一种用于检验两个变量之间是否存在关联的方法。
其基本思想是通过观察两个变量之间的频数或频率分布,来判断它们是否相互独立。
独立性检验的初步应用包括卡方检验和Fisher精确检验。
第二章推理证明2.1 合情推理与演绎推理合情推理是指根据已知事实和常识,推断出可能的结论。
演绎推理是指根据已知的前提和逻辑规则,推导出必然的结论。
两种推理方法都有其适用的场合,需要根据具体情况进行选择。
2.2 直接证明与间接证明直接证明是指通过逻辑推理,直接证明所要证明的命题成立。
间接证明是指采用反证法或归谬法,证明所要证明的命题的否定不成立,从而推出所要证明的命题成立。
第三章数系的扩充与复数的引入3.1 数系的扩充与复数的概念数系的扩充是指在实数系的基础上引入新的数,使得一些原来不可解的方程可以得到解。
复数是指由实部和虚部组成的数,可以表示在平面直角坐标系中的点。
复数的引入扩充了数系,使得一些原本无解的方程可以得到解。
3.2 复数的代数形式的四则运算复数的代数形式是指将复数表示为实部和虚部的和的形式。
复数的四则运算包括加减乘除四种运算,可以通过对实部和虚部分别进行运算来得到结果。
第四章框图4.1 流程图流程图是一种用图形表示算法或过程的方法。
它由各种基本符号和连线构成,用于描述算法或过程的各个步骤及其执行顺序。
流程图可以帮助人们更好地理解算法或过程,从而提高效率。
4.2 结构图结构图是一种用于描述程序结构的图形表示方法。
它包括顺序结构、选择结构和循环结构三种基本结构,可以用来表示程序的控制流程。
(1)定义:是根据一个或几个已知的判断来确定一个新的判断的思维过程.(2)分类:推理⎩⎪⎨⎪⎧合情推理演绎推理2.合情推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.(2)特点:演绎推理是由一般到特殊的推理. (3)模式:三段论⎩⎪⎨⎪⎧①大前提:已知的一般原理;②小前提:所研究的特殊情况;③结论:根据一般原理,对特殊情况做 出的判断.4.直接证明直接证明中最基本的两种证明方法是综合法和分析法.(1)综合法:一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法. 综合法又称为:由因导果法(顺推证法).(2)分析法:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.分析法又称为:执果索因法(逆推证法). 5.间接证明反证法:假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法. 6.复数的有关概念(1)复数的概念:形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数. (2)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). (3)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R ). (4)复数的模:向量OZ →的模r 叫做复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|,即|z |=|a +b i|=a 2+b 2.7.复数的几何意义(1)复数z =a +b i ―→一一对应复平面内的点Z (a ,b )(a ,b ∈R ).(2)复数z =a +b i(a ,b ∈R )―→一一对应 平面向量OZ →.8.复数的运算(1)复数的加、减 、乘、除运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; ③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; ④除法:z 1z 2=a +b ic +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd c 2+d 2+bc -adc 2+d 2i(c +d i≠0).(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3).行;归纳推理是依据特殊现象推断出一般现象,因此所得结论超出了前提所界定的范围,其前提和结论之间的联系不是必然的,而是或然的,所以“前提真而结论假”的情况是有可能发生的.2.归纳推理的一般过程:(1)通过观察个别情况发现相同的性质; (2)推出一个明确表述的一般性结论.3.在数学中,类比是发现概念、方法、定理、公式的重要手段,并且应用广泛,数与式、平面与空间、一元与多元、低次与高次、相等与不等、有限与无限等之间有不少结论都是先用类比的方法提出猜想,然后再加以证明的.4.类比推理的一般步骤:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想),但结论不一定正确,有待进一步证明.5.把握合情推理与演绎推理的三点(1)合情推理包括归纳推理和类比推理,所得到的结论都不一定正确,其结论的正确性是需要证明的.(2)在进行类比推理时,要尽量从本质上去类比,不要被表面现象所迷惑;否则只抓住一点表面现象甚至假象就去类比,就会犯机械类比的错误.(3)应用三段论解决问题时,应首先明确什么是大前提,什么是小前提,如果大前提与推理形式是正确的,结论必定是正确的.如果大前提错误,尽管推理形式是正确的,所得结论也是错误的.6.在进行类比推理时,不仅要注意形式的类比,还要注意方法的类比,且要注意以下两点:(1)找两类对象的对应元素,如:三角形对应三棱锥,圆对应球,面积对应体积等等;(2)找对应元素的对应关系,如:两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等.7.演绎推理的推证规则(1)演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略,本题中,等比数列的定义在解题中是大前提,由于它是显然的,因此省略不写;(2)在推理论证过程中,一些稍复杂一点的证明题常常要由几个三段论才能完成.8.综合法又叫顺推证法或由因导果法,它是从“已知”看“可知”,逐步推向“未知”,其逐步推理是在寻求它的必要条件.综合法的解题步骤用符号表示是:P(已知)⇒Q1⇒Q2⇒Q3⇒…⇒Q n⇒Q(结论).9.分析法又叫逆推证法或执果索因法,它是从“结论”探求“需知”,逐步靠拢“已知”,其逐步推理的实质是寻求使结论成立的充分条件.分析法的解题步骤用符号表示是:B(结论)⇐B1⇐B2⇐…⇐B n⇐A(已知).10.分析法与综合法的综合应用分析法和综合法是两种思路相反的推理证明方法,二者各有优缺点.分析法思考起来比较自然,容易找到解题的思路和方法,缺点是思路逆行,叙述较繁,且表述易错;综合法条理清晰,宜于表述,缺点是探路艰难,易生枝节.在证明数学问题的过程中分析法和综合法往往是相互结合的,先用分析法探索证明途径,然后再用综合法表述.11.用反证法证明命题的一般步骤:(1)分清命题的条件和结论; (2)做出与命题结论相矛盾的假设;(3)由假设出发,应用正确的推理方法,推出与已知条件,或与假设矛盾,或与定义、公理、定理、事实等矛盾的结果;(4)断定产生矛盾的原因是假设不真,于是原结论成立,从而间接地证明命题为真. 12.可用反证法证明的数学命题类型 (1)结论是否定形式的命题;(2)结论是以至多、至少、唯一等语句给出的命题; (3)结论的反面是较明显或较易证明的命题;(4)用直接法较难证明或需要分成多种情形进行分类讨论的命题. 13.常见的“结论词”与“反设词”14.几个应注意的问题 (1)两个虚数不能比较大小.(2)利用复数相等a +b i =c +d i 列方程时,注意a ,b ,c ,d ∈R 的前提条件.(3)注意不能把实数集中的所有运算法则和运算性质照搬到复数集中来.例如,若z 1,z 2∈C ,z 21+z 22=0,就不能推出z 1=z 2=0;z 2<0在复数范围内有可能成立. 15.复数的运算技巧(1)设z =a +b i(a ,b ∈R ),利用复数相等和相关性质将复数问题实数化是解决复数问题的常用方法.(2)在复数代数形式的四则运算中,加、减、乘运算按多项式运算法则进行,除法则需分母实数化.16.复数代数运算中常用的几个结论在进行复数的代数运算时,记住以下结论,可提高计算速度. (1)(1±i)2=±2i;1+i 1-i =i ;1-i 1+i =-i ;(2)-b +a i =i(a +b i);(3)i 4n =1,i4n +1=i ,i4n +2=-1,i4n +3=-i ,i 4n +i4n +1+i4n +2+i4n +3=0,n ∈N *.17.解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. (2)解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部 18.复数几何意义及应用(1)复数z 、复平面上的点Z 及向量OZ →相互联系,即z =a +b i(a ,b ∈R )⇔Z (a ,b )⇔OZ →. (2)由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观. 19.复数代数形式运算问题的解题策略(1)复数的乘法.复数的乘法类似于多项式的乘法运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式.1. 原题(选修1-2第五十一页例)1(1)m m m i ++-实数取什么值时复数z=是(1)实数?(2)虚数?(3)纯虚数?改编1 若复数sin 2(1cos 2)z a i a =--是纯虚数,则a = .改编2 使复数为实数的充分而不必要条件是 ( )A .z z -= B .z z = C .2z 为实数 D .z z -+为实数 【解析】 ∴即要找出若“复数为实数”则不能推出的选项选B 改编3 若有,,R R X +-分别表示正实数集,负实数集,纯虚数集,则集合}{2mm X ∈=( ).A .R +B .R -C .RR +- D .{}0R +【解析】 222(0),)0m m bi b m bi b B =≠=-<∴若为纯虚数,设则(选=2. 原题(选修1-2第五十五页习题3.1 A 组第5题):实数m 取什么值时,复平面内表示复数22(815)(514)z m m m m i =-++--的点(1)位于第四象限? (2)位于第一、二象限?(3)位于直线上?改编1 复数z=(a2-2a)+(a2-a-2)i对应的点在虚轴上,则( ) A.a≠2或a≠1 B.a≠2且a≠1 C.a=2或a=0 D.a=0【解析】 200 2.a a a -=∴==2要求虚部为即可或0.即a改编2 已知复数12z i =+,21z i =-,则在12z z z =⋅复平面上对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限【解析】123z z z i z ==-∴复数表示的点在第四象限.选D.改编 3 如果35a <<,复数22(815)(514)z a a a a i =-++--在复平面上的对应点z 在 象限.改编4 已知z0=2+2i,|z-z0|,(1)求复数z在复平面内对应的点的轨迹;(2)求z为何值时,|z|有最小值,并求出|z|的最小值.【解析】(1)设z =x +y i(x ,y ∈R ),由|z-z0|,即 |x +y i-(2+2i)|=|(x -2)+(y -2)i|,解得(x -2)2+(y -2)2=2∴复数z点的轨迹是以Z 0(2,2的圆. (2)当Z 点在OZ 0的连线上时,|z|有最大值或最小值,∵| OZ 0|=,∴当z=1+i时,|z|min.3. 原题(选修1-2第五十五页习题 3.1B 组第二题)改编 设,C z ∈满足条件.12141log 21->--+-z z 的复数z 所对应的点z 的集合表示什么图形?【解析】12,14|1|4log 12|1|81012|1|28z Z Z Z z Z -+-+>-<->----由,得化简得:,所以表示以为圆心,以为半径的圆0<(,)的外部.4. 原题(选修1-2第六十三页复习参考题A 组1(4))1(2i i -3复数+的值为( ) A. B. C.-1 D.1改编12008200711()122i i i +⎛⎫+-+ ⎪-⎝⎭=( )A. 2iB.-1+iC.1+iD.2 【解析】22320082007210043669111)1,()1,)()[()][()]2222i i i ii i i ==--+=∴+-+=+-+=1+1+1+((1-1-1- .D ∴选改编2 复数z=1+z+z2的值;5. 原题(选修1-2第六十三页复习参考题B 组第二题)改编1 2012432i i i i i +++++ 的值为________.【解析】 0432=+++i i i i 则2012432i i i i i +++++ =0. 改编2若1z i=-,那么100501z z ++的值是 . 【解析】22441005042522525252))(1),1,11(1)(1)221()()1(1)1i i i z z i z i i i i z z z z i i+++===∴==∴=-=--+∴++=++=-++=又。
高中数学高中数学新课程标准数学选修1—2第二章课后习题解答第二章 推理与证明2.1合情推理与演绎推理 练习(P30)1、由12341a a a a ====,猜想1na=.2、相邻两行数之间的关系是:每一行首尾的数都是1,其他的数都等于上一行中与之相邻的两个数的和.3、设111O PQ R V -和222O P Q R V -分别是四面体111O PQ R -和222O P Q R -的体积,的体积, 则111222111222O PQR O P Q R V OP OQ OR V OP OQ OR --=××. 4、略. 练习(P33)1、略.2、因为通项公式为n a 的数列{}n a ,若1n na p a +=,p 是非零常数,则{}n a 是等比数列;是等比数列; …………………………大前提…………………………大前提又因为0cq ¹,则q 是非零常数,则11n n nna cq q a cq ++==;……………………小前提……………………小前提 所以,通项公式为(0)n n a cq cq =¹的数列{}n a 是等比数列.……………………结论……………………结论 3、由A D B D >,得到ACD BCD Ð>Ð的推理是错误的. 因为这个推理的大前提是因为这个推理的大前提是“在同一“在同一个三角形中,大边对大角”,小前提是“AD BD >”,而AD 与BD 不在同一个三角形中. 4、略.习题2.1A 组(P35) 1、2(1)n -(n 是质数,且5n ³)是24的倍数.2、21n a n =+()n N *Î. 3、2F V E +=+. 4、当6n £时,122(1)n n -<+;当7n =时,122(1)n n -=+;当8n =时,122(1)n n ->+()n N *Î.5、212111(2)n n A A A n p++³-(2n >,且n N *Î). 6、121217n n b b b b b b -=(17n <,且n N *Î).7、如图,作DE ∥AB 交BC 于E . 因为两组对边分别平行的四边形是平行四边形,因为两组对边分别平行的四边形是平行四边形,因为两组对边分别平行的四边形是平行四边形, 又因为AD ∥BE ,AB ∥DE . 所以四边形所以四边形ABED 是平行四边形是平行四边形.. 因为平行四边形的对边相等因为平行四边形的对边相等因为平行四边形的对边相等. . DEBAC(第7题)又因为四边形ABED 是平行四边形是平行四边形. .所以所以AB DE =.因为与同一条线段等长的两条线段的长度相等,因为与同一条线段等长的两条线段的长度相等,因为与同一条线段等长的两条线段的长度相等, 又因为AB DE =,AB DC =, 所以DE DC = 因为等腰三角形的两底角是相等的. 又因为△DEC 是等腰三角形是等腰三角形, , 所以DEC C Ð=Ð 因为平行线的同位角相等因为平行线的同位角相等 又因为DEC Ð与B Ð是平行线AB 和DE 的同位角的同位角, , 所以DEC B Ð=Ð 因为等于同角的两个角是相等的,因为等于同角的两个角是相等的, 又因为DEC C Ð=Ð,DEC B Ð=Ð, 所以B C Ð=Ð习题2.1B 组(P35) 1、由123S =-,234S =-,345S =-,456S =-,567S =-,猜想12n n S n +=-+.2、略.3、略. 2.2直接证明与间接证明 练习(P42)1、因为442222cos sin (cos sin )(cos sin )cos 2q q q q q q q -=+-=,所以,命题得证. 2、要证67225+>+,只需证22(67)(225)+>+, 即证1324213410+>+,即证42210>,只需要22(42)(210)>,即证4240>,这是显然成立的. 所以,原命题得证.3、因为、因为222222222()()()(2sin )(2tan )16sin tan a b a b a b a a a a -=-+==, 又因为又因为 sin (1cos )sin (1cos )1616(tan sin )(tan sin )16cos cos ab a a a a a a a a a a +-=+-=×22222222sin (1cos )sinsin161616sin tan cos cos aa aa a a aa-===,从而222()16a b ab -=,所以,命题成立.说明:进一步熟悉运用综合法、分析法证明数学命题的思考过程与特点.练习(P43)1、假设B Ð不是锐角,则90B г°. 因此9090180C B Ð+г°+°=°. 这与三角形的内角和等于180°矛盾. 所以,假设不成立. 从而,B Ð一定是锐角.2、假设2,3,5成等差数列,则2325=+.所以22(23)(25)=+,化简得5210=,从而225(210)=,即2540=, 这是不可能的. 所以,假设不成立. 从而,2,3,5不可能成等差数列. 说明:进一步熟悉运用反证法证明数学命题的思考过程与特点.习题2.2A 组(P44) 1、因为、因为(1tan )(1tan )2A B ++=展开得展开得1tan tan tan tan 2A B A B +++=,即tan tan 1tan tan A B A B +=-. ① 假设1tan tan 0A B -=,则cos cos sin sin 0cos cos A B A B A B -=,即cos()0cos cos A B A B += 所以cos()0A B +=.因为A ,B 都是锐角,所以0A B p <+<,从而2A B p+=,与已知矛盾.因此1tan tan 0A B -¹.①式变形得①式变形得 tan tan 11tan tan A BA B +=-,即tan()1A B +=. 又因为0A B p <+<,所以4A B p+=.说明:本题也可以把综合法和分析法综合使用完成证明. 2、因为PD ^平面ABC ,所以PD AB ^. 因为AC BC =,所以ABC D 是等腰三角形. 因此ABC D 底边上的中线CD 也是底边上的高,也是底边上的高, 因而CD AB ^ 所以AB ^平面PDC . 因此AB PC ^.3、因为,,a b c 的倒数成等差数列,所以211b ac =+.假设2B p<不成立,即2B p³,则B 是ABC D 的最大内角,的最大内角,所以,b a b c >>(在三角形中,大角对大边),从而从而 11112a c b b b +>+=. 这与211b a c =+矛盾.所以,假设不成立,因此,2B p<.习题2.2B 组(P44) 1、因为、因为 1tan 12tan aa-=+,所以12tan 0a +=,从而2sin cos 0a a +=.另一方面,要证另一方面,要证3sin 24cos2a a =-, 只要证226sin cos 4(cos sin )a a a a =-- 即证即证 222sin 3sin cos 2cos 0a a a a --=,即证即证 (2s i n c o s )(s i n 2c o s a a a a+-= 由2sin cos 0a a +=可得,(2sin cos )(sin 2cos )0a a a a +-=,于是命题得证.说明:本题可以单独使用综合法或分析法进行证明,但把综合法和分析法结合使用进行证明的思路更清晰.2、由已知条件得、由已知条件得2b ac = ① 2x a b =+,2y b c =+ ②要证2a cx y +=,只要证2ay cx xy +=,只要证224ay cx xy +=由①②,得由①②,得22()()2ay cx a b c c a b ab ac bc +=+++=++, 24()()2x y a b b c a b b a c b c a b a c b c=++=+++=++, 所以,224ay cx xy +=,于是命题得证.第二章 复习参考题A 组(P46)1、图略,共有(1)1n n -+(n N *Î)个圆圈.2、333n 个(n N *Î).3、因为2(2)(1)4f f ==,所以(1)2f =,(3)(2)(1)8f f f ==,(4)(3)(1)16f f f ==………… 猜想()2n f n =.4、如图,设O 是四面体A BCD -内任意一点,连结AO ,BO ,CO ,DO 并延长交对面于A ¢,B ¢,C ¢,D ¢,则,则1O A O B O C O D A A B B C C D D ¢¢¢¢+++=¢¢¢¢ 用“体积法”证明:用“体积法”证明: O A O B O C O DA AB BC CD D¢¢¢¢+++¢¢¢¢ O B C D O C D AO D A B OA B C A B C D BC D A CD AB D A B CV VV V V VVV --------=+++1A B C D A B C DVV --==5、要证、要证(1tan )(1tan )2A B ++= 只需证只需证 1tan tan tan tan 2A B A B +++=即证即证t a n t a n 1t a n t a A B A B +=- 由54A B p +=,得tan()1A B +=. ①又因为2A B k p p +¹+,所以tan tan 11tan tan A BA B+=-,变形即得①式.所以,命题得证. 第二章 复习参考题B 组(P47)1、(1)25条线段,16部分;部分; (2)2n 条线段;条线段;(3)222n n ++部分. 2、因为90BSC Ð=°,所以BSC D 是直角三角形.A BCDA'B'D'C'(第4题)在Rt BSC D 中,有222BC SB SC =+.类似地,得类似地,得 222AC SA SC =+,222AB SB SA =+ 在ABC D 中,根据余弦定理得中,根据余弦定理得2222cos 02AB AC BC SA A AB AC AB AC+-==>××2222cos 02AB BC AC SB B AB BCAB BC+-==>×× 2222cos 02BC AC AB SC C BC ACBC AC +-==>×× 因此,,,A B C 均为锐角,从而ABC D 是锐角三角形. 3、要证、要证cos 44cos 43b a -= 因为因为 cos 44cos 4cos(22)4cos(22)b a b a -=´-´ 2212sin 24(12sin 2)b a =--´-222218s i n c o s 4(18s i n c o s )b b a a =--´-222218s i n (1s i n )4[18s i n (1s i n )]bb a a=---´-- 只需证只需证 222218sin (1sin )4[18sin (1sin )]3b b a a ---´--= 由已知条件,得由已知条件,得 sincos sin2q q a +=,2sin sin cos b q q =,代入上式的左端,得代入上式的左端,得 222218sin (1sin )4[18sin (1sin )]b b a a ---´-- 2238sin cos (1sin cos )32sin (1sin )q q q q a a =---+-2238sin cos 8sin cos 2(12sin cos )(32sin cos )q q q q q q q q =--+++-222238s i n c o s 8s i nc o s 68s i n c o s 8s i nc o sq q q q q q q q =--++-+ 3= 因此,cos 44cos 43b a -=。
合情推理与演绎推理测试题 (选修1 -2 )试卷总分值150 ,其中第一卷总分值100分 ,第二卷总分值50分 ,考试时间120分钟第一卷 (共100分 )一.选择题:本大题共12小题 ,每题5分 ,共60分 ,在每题给出的四个选项中 ,只有一项为哪一项符合题目要求的;请将答案直接填入以下表格内. )题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.如果数列{}n a 是等差数列 ,那么 A.1845a a a a +<+B. 1845a a a a +=+C.1845a a a a +>+D.1845a a a a =2.下面使用类比推理正确的选项是 A. "假设33a b ⋅=⋅,那么a b =〞类推出 "假设00a b ⋅=⋅,那么a b =〞 B. "假设()a b c ac bc +=+〞类推出 "()a b c ac bc ⋅=⋅〞C. "假设()a b c ac bc +=+〞 类推出 "a b a bc c c+=+ (c ≠0 )〞 D. "n n a a b =n (b )〞 类推出 "n n a a b +=+n(b )〞 3.有这样一段演绎推理是这样的 "有些有理数是真分数 ,整数是有理数 ,那么整数是真分数〞结论显然是错误的 ,是因为)()(,sin )('010x f x f x x f == ,'21()(),,f x f x ='1()()n n f x f x += ,n ∈N ,那么2007()f x =A.sin xB.-sin xC.cos xD.-cos x01232004410010010210=⨯+⨯+⨯+⨯ ,那么在5进制中数码2004折合成十进制为A.29B. 254C. 602D. 200421y ax =+的图像与直线y x =相切 ,那么a =A.18B.14C.12D. 17.下面的四个不等式:①ca bc ab c b a ++≥++222;②()411≤-a a ;③2≥+abb a ;④()()()22222bd ac d c b a +≥+•+.其中不成立的有24x y =上一点A 的纵坐标为4 ,那么点A 与抛物线焦点的距离为A.2B.3C.4D. 59.设 ()|1|||f x x x =--, 那么1[()]2f f =A. 12-B. 0C.12D. 1)3,5(-=→x a , ),2(x b =→,且→→⊥b a , 那么由x 的值构成的集合是A.{2,3}B. { -1, 6}C. {2}D. {6} 11. 有一段演绎推理是这样的: "直线平行于平面,那么平行于平面内所有直线;直线b ⊆/平面α ,直线a ≠⊂平面α ,直线b ∥平面α ,那么直线b ∥直线a 〞的结论显然是错误的 ,这是因为12.2()(1),(1)1()2f x f x f f x +==+*x N ∈() ,猜测(f x )的表达式为 A.4()22x f x =+ B.2()1f x x =+ C.1()1f x x =+ D.2()21f x x =+二.解答题:本大题共5小题 ,每题8分 ,共40分. 13.证明:5,3,2不能为同一等差数列的三项.△ABC 中 ,CB CB A cos cos sin sin sin ++=,判断△ABC 的形状.15.:空间四边形ABCD 中 ,E ,F 分别为BC ,CD 的中点 ,判断直线EF 与平面ABD 的关系 ,并证明你的结论.16.函数x x x f -+=)1ln()( ,求)(x f 的最|大值.17.△ABC 三边长,,a b c 的倒数成等差数列 ,求证:角B 090<.第二卷 (共50分 )三.填空题.本大题共4小题 ,每空4分 ,共16分 ,把答案填在题中横线上 .18. 类比平面几何中的勾股定理:假设直角三角形ABC 中的两边AB 、AC 互相垂直 ,那么三角形三边长之间满足关系:222BC AC AB =+ .假设三棱锥A -BCD 的三个侧面ABC 、ACD 、ADB 两两互相垂直 ,那么三棱锥的侧面积与底面积之间满足的关系为 .22112343=++=2,,3+4+5+6+7=5中 ,可得到一般规律为 (用数学表达式表示)20.函数y =f (x )在 (0 ,2 )上是增函数 ,函数y =f(x +2)是偶函数 ,那么f(1),f(2.5),f(3.5)的大小关系是 .21.设平面内有n条直线(3)n ≥ ,其中有且仅有两条直线互相平行 ,任意三条直线不过同一点.假设用()f n 表示这n条直线交点的个数 ,那么(4)f = ; 当n>4时 ,()f n = (用含n 的数学表达式表示 )四.解答题. (每题13分 ,共26分.选答两题 ,多项选择那么去掉一个得分最|低的题后计算总分 )22.在各项为正的数列{}n a 中 ,数列的前n 项和n S 满足⎪⎪⎭⎫ ⎝⎛+=n n n a a S 121 (1 ) 求321,,a a a ; (2 ) 由 (1 )猜测数列{}n a 的通项公式; (3 ) 求n S23.自然状态下鱼类是一种可再生资源 ,为持续利用这一资源 ,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响 ,用n x 表示某鱼群在第n 年年初的总量 ,+∈N n ,且1x >0.不考虑其它因素 ,设在第n 年内鱼群的繁殖量及捕捞量都与n x 成正比 ,死亡量与2n x 成正比 ,这些比例系数依次为正常数c b a ,,. (Ⅰ )求1+n x 与n x 的关系式;(Ⅱ )猜测:当且仅当1x ,c b a ,,满足什么条件时 ,每年年初鱼群的总量保持不变 ? (不要求证明 )24. 设函数)(sin )(R x x x x f ∈=.(1 )证明:Z k x k x f k x f ∈=-+,sin 2)()2(ππ;五.解答题. (共8分.从以下题中选答1题 ,多项选择按所做的前1题记分 ) 25. 通过计算可得以下等式:1121222+⨯=-1222322+⨯=- 1323422+⨯=-┅┅12)1(22+⨯=-+n n n将以上各式分别相加得:n n n +++++⨯=-+)321(21)1(22即:2)1(321+=++++n n n 类比上述求法:请你求出2222321n ++++ 的值.26. 直角三角形的两条直角边的和为a ,求斜边的高的最|大值 27.))((R x x f ∈恒不为0 ,对于任意R x x ∈21,等式()()⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫⎝⎛+=+222212121x x f x x f x f x f 恒成立.求证:)(x f 是偶函数. 28.ΔABC 的三条边分别为a b c ,,求证:11a b ca b c+>+++合情推理与演绎推理测试题答案 (选修1 -2 )一.选择题:本大题共12小题 ,每题5分 ,共60分 ,在每题给出的四个选项中 ,只有一项为哪一项符合题目要求的;请将答案直接填入以下表格内. )题号 1 23 4 5 6 7 8 9 10 11 12 答案BCCDBBADDCAB二.解答题:本大题共5小题 ,每题8分 ,共40分.13.证明:假设2、3、5为同一等差数列的三项 ,那么存在整数m,n 满足3 =2 +md ① 5 =2 +nd ②①⨯n -②⨯m 得:3n -5m =2(n -m)两边平方得: 3n 2+5m 2-215mn =2(n -m)2左边为无理数 ,右边为有理数 ,且有理数≠无理数 所以 ,假设不正确 .即 2、3、5不能为同一等差数列的三项 14. ∆ABC 是直角三角形; 因为sinA =CB CB cos cos sin sin ++据正、余弦定理得 : (b +c )(a 2-b 2-c 2) =0; 又因为a,b,c 为∆ABC 的三边 ,所以 b +c ≠0所以 a 2 =b 2 +c 2即∆ABC 为直角三角形.15.平行; 提示:连接BD ,因为E ,F 分别为BC ,CD 的中点 , EF ∥BD. 16.提示:用求导的方法可求得)(x f 的最|大值为017.证明:222cos 2a c b B ac +-=≥222ac b ac - =212b ac -=211()b bb ac a c -=-++ ,,a b c 为△ABC 三边 ,a c ∴+b > ,1ba c∴-+0>cos B ∴0> ∴B 090<. 三.填空题.本大题共4小题 ,每空4分 ,共16分 ,把答案填在题中横线上 .18. 2222AD B ACD ABC BCD S S S S ∆∆∆∆++= .19. 2(1)(2)......(32)(21)n n n n n ++++++-=-20. f(2.5)>f(1)>f(3.5) 21. 5; 12(n+1)(n-2).四.解答题. (每题13分 ,共26分.选答两题 ,多项选择那么去掉一个得分最|低的题后计算总分 )22. (1 )23,12,1321-=-==a a a ; (2 )1--=n n a n ; (3 )n S n =.23.解 (I )从第n 年初到第n +1年初 ,鱼群的繁殖量为ax n ,被捕捞量为b x n ,死亡量为221,,*.(*)n n n n n n cx x x ax bx cx n N +-=--∈因此 1(1),*.(**)n n n x x a b cx n N +=-+-∈即(II )假设每年年初鱼群总量保持不变 ,那么x n 恒等于x 1 , n ∈N* ,从而由 (* )式得 ..0*,,0)(11cba x cxb a N n cx b a x n n -==--∈--即所以恒等于 因为x 1>0 ,所以a >b. 猜测:当且仅当a >b ,且cba x -=1时 ,每年年初鱼群的总量保持不变.24. 证明:1 )(2)()22f x k f x x k x k x x πππ+-=++()sin()-sin=2x k x x x π+()sin -sin =2k x πsin 2) ()sin cos f x x x x '=+0000()sin cos 0f x x x x '=+= ① 又2200sin cos 1x x += ②由①②知20sin x =2021x x + 所以2422220000002200[()]sin 11x x f x x x x x x ===++ 五.解答题. (共8分.从以下题中选答1题 ,多项选择按所做的前1题记分 ) 25.[解] 1131312233+⨯+⨯=- 1232323233+⨯+⨯=-1333334233+⨯+⨯=- ┅┅133)1(233+⨯+⨯=-+n n n n将以上各式分别相加得:n n n n ++++⨯+++++⨯=-+)321(3)321(31)1(222233所以: ]2131)1[(3132132222n nn n n +---+=++++ )12)(1(61++=n n n 2 27.简证:令12x x = ,那么有()01f = ,再令12x x x =-=即可 28.证明:设(),(0,)1xf x x x=∈+∞+ 设12,x x 是(0,)+∞上的任意两个实数 ,且210x x >≥ ,1212121212()()11(1)(1)x x x x f x f x x x x x --=-=++++ 因为210x x >≥ ,所以12()()f x f x < .所以()1xf x x=+在(0,)+∞上是增函数 . 由0a b c +>>知()()f a b f c +> 即11a b ca b c+>+++.。
课时跟踪检测(三) 合情推理层级一 学业水平达标1.观察图形规律,在其右下角的空格内画上合适的图形为( )A. B .△ C.D .○解析:选A 观察可发现规律:①每行、每列中,方、圆、三角三种形状均各出现一次,②每行、每列有两阴影一空白,即得结果.2.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③教室内有一把椅子坏了,则猜想该教室内的所有椅子都坏了;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸n 边形的内角和是(n -2)·180°(n ∈N *,且n ≥3).A .①②B .①③④C .①②④D .②④解析:选C ①是类比推理;②④是归纳推理,∴①②④都是合情推理.3.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间内,若两个正四面体的棱长的比为1∶2,则它们的体积比为( )A .1∶2B .1∶4C .1∶8D .1∶16解析:选C 由平面和空间的知识,可知面积之比与边长之比成平方关系,在空间中体积之比与棱长之比成立方关系,故若两个正四面体的棱长的比为1∶2,则它们的体积之比为1∶8.4.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可推出下列空间结论:①垂直于同一条直线的两条直线互相平行;②垂直于同一个平面的两条直线互相平行;③垂直于同一条直线的两个平面互相平行;④垂直于同一平面的两个平面互相平行,则其中正确的结论是( )A .①②B .②③C .③④D .①④解析:选B 根据立体几何中线面之间的位置关系及有关定理知,②③是正确的结论. 5.观察下列各等式:22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式成立的规律,得到一般性的等式为( )A.nn -4+8-n (8-n )-4=2 B.n +1(n +1)-4+(n +1)+5(n +1)-4=2 C.nn -4+n +4(n +4)-4=2 D.n +1(n +1)-4+n +5(n +5)-4=2 解析:选A 观察发现:每个等式的右边均为2,左边是两个分数相加,分子之和等于8,分母中被减数与分子相同,减数都是4,因此只有A 正确.6.观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49照此规律,第n 个等式为________.解析:观察所给等式,等式左边第一个加数与行数相同,加数的个数为2n -1,故第n 行等式左边的数依次是n ,n +1,n +2,…,(3n -2);每一个等式右边的数为等式左边加数个数的平方,从而第n 个等式为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.答案:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)27.我们知道:周长一定的所有矩形中,正方形的面积最大;周长一定的所有矩形与圆中,圆的面积最大,将这些结论类比到空间,可以得到的结论是_______________________.解析:平面图形与立体图形的类比:周长→表面积,正方形→正方体,面积→体积,矩形→长方体,圆→球.答案:表面积一定的所有长方体中,正方体的体积最大;表面积一定的所有长方体和球中,球的体积最大8.如图(甲)是第七届国际数学教育大会(简称ICME -7)的会徽图案,会徽的主体图案是由如图(乙)的一连串直角三角形演化而成的,其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,如果把图(乙)中的直角三角形依此规律继续作下去,记OA 1,OA 2,…,OA n ,…的长度构成数列{a n },则此数列{a n }的通项公式为a n =__________.解析:根据OA 1=A 1A 2=A 2A 3=…=A 7A 8=1和图(乙)中的各直角三角形,由勾股定理,可得a 1=OA 1=1,a 2=OA 2=OA 21+A 1A 22=12+12=2,a 3=OA 3=OA 22+A 2A 23=(2)2+12=3,…,故可归纳推测出a n =n . 答案:n9.在平面内观察:凸四边形有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线,…,由此猜想凸n 边形有几条对角线?解:因为凸四边形有2条对角线,凸五边形有5条对角线,比凸四边形多3条;凸六边形有9条对角线,比凸五边形多4条,…,于是猜想凸n 边形的对角线条数比凸(n -1)边形多(n -2)条对角线,由此凸n 边形的对角线条数为2+3+4+5+…+(n -2),由等差数列求和公式可得12n (n -3)(n ≥4,n ∈N *).所以凸n 边形的对角线条数为12n (n -3)(n ≥4,n ∈N *).10.已知f (x )=13x+3,分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并证明你的结论.解:f (x )=13x +3,所以f (0)+f (1)=130+3+131+3=33,f (-1)+f (2)=13-1+3+132+3=33,f (-2)+f (3)=13-2+3+133+3=33.归纳猜想一般性结论;f (-x )+f (x +1)=33. 证明如下:f (-x )+f (x +1)=13-x +3+13x +1+3=3x 1+3·3x +13x +1+3=3·3x 3+3x +1+13x +1+3 =3·3x +13+3x +1=3·3x +13(1+3·3x )=33. 层级二 应试能力达标1.由代数式的乘法法则类比得到向量的数量积的运算法则: ①“mn =nm ”类比得到“a ·b =b ·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”;④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a ·p =x ·p ⇒a =x ”;⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”; ⑥“ac bc =a b ”类比得到“a ·c b ·c =ab ”.其中类比结论正确的个数是( ) A .1 B .2 C .3D .4解析:选B 由向量的有关运算法则知①②正确,③④⑤⑥都不正确,故应选B. 2.类比三角形中的性质: (1)两边之和大于第三边; (2)中位线长等于底边长的一半; (3)三内角平分线交于一点. 可得四面体的对应性质:(1)任意三个面的面积之和大于第四个面的面积;(2)过四面体的交于同一顶点的三条棱的中点的平面面积等于该顶点所对的面面积的14;(3)四面体的六个二面角的平分面交于一点. 其中类比推理方法正确的有( ) A .(1) B .(1)(2) C .(1)(2)(3)D .都不对解析:选C 以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法是否正确并不等价,方法正确结论也不一定正确.3.观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,…,根据以上式子可以猜想:1+122+132+…+12 0172<( )A.4 0312 017 B.4 0322 017 C.4 0332 017D.4 0342 017解析:选C 观察可以发现,第n (n ≥2)个不等式左端有n +1项,分子为1,分母依次为12,22,32,…,(n +1)2;右端分母为n +1,分子成等差数列,首项为3,公差为2,因此第n 个不等式为1+122+132+…+1(n +1)2<2n +1n +1,所以当n =2 016时不等式为:1+122+132+…+12 0172<4 0332 017. 4.设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c ;类比这个结论可知:四面体P -ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,四面体P -ABC 的体积为V ,则r =( )A.VS 1+S 2+S 3+S 4 B.2VS 1+S 2+S 3+S 4 C.3VS 1+S 2+S 3+S 4D.4VS 1+S 2+S 3+S 4解析:选C 将△ABC 的三条边长a ,b ,c 类比到四面体P -ABC 的四个面面积S 1,S 2,S 3,S 4,将三角形面积公式中系数12,类比到三棱锥体积公式中系数13,从而可知选 C.证明如下:以四面体各面为底,内切球心O 为顶点的各三棱锥体积的和为V ,∴V =13S 1r +13S 2r+13S 3r +13S 4r ,∴r =3V S 1+S 2+S 3+S 4. 5.观察下图中各正方形图案,每条边上有n (n ≥2)个圆圈,每个图案中圆圈的总数是S ,按此规律推出S 与n 的关系式为____________.解析:每条边上有2个圆圈时共有S =4个;每条边上有3个圆圈时,共有S =8个;每条边上有4个圆圈时,共有S =12个.可见每条边上增加一个点,则S 增加4,∴S 与n 的关系为S =4(n -1)(n ≥2).答案:S =4(n -1)(n ≥2)6.可以运用下面的原理解决一些相关图形的面积问题:如果与一固定直线平行的直线被甲、乙两个封闭的图形所截得的线段的比都为k ,那么甲的面积是乙的面积的k 倍.你可以从给出的简单图形①、②中体会这个原理.现在图③中的两个曲线的方程分别是x 2a 2+y 2b 2=1(a >b >0)与x 2+y 2=a 2,运用上面的原理,图③中椭圆的面积为______________.解析:由于椭圆与圆截y 轴所得线段之比为ba , 即k =b a ,∴椭圆面积S =πa 2·b a =πab . 答案:πab7.观察下列两个等式:①sin 210°+cos 240°+sin 10°cos 40°=34①;②sin 26°+cos 236°+sin 6°cos 36°=34②.由上面两个等式的结构特征,你能否提出一个猜想?并证明你的猜想. 解:由①②知若两角差为30°,则它们的相关形式的函数运算式的值均为34.猜想:若β-α=30°,则β=30°+α,sin 2α+cos 2(α+3 0°)+sin αcos(α+30°)=34.下面进行证明:左边=sin 2α+cos(α+30°)[cos(α+30°)+sin α] =sin 2α+⎝⎛⎭⎫32cos α-12sin α⎝⎛⎭⎫32cos α+12sin α=sin 2α+34cos 2α-14sin 2α=34=右边.所以,猜想是正确的.故sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34.8.已知在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于点D ,有1AD 2=1AB 2+1AC 2成立.那么在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,并说明猜想是否正确及理由.解:猜想:类比AB ⊥AC ,AD ⊥BC ,可以猜想四面体A -BCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD .则1AE 2=1AB 2+1AC 2+1AD2.下面证明上述猜想成立如图所示,连接BE ,并延长交CD 于点F ,连接AF . ∵AB ⊥AC ,AB ⊥AD , AC ∩AD =A , ∴AB ⊥平面ACD .而AF ⊂平面ACD ,∴AB ⊥AF . 在Rt △ABF 中,AE ⊥BF , ∴1AE 2=1AB 2+1AD 2.在Rt△ACD中,AF⊥CD,∴1AF2=1AC2+1AD2.∴1AE2=1AB2+1AC2+1AD2,故猜想正确.。
数学1-1 合情推理练习题
一、选择题
1.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为这些数
目的点可以排成一个正三角形(如图),则第七个三角形数是( )
A .27
B .28
C .29
D .30
2.根据给出的数塔猜测123456×9+7等于( )
1×9+2=11 12×9+3=111 123×9+4=1111 1234×9+5=11111
12345×9+6=111111 ……
A .1111110
B .1111111
C .1111112
D .1111113
3.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:
他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将
其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形
数.下列数中既是三角形数又是正方形数的是( )
A .289
B .1024
C .1225
D .1378
4.下面类比推理中恰当的是( )
A .“若a ·3=b ·3,则a =b ”类比推出“若a ·0=b ·0,则a =b ”
B .“(a +b )c =ac +bc ”类比推出“(a ·b )c =ac ·bc ”
C .“(a +b )c =ac +bc ”类比推出“a +b c =a c +b c
(c ≠0)” D .“(ab )n =a n b n ”类比推出“(a +b )n =a n +b n ”
5.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式:S =底×高2
,可推知扇形面积公式S 扇等于( )
A.r 22
B.l 22
C.lr 2
D .不可类比 6.下列哪个平面图形与空间图形中的平行六面体作为类比对象较合适( )
A .三角形
B .梯形
C .平行四边形
D .矩形
7.观察右图图形规律,在其右下角的空格内画上合适的图形为( )
A. B .△ C .▭ D .○
8.下列推理正确的是( )
A .把a (b +c )与log a (x +y )类比,则有log a (x +y )=log a x +log a y
B .把a (b +c )与sin(x +y )类比,则有sin(x +y )=sin x +sin y
C .把a (b +c )与a x +y 类比,则有a x +
y =a x +a y
D .把a (b +c )与a ·(b +c )类比,则有a ·(b +c )=a ·b +a ·c
9.我们把1,4,9,16,25,…这些数称作正方形数,这是因为这些数
目的点子可以排成一个正方形(如下图),则第n 个正方形数是( )
A .n (n -1)
B .n (n +1)
C .n 2
D .(n +1)2
10.下面几种推理是合情推理的是( )
①由圆的性质类比出球的有关性质 ②由直角三角形、等腰三角形、等边三角形内角和是180°,归纳出所有三角形的内角和都是180° ③某次考试张军成绩是100分,由此推出全班同学成绩都是100分 ④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,归纳出n 边形内角和是(n -3)·180°
A .①②
B .①③④
C .①②④
D .②④
二、填空题
11.对于平面几何中的命题:“夹在两平行线之间的平行线段的长度相等”,在立体几何中,类比上述命题,可以得到的命题是:________________________________________.
12.观察下列等式:13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,…,根据上述规律,第四个等式为________________________________________.
13.经计算发现下列正确不等式:2+18<210,4.5+15.5<210,3+2+17-2<210,…,根据以上不等式的规律,试写出一个对正实数a 、b 成立的条件不等式:________________________________________.
14.如图,已知命题:若矩形ABCD 的对角线BD 与边
AB 和BC 所成的角分别为α,β,则cos 2α+cos 2β=1,则在长
方体ABCD -A 1B 1C 1D 1中,可写出类似的命题:
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
三、解答题
15.已知:1+2=3,1+2+3=6,1+2+3+4=10,…,1+2+3+4+…+n =
n (n +1)2
,观察下列立方和13,13+23,13+23+33,13+23+33+43+…,试归纳出上述求和的一般公式.
16.设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0(n ≥1,n ∈N ),试归纳出这个数列的通项公式.
17.平面内有n 个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点,若f (n )表示这n 个圆把平面分割成的区域数,试求f (n ).
18.若a 1、a 2∈R +
,则有不等式a 21+a 222≥⎝⎛⎭⎫a 1+a 222成立,此不等式能推广吗?请你至少写出两个不同类型的推广.。