数学建模方法 离散模型
- 格式:ppt
- 大小:492.00 KB
- 文档页数:32
离散模型§ 1 离散回归模型一、离散变量如果我们用0,1,2,3,4,⋯说明企业每年的专利申请数,申请数是一个离散的变量,但是它是间隔尺度变量,该变量类型不在本章的讨论的被解释变量中。
但离散变量0和1可以用来说明企业每年是否申请专利的事项,类似表示状态的变量才在本章的讨论中。
在专利申请数的问题中,离散变量0,1,2,3 和4 等数字具有具体的经济含义,不能随意更改;而在是否申请专利的两个选择对象的选择问题中,数字0和1只是用于区别两种不同的选择,是表示一种状态。
本专题讨论有序尺度变量和名义尺度变量的被解释变量。
、离散因变量在讨论家庭是否购房的问题中,可将家庭购买住房的决策用数字1 表示,而将家庭不购买住房的决策用数字0 表示。
1 yesx0 no如果x 作为说明某种具体经济问题的自变量,则应用以前介绍虚拟变量知识就足够了。
如果现在考虑某个家庭在一定的条件下是否购买住房问题时,则表示状态的虚拟变量就不再是自变量,而是作为一个被说明对象的因变量出现在经济模型中。
因此,需要对以前讨论虚拟变量的分析方法进行扩展,以便使其能够适应分析类似家庭是否购房的问题。
因为在家庭是否购房问题中,虚拟因变量的具体取值仅是为了区别不同的状态,所以将通过虚拟因变量讨论备择对象选择的回归模型称为离散选择模型。
三、线性概率模型现在约定备择对象的0 和1 两项选择模型中,下标i 表示各不同的经济主体,取值0或l的因变量 y i表示经济主体的具体选择结果,而影响经济主体进行选择的自变量 x i 。
如果选择响应YES 的概率为 p(y i 1/ x i ) ,则经济主体选择响应NO 的概率为 1 p(y i 1/ x i),则E(y i /x i) 1 p(y i 1/x i) 0 p(y i 0/x i)= p(y i 1/x i)。
根据经典线性回归,我们知道其总体回归方程是条件期望建立的,这使我们想象可以构造线性概率模型p(y i 1/ x i) E(y i / x i) x iβ0 1 x i1 L k x ik u i描述两个响应水平的线性概率回归模型可推知,根据统计数据得到的回归结果并不一定能够保证回归模型的因变量拟合值界于[0,1]。
实验09 离散模型(2学时)(第8章离散模型)1. 层次分析模型1.1(验证,编程)正互反阵最大特征根和特征向量的实用算法p263~264已知正互反阵261????1/21A?4????1/461/1??注:[263]定理2 n阶正互反阵A的最大特征根≥n。
★(1) 用MATLAB函数求A的最大特征根和特征向量。
调用及运行结果(见[264]):1 3.0092k =1>> w=V(:,k)/sum(V(:,k))w =0.58760.32340.0890[263])(2) 幂法(见n正互反矩阵,算法步骤如下:A为n×(0)w 1);a. 任取n 维非负归一化初始列向量(分量之和为)k?1)((k2,0,1,?Aww,k?;计算b.1)?(k w1)k?(?w1)k?(w归一化,即令c. ;n?1)?(k w i1i?)(1)k(k?1)k?(?)n|?|w,(i?w?1,2,w即,当d. 对于预先给定的精度ε时,iib;为所求的特征向量;否则返回到步骤1)?(kn w1??i?。
e. 计算最大特征根)(k wn1i?i 注:)k(k?1)(((k)k)???wAw??ww?1)(k? w?i n,i?1,2,??)k(w i文件如下:函数式m [lambda w]=p263MI(A,d)function——求正互反阵最大特征根和特征向量%幂法% A 正互反方阵% d 精度 2 % lambda 最大特征根归一化特征列向量% w0.000001,则d取if(nargin==1) %若只输入一个变量(即A)d=1e-6;end的阶数取方阵A n=length(A); %任取归一化初始列向量w0=w0/sum(w0);%w0=rand(n,1);1while ww=A*w0;%归一化w=ww/sum(ww);all(abs(w-w0)<d) if; breakendw0=w;endlambda=sum(ww./w0)/n;的最大特征根和特征向量。
数学建模离散优化模型与算法设计数学建模在离散优化问题的解决中起着重要的作用。
离散优化问题是指在给定的离散集合上寻找最优解的问题,一般包括整数规划、组合优化、排班优化等。
数学建模则是将实际问题转化为数学模型的过程,在离散优化问题中,需要设计相应的数学模型,并通过算法求解最优解。
离散优化问题的数学模型通常包括目标函数和约束条件两个方面。
目标函数用于衡量解的优劣程度,约束条件则是对解的限制条件。
通过定义合适的目标函数和约束条件,可以将实际问题转化为一个数学优化问题。
在构建数学模型时,需要考虑实际问题的特点。
例如,在排班优化问题中,需要考虑员工的需求以及工作时间的限制,将员工的排班安排转化为一个数学模型。
在整数规划问题中,需要考虑变量的取值范围,将问题转化为整数规划模型。
在数学建模的基础上,需要设计相应的算法来求解离散优化问题。
常见的算法包括贪心算法、动态规划算法、遗传算法等。
选择合适的算法取决于问题的规模和特点。
贪心算法是一种简单而直观的算法,每一步都选择当前最优的解来构建解空间,在一些问题上具有较好的效果。
动态规划算法则通过将问题划分为一系列子问题,并保存子问题的解,从而避免重复计算,提高计算效率。
遗传算法则是一种模拟生物进化的算法,通过遗传、交叉和变异等操作来最优解。
除了算法设计,还需要考虑算法的优化。
例如,在排班优化问题中,可以通过合理的约束条件和目标函数设计,来减少空间,提高算法效率。
此外,还可以使用启发式算法等方法来加速过程。
总之,数学建模在离散优化问题的解决中起着重要的作用。
通过合适的数学模型和算法设计,可以有效地求解离散优化问题,并得到最优解。
在实际应用中,还需要考虑问题的特点来选择合适的算法,并通过优化算法提高求解效率。