算法合集之《生成树的计数及其应用》
- 格式:ppt
- 大小:479.00 KB
- 文档页数:27
生成树的计数郑艺容;周雪【摘要】In this paper, we explored the possibility of counting spanning tree in a combinatorial approach. We got three combinatorial identifies applying the inclusion-exclusion principle. Based on these identifies and mathematics induction, we gave an easy proof for the Cayley’s formula using a combinatorial argument. The approach combines the problem of graphical enumeration with classical problems in combinatorial mathematics and reveals the essence of the problem of counting spanning trees with better effect.%从组合数学的角度研究生成树的计数。
先利用容斥原理,得到3个组合恒等式,再从组合数学的角度出发,并利用数学归纳法给出了Cayley’s 公式的又一简便证明。
该计数方法将图的计数问题与组合数学中的经典问题联系起来,更好地揭示了生成树计数的本质。
【期刊名称】《厦门理工学院学报》【年(卷),期】2015(000)001【总页数】3页(P95-97)【关键词】Cayley’s 公式;生成树;容斥原理;数学归纳法【作者】郑艺容;周雪【作者单位】厦门理工学院应用数学学院,福建厦门361024; 福州大学离散数学中心,福建福州350003;福州大学离散数学中心,福建福州350003【正文语种】中文【中图分类】O157计算图的不同生成树的个数是图的计数问题中的一个重要研究课题.1857年,Cayley [1] 在研究给定碳原子数n的饱和碳氢化合物(CnH2n+2)的同分异构体的数目时,提出“树”的概念,即不含圈的连通图.如果连通图G的一个子图T是一棵树,且包含G的所有顶点,则该子图T称为G的生成树(Spanning Tree).设G 是一个图,t(G)表示G中不同生成树的个数.Cayley于1889年给出计算n阶完全图的不同生成树个数的公式,即著名的Cayley’s 公式.定理1 [2] (Cayley’s 公式) n阶完全图的不同生成树的个数Cayley’s 公式有很多不同的证明方法,参见文献[2-5].本文又给出Cayley’s 公式的又一简单证明.首先介绍一些基本概念和结论.容斥原理是组合数学中一个非常重要的定理,其内容如下:定理2[6 ] (容斥原理) 设A是有限集,Ai⊆A(i=1,2,…,n,n≥2),则设N={1,2,…,n},M={1,2,…,m},A表示N上所有p维数组构成的集合,其中p<m≤n.因为p<m,那么对A中的任意一个p维数组s,存在M中的元素i∉s.令Ai(i=1,2,…,m)表示A中不含有i的p维数组构成的集合,易知A=A1∪A2∪…∪Am.引理m.定理3 设n,m,p∈N+,p<m≤n,则以下组合恒等式成立证明A,Ai(i=1,2,…,m)定义如上.首先,由乘法原理可知.又A=A1∪A2∪…∪Am,根据容斥原理、对称性及引理1可得:特别地,当p=n-2时可得以下推论:推论(n≥3).以下给出Cayley’s 公式的另一简单证明.设T表示所有n阶生成树构成的集合,tn表示所有n阶生成树的个数,即.Ti(i=1,2,…,n)表示顶点i为树叶的所有n阶生成树构成的集合.引理2 集合T1∩T2∩…∩Tk满足:.证明由上述定义可知:T1∩T2∩…∩Tk那么表示顶点1,2,…,k(1≤k≤n)均为树叶的n阶生成树构成的集合,这样的任意一棵树可经过下述两个步骤得到.(i)由顶点k+1,k+2,…,n导出的子图T是一棵树,易知恰好有tn-k个这样的T;(ii)把顶点1,2,…,k添加到T中得到树T,使得顶点i(1,2,…,k)为T的树叶,即顶点i 恰好与顶点k+1,k+2,…,n中的某一个顶点相邻,这样的方式共有(n-k)k种,根据乘法计数原理可得:=(n-k)ktn-k .引理3 n阶不同生成树的个数tn满足:tn=1(n=1,2);(n≥3).证明T表示所有n阶生成树构成的集合,Ti(i=1,2,…n)表示所有n阶生成树中顶点i为树叶的生成树构成的集合,由于每棵非平凡树至少有两片树叶,故T=T1∪T2∪…∪Tn,由容斥原理、对称性及引理2可知:以下给出Cayley’s 公式的另一证明.定理4 所有不同n阶生成树的个数tn=nn-2 ( Cayley’s 公式)证明用数学归纳法(i)易知t1=t2=1,t3=3 结论显然成立.(ⅱ)假设定理对小于n的正整数都成立.(ⅲ)以下证明对n结论成立.根据引理3Cayley’s 公式是图计数中的经典公式,已有很多不同的证明方法,本文利用由容斥原理得到的组合恒等式并借助数学归纳法给出Cayley’s 公式的又一简单证明.接下来可进一步研究Cayley’s 公式的不同证明方法,特别是能将图的其它经典问题与图的计数问题联系起来证明Cayley’s 公式,更好地揭示图论中的一些本质联系.2【相关文献】[1]CAYLEY A.On the theory of the analytical forms called trees[J].Philophical Magazine,1857,13(4):172-176.[2]CAYLEY A.A theorem on trees[J].Quart J Math,1989,23:376-378.[3]SHOR P W.A new proof of Cayley’s formula for counting l abeled trees[J].J Combin Theory:Series A,1995,71:154-158.[4]ARIANNEJAD M,EMAMI M.A new proof of Cayley’s formula for counting labeled spanning trees[J].Electronic Notes in Discr Math,2014,45:99-102.[5]GODSIL C,ROYLE G.Algebraic graph theory[M].New York:Springer-Verlag,2001.[6]曹汝成.组合数学[M].广州:华南理工大学出版社,2000.。
算法合集之《生成树的计数及其应用》生成树是图论中的一个重要概念,指的是一个连通图中的一个子图,它包含图中的所有顶点,并且是一个树结构,即没有回路。
生成树可以应用于许多实际问题中,如网络设计、电路设计等。
生成树的计数是指给定一个图,计算其中生成树的个数。
本文将介绍生成树的计数方法及其应用。
生成树个数的计数方法主要有两种:基于度数矩阵的方法和基于邻接矩阵的方法。
基于度数矩阵的方法是通过度数矩阵计算生成树的个数。
度数矩阵是一个n*n的矩阵,其中第i行第j列的元素表示顶点i的度数。
对于一个连通图,它的度数矩阵满足以下性质:矩阵中每个元素都是对称的,对角线上的元素为顶点的度数,非对角线上的元素为-1、生成树的个数可以通过计算度数矩阵的行列式的值来获得。
基于邻接矩阵的方法是通过邻接矩阵计算生成树的个数。
邻接矩阵是一个n*n的矩阵,其中第i行第j列的元素表示顶点i和顶点j之间是否存在一条边。
对于一个连通图,它的邻接矩阵满足以下性质:矩阵中每个元素都是对称的,对角线上的元素为0,非对角线上的元素为1、生成树的个数可以通过计算邻接矩阵的专门构造的拉普拉斯矩阵的行列式的值来获得。
生成树的计数方法在实际应用中有着广泛的应用。
以下是两个典型的应用案例。
1.网络设计:在网络设计中,生成树可以用来表示一个网络的拓扑结构。
生成树的计数可以帮助设计师在设计网络时选择最佳的拓扑结构,以提高网络的可靠性和性能。
例如,在构建一个数据中心的网络时,生成树的计数可以帮助设计师选择恰当的网络拓扑结构,使得数据中心能够快速传输数据,并且故障时能够保持高可用性。
2.电路设计:在电路设计中,生成树可以用来表示电路中的连接关系。
生成树的计数可以帮助设计师评估电路的性能,并且选择合适的电路结构以优化电路的功耗和响应速度。
例如,在设计一个数字电路时,生成树的计数可以帮助设计师选择合适的连接方式,以最小化电路中的延迟和功耗。
综上所述,生成树的计数及其应用是一个复杂而重要的问题。
生成树的计数及其应用安徽周冬目录生成树的计数及其应用 (1)目录 (1)摘要 (2)关键字 (2)问题的提出 (2)[例一]高速公路(SPOJ p104 Highways) (2)[分析] (2)预备知识 (2)排列 (3)行列式 (4)新的方法 (7)介绍 (7)证明 (9)理解 (12)具体应用 (12)[例二]员工组织(UVA p10766 Organising the Organisation) (13)[分析] (13)[例三]国王的烦恼(原创) (13)[分析] (14)总结 (14)参考文献 (14)摘要在信息学竞赛中,有关生成树的最优化问题如最小生成树等是我们经常遇到的,而对生成树的计数及其相关问题则少有涉及。
事实上,生成树的计数是十分有意义的,在许多方面都有着广泛的应用。
本文从一道信息学竞赛中出现的例题谈起,首先介绍了一种指数级的动态规划算法,然后介绍了行列式的基本概念、性质,并在此基础上引入Matrix-Tree定理,同时通过与一道数学问题的对比,揭示了该定理所包含的数学思想。
最后通过几道例题介绍了生成树的计数在信息学竞赛中的应用,并进行总结。
关键字生成树的计数Matrix-Tree定理问题的提出[例一]高速公路(SPOJ p104 Highways)一个有n座城市的组成国家,城市1至n编号,其中一些城市之间可以修建高速公路。
现在,需要有选择的修建一些高速公路,从而组成一个交通网络。
你的任务是计算有多少种方案,使得任意两座城市之间恰好只有一条路径?数据规模:1≤n≤12。
[分析]我们可以将问题转化到成图论模型。
因为任意两点之间恰好只有一条路径,所以我们知道最后得到的是原图的一颗生成树。
因此,我们的问题就变成了,给定一个无向图G,求它生成树的个数t(G)。
这应该怎么做呢?经过分析,我们可以得到一个时间复杂度为O(3n*n2)的动态规划算法,因为原题的规模较小,可以满足要求。
但是,当n再大一些就不行了,有没有更优秀的算法呢?答案是肯定的。
最小生成树算法总结最小生成树是指在一个无向连通图中,找到一个子树,使得这棵子树中所有边的权值之和最小。
最小生成树可以用于最优化问题,例如道路铺设、网络布线等。
下面将介绍三种最小生成树算法:Prim算法、Kruskal算法、Boruvka算法。
1. Prim算法Prim算法是一种贪心算法,从一个点开始,每次添加连接到已有集合中的最小边,直到所有点都在同一个集合中。
可以用以下步骤描述Prim算法:(1) 选择一个起点,将该起点加入最小生成树的顶点集合,然后将该顶点相邻的边加入边集合中。
(2) 从边集合中找到权值最小的一条边,将该边对应的顶点加入最小生成树的顶点集合,同时将该顶点相邻的边加入边集合中。
(3) 重复上述步骤,直到所有顶点都在最小生成树的顶点集合中。
Prim算法的实现可以使用堆优化,时间复杂度为O(E + VlogV),其中E为边数,V为顶点数。
2. Kruskal算法Kruskal算法也是一种贪心算法,与Prim算法不同的是,Kruskal算法是按照边的权值从小到大依次添加,直到所有顶点都在同一个集合中。
可以用以下步骤描述Kruskal算法:(1) 将所有边按照权值从小到大排序。
(2) 依次取出排好序的边,如果该边所连接的两个顶点不在同一个集合中,就将这条边加入最小生成树的边集合中,并将这两个顶点合并到同一个集合中。
(3) 重复步骤(2),直到所有顶点都在同一个集合中。
Kruskal算法的实现可以使用并查集,时间复杂度为O(ElogE),其中E为边数。
3. Boruvka算法Boruvka算法是一种基于集合的分治算法,与Prim算法和Kruskal算法不同,Boruvka算法的时间复杂度是线性的。
可以用以下步骤描述Boruvka算法:(1) 对每个顶点建立单元素集合。
(2) 对每个集合,选择与该集合相连的最小权值的边,将这些边添加到最小生成树的边集合中,并将这些集合合并到同一个集合中。
(3) 如果只剩下一个集合,算法结束。
生成树算法的三个步骤生成树是图论中的重要概念,它描述了一个连通图的一个子图,该子图包含了图中的所有顶点,并且是无环的。
生成树算法是用来找到一个连通图的生成树的一种方法。
本文将介绍生成树算法的三个步骤:图的遍历、边的选择和生成树的构建。
一、图的遍历图的遍历是生成树算法的第一步,它的目的是将图中的所有顶点访问一遍。
常用的图的遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。
深度优先搜索是通过递归的方式进行遍历,从某个顶点开始,先访问它的一个邻接顶点,然后再递归地访问该邻接顶点的邻接顶点,直到所有顶点都被访问过。
广度优先搜索是通过队列的方式进行遍历,从某个顶点开始,先访问它的所有邻接顶点,然后再依次访问这些邻接顶点的邻接顶点,直到所有顶点都被访问过。
二、边的选择边的选择是生成树算法的第二步,它的目的是选择一些边,使得这些边构成一个连通图的生成树。
常用的边的选择算法有最小生成树算法和最大生成树算法。
最小生成树算法的目标是选择一些边,使得这些边的权值之和最小。
常用的最小生成树算法有普里姆算法和克鲁斯卡尔算法。
普里姆算法是从一个顶点开始,每次选择一条最小权值的边,将该边连接的顶点加入到生成树中,直到所有顶点都被加入到生成树中。
克鲁斯卡尔算法是先将所有边按照权值从小到大排序,然后依次选择权值最小的边,如果这条边连接的两个顶点不在同一个连通分量中,则将这条边加入到生成树中。
最大生成树算法的目标是选择一些边,使得这些边的权值之和最大。
常用的最大生成树算法有逆克鲁斯卡尔算法和逆普里姆算法。
逆克鲁斯卡尔算法和逆普里姆算法的原理与克鲁斯卡尔算法和普里姆算法相反。
三、生成树的构建生成树的构建是生成树算法的第三步,它的目的是根据选择的边构建一个生成树。
生成树可以用邻接矩阵或邻接表来表示。
邻接矩阵是一个二维数组,其中的元素表示两个顶点之间是否有边。
邻接表是一种链表的数据结构,其中的每个节点表示一个顶点,节点的值表示该顶点的邻接顶点。
几种图的生成树的数目
严坤妹
【期刊名称】《福建商业高等专科学校学报》
【年(卷),期】2009(000)005
【摘要】连通图G的生成树是它的极小连通生成子图.对给定图G来说,如何精确求解出国的全部生成树的数目,是图论中一个重要的问题;对于特殊的图类已经有着各种各样的计算方法,文章利用图的Kirchhoff矩阵研究了一些图类的生成树的数目,并给出了相应的生成树数的计算公式.
【总页数】4页(P85-88)
【作者】严坤妹
【作者单位】福建商业高等专科学校基础部,福建,福州,350012
【正文语种】中文
【中图分类】O157.6
【相关文献】
1.图类 Kn-CS 4(a1,a2,a3,a4)的生成树数目最大化条件 [J], 谭秋月
2.有关对称无权图生成树数目的拆分定理 [J], 龚和林;王伟
3.利用对偶图求平面图的生成树数目 [J], 徐幼专;徐立新
4.一类k-正则图的生成树数目与熵 [J], 贾环身;吴廷增
5.特殊图类的生成树数目 [J], 谢尘倩;陈平鸽
因版权原因,仅展示原文概要,查看原文内容请购买。
图论中的生成树枚举算法在图论中,生成树是指一个连通图的一颗包含所有顶点的无回路子图。
生成树枚举算法即是通过遍历图中所有可能的生成树,找出其中的最优解或满足特定条件的解。
本文将介绍图论中的生成树枚举算法及其应用。
一、生成树枚举算法的基本原理生成树枚举算法的基本思想是在图中逐个枚举各个边的选择情况,通过判断生成树条件来确定是否选择该边。
在遍历过程中,需要使用一些数据结构来辅助算法的实现,如栈、队列等。
二、DFS算法DFS(深度优先搜索)是一种常用的生成树枚举算法。
该算法通过递归的方式对图进行遍历,从一个顶点开始,沿着一条路径一直往下搜索直到无法继续为止,然后回溯到上一个顶点,继续搜索其他路径。
在遍历的过程中,使用一个标记数组来记录已经访问过的顶点,避免重复遍历。
三、BFS算法BFS(广度优先搜索)是另一种常用的生成树枚举算法。
该算法使用队列来辅助遍历,从一个顶点开始,将该顶点入队,然后把与该顶点相邻的未访问过的顶点全部入队。
接着将队首顶点出队,并标记为已访问,继续将其未访问过的相邻顶点入队。
直到队列为空为止,算法结束。
四、应用场景生成树枚举算法在实际应用中有着广泛的适用性。
以下是其中几个常见的应用场景:1. 网络设计:在网络拓扑结构设计中,生成树算法可以用于选择最优的网络链路连接方式,以提供最佳的传输质量和可靠性。
2. 最小生成树:生成树枚举算法可以用于寻找图中的最小生成树,即连接所有顶点且总边权最小的生成树。
常用的算法包括Prim算法和Kruskal算法。
3. 路径规划:在求解最短路径问题时,生成树枚举算法可以辅助确定从起点到终点的最短路径。
4. 社交网络分析:生成树枚举算法可以用于分析社交网络中的关系,例如在微博转发传播过程中,通过枚举生成树可以确定信息传播的路径。
五、总结生成树枚举算法是图论中的重要算法之一,它通过遍历图中所有可能的生成树来找到最优解或满足特定条件的解。
DFS和BFS是两种常用的生成树枚举算法,它们在不同场景下可以灵活运用。
生成树算法
生成树算法是图论中的一个重要概念,它可以用来找到一张图的最小生成树。
最小生成树是一张图的一个子图,它包含了原图中的所有节点,并且连接这些节点的边的权重之和最小。
常用的生成树算法包括Kruskal算法和Prim算法。
Kruskal算
法的思路是将图中所有边按照权重从小到大排序,然后逐个加入生成树中,直到生成树包含了原图中的所有节点为止。
Prim算法的思路
是从一个起始节点开始,逐步地将与该节点相连的边加入生成树中,每次选择权重最小的边。
除了Kruskal算法和Prim算法,还有一些其他的生成树算法,
比如Boruvka算法和Huffman算法。
这些算法各有特点,适用于不同的场景。
生成树算法在实际应用中有着广泛的应用,比如在计算机网络中,生成树算法可以用来构建网络的拓扑结构,以及优化数据传输的效率。
在城市规划中,生成树算法可以用来规划道路和建筑物的布局。
- 1 -。