压缩机节能改造方案
- 格式:doc
- 大小:81.50 KB
- 文档页数:11
压缩机节能技术方案一、背景。
咱都知道压缩机这玩意儿可费电啦。
就像一个大胃王,整天嗷嗷待哺地吞着电。
不过呢,现在咱得想办法让它少吃点电,还能干同样的活儿,这就是咱这个节能方案的目标。
二、节能技术措施。
1. 优化压缩机的运行参数。
转速调整:咱先看看压缩机现在的转速,就像汽车的速度一样。
有时候它可能转得太快啦,就像人跑步的时候没必要冲刺却一直在冲刺,白白浪费力气。
我们可以根据实际的生产需求或者制冷/制热需求来调整转速。
比如说,如果是在夜间,需求量小,咱就把转速降下来。
这就好比晚上睡觉的时候,不需要像白天活动时那么大口呼吸,降低呼吸频率(转速)就能省不少能量呢。
压力控制:压缩机的压力也很关键。
如果压力设置得过高,就像给气球打气打得太鼓,很容易爆掉而且还费力气。
我们要精确测量实际需要的压力,把它设定在一个既能满足工作要求又不会过高的数值。
这就像是给一个需要坐两个人的小船,只要刚好能浮起来并且稳稳当当的气压就好,没必要把气压打得像要载十个人那么高。
2. 采用变频技术。
变频压缩机就像一个聪明的小助手。
传统的压缩机就像个傻大个,不管工作量大小,总是按照固定的功率运行。
而变频压缩机呢,它能根据负载的变化自动调整频率。
比如说,在刚开始制冷或者制热的时候,可能需要大功率运行,它就高速运转起来。
等温度差不多达到设定值了,负载小了,它就自动降低频率,慢悠悠地维持着就行了。
这就好比一个人挑担子,刚开始担子重,他就大步快走,等担子轻了,他就小步慢走,这样就能节省体力(电能)啦。
3. 改善压缩机的维护保养。
定期清理:压缩机用久了,就像人身上会有灰尘污垢一样,它里面也会脏脏的。
灰尘啊、油污啊都会影响它的运行效率。
咱们定期给它打扫卫生,就像给人洗澡一样。
把那些影响散热的灰尘清理掉,让它能畅快地呼吸(散热),这样它工作起来就轻松多了,也能省点电。
检查密封:压缩机的密封要是不好,就像水桶有个小漏洞,一边打水一边漏水。
我们要经常检查密封件,确保没有气体泄漏。
空压机节能改造方案
背景
空气压缩机是现代工业中必不可少的设备,但运行中会消耗大量电能,造成能源浪费。
因此,如何在保证正常生产的前提下降低空压机能耗和提高能源利用率就成了一项重要的问题。
节能改造方案
1. 实施压缩机内部节能措施
•更换高效节能变频机组:采用电子软启动进行马达启动,运行稳定,避免了传统压缩机随即启停过程中的能耗损失。
•优化制冷系统:增加冷却水,减少啤酒扭矩和背压。
•安装热回收系统:将空气产生的热量转换为热水等能源,提高能源利用效率。
2. 控制空压机使用条件
•采用ICT以及电子式恒压控制:通过电子控制完成压力上下浮动的调控,节省能源消耗。
3. 更换高效节能设备
•更换压缩机主机和空压机各级机组,效率可提升20%~30%。
•用高效干燥系统代替传统冷却水或制冷干燥机,能耗可降低30%以上。
•用高效精密过滤器代替传统粗过滤器,能耗可降低10%~20%。
节能改造效果
空压机节能改造方案可大大降低能源消耗,提高能源利用率,具有显著的节能效果,从而达到减少污染物排放和改善环境的目的。
同时,能有效降低生产成本,提高经济效益。
浅析空压机系统节能改造方案一、空压机设备的选型空气压缩机是在工业生产中广泛使用的一种设备,不同类型的压缩机有着不同的性能和能耗。
因此,在进行节能改造时,需要根据实际情况选择合适的设备。
选择的设备应该是具有高效、稳定、可靠等特点的产品,同时,应该根据生产实际需求来选择不同类型的压缩机,如螺旋式压缩机、液体环式压缩机等。
二、对空压机系统的优化设计在进行节能改造时,需要严格按照设计要求对空压机系统进行优化设计。
优化设计可以进一步提高系统的效率,减少能源的消耗。
具体而言,可以从以下几个方面进行优化设计:(1)气源系统的优化设计。
气源系统的设计包括管道网络的设计、气源系统的压力调节、干燥除湿系统的设计等。
通过合理的设计,可以减少气源系统的压力损失,降低系统运行的能耗。
(2)压缩机系统的优化设计。
优化设计主要包括压缩机运行时的节能管理和压缩机的自动控制。
通过科学的节能管理和自动控制,可以大幅度降低空压机的能耗和运行成本。
(3)系统的调试和维护。
系统调试和维护是非常重要的一环,只有保证系统的正常运行,才能使系统保持高效的运行状态,从而减少能源的消耗。
三、运行方式的改变如何改变空压机的运行方式是进行节能改造的重点之一。
空气压缩机在运行时通常需要经过启动、空载、负载、停止等不同阶段,而这些不同的阶段会对能源的消耗产生不同的影响。
因此,为了减少能源的消耗,应该尽可能将空气压缩机的运行方式调整到最佳状态,如采用变频控制、定压连续运行等。
四、余能回收压缩空气在压缩过程中会产生大量的热量和振动能,如果不能有效回收利用,将会造成很大的浪费。
因此,在进行节能改造时,应该充分利用余能,如采用空气预热回收、余热回收等,充分回收余能,改善能源利用效率。
总之,空压机的节能改造方案应该充分考虑压缩机的选型、系统的优化设计、运行方式的改变和余能回收等方面,以实现减少能源消耗,提高能源利用效率的目的。
此外,企业还需要注意技术改造的实施和环保要求的满足,采用科学、合理的技术手段,完善环保管理,建立长效机制,推动企业可持续发展。
隔膜式压缩机的节能改造与优化设计随着能源的日益缺乏和环境污染的问题日益突出,节能减排已经成为了一个重要的课题。
在工业生产中,压缩机是一个耗能较大的设备,因此如何进行节能改造和优化设计对于减少能源消耗和保护环境具有重要意义。
本文将针对隔膜式压缩机的节能改造与优化设计进行讨论与探究。
1. 节能改造1.1 能源利用效率提升隔膜式压缩机是一种常用的工业压缩机,其工作原理是通过隔膜的运动将气体进行压缩。
节能改造的首要任务是提升能源利用效率。
在设计隔膜式压缩机时,可以采用优化的隔膜结构和材料,提高隔膜的传导热量和抗压能力,降低能量的损失。
此外,合理设计隔膜式压缩机的排气系统和冷却系统,提高热能的回收利用率,减少能量的浪费。
1.2 节约运行能耗隔膜式压缩机在实际工作中,通常采用电力作为动力源。
为了减少运行能耗,可以在节能改造过程中引入智能控制系统。
通过对压缩机的运行参数进行实时监测和控制,合理调整压缩机的负荷匹配和运行模式,避免不必要的能耗。
此外,还可以对压缩机进行智能管理,根据不同的生产需求和电网负荷情况,选择合适的运行时间和运行策略,将能源利用最大化。
2. 优化设计2.1 结构设计优化在隔膜式压缩机的设计中,结构优化是提高其性能和效率的关键。
通过合理设计和优化压缩机的结构参数,可以改善其气动性能和传热性能。
例如,通过改变隔膜的形状和厚度,调整气体流动的路径和速度,减小能量的损失和气阻,提高压缩机的压缩比和效率。
此外,还可以采用新型的材料和涂层技术,提高隔膜的耐磨性和导热性,进一步提高压缩机的性能和寿命。
2.2 控制系统优化隔膜式压缩机的控制系统也是优化设计的重要部分。
通过改进控制系统的控制算法和信号处理技术,提高对压缩机的控制精度和稳定性。
例如,可以采用先进的模糊控制、神经网络控制或模型预测控制等智能控制方法,实现对压缩机运行参数的精确控制和优化调节。
此外,还可以引入故障诊断技术和预防性维护策略,及时发现和排除隔膜式压缩机的故障,减少生产停机和能源浪费。
空压机节能项目计划书一、项目背景随着工业化进程的加快和能源消耗的增大,企业在生产过程中需要使用大量的能源,其中包括电力、燃气等。
空气压缩机在许多生产过程中起着至关重要的作用,但同时也消耗了大量电力。
根据统计数据显示,全球每年有大量的电力被用于空气压缩机,而其中的很大一部分能源也存在着浪费的现象。
二、项目目标本项目的目标是对现有的空气压缩机进行节能改造,实现以下目标:1. 提高空气压缩机的能效比,降低能源消耗;2. 减少企业生产成本,提高经济效益;3. 增强企业环保形象,提升企业社会责任感。
三、项目内容1. 对现有空气压缩机进行能效评估,确定能效改造的方向和重点;2. 对空气压缩机的主要部件进行技术改良和优化;3. 安装节能设备,如变频器、能效控制系统等,提高空气压缩机的运行效率;4. 对空气压缩机的维护和管理进行优化,降低维护成本;5. 进行能效改造后的效果评估和监测,确保节能效果达到预期目标。
四、项目实施步骤1. 制定项目实施计划,确定项目进度和时间节点;2. 调查研究,确定改造方案和技术路线;3. 进行设备购置和改造准备;4. 进行设备改造和安装;5. 对改造后的设备进行试运行和效果评估;6. 对节能改造项目进行总结和经验总结。
五、项目预期效果通过本项目的节能改造,预计可以实现以下效果:1. 空气压缩机的能效比提升20%以上;2. 企业每年可节省能源消耗30%以上;3. 生产成本降低10%以上;4. 企业环保形象得到提升,获得更多客户的认可。
六、项目实施风险1. 技术风险:节能改造过程中可能遇到技术难题,需要有相关领域专家支持和解决方案;2. 成本风险:节能改造可能需要高额的投资,需要审核和控制好项目预算;3. 管理风险:改造项目需要统筹协调和配合多个部门,需要有良好的团队管理和沟通。
七、项目推广和影响通过本项目的实施,可以为其他企业提供节能减排的借鉴和经验,同时也可以为环保产业的发展做出贡献。
空压机节能改造方案
背景
在工业生产中,空气压缩机(空压机)是必不可少的设备之一。
但是,空压机在使用中会产生大量的能源浪费,因此进行节能改造是非常必要的。
节能技术方案
下面介绍一些常见的空压机节能技术方案。
1. 定期维护
对空压机进行定期维护和保养是非常重要的一步,因为未经维护的设备通常会浪费更多的能源。
定期的维护包括更换损坏的零件、替换滤芯、清洁冷却器、定期检测气体泄漏等。
2. 空压机控制系统
空压机控制系统可以控制空压机的运行状态,并使其在运行时达到最佳节能状况。
空压机控制系统的常见技术包括:
•变频控制:可以通过调整电机转速,使空压机只产生需要的压缩空气,从而减少能源浪费。
•节流控制:可以通过控制节流阀来调节空气的流量,从而达到节能的目的。
3. 换热器
换热器可以用来回收空压机产生的热量,并将其用于加热水或空气。
这样就可以减少加热设备的能源消耗,并有效地利用空气压缩机的余热,从而达到节能的目的。
4. 优化气源
使用高质量的空气源可以显著降低空压机的能源消耗。
为了优化气源,可以加装空气干燥器、过滤器和油水分离器,以确保压缩空气的质量,并减少能源浪费。
结语
空气压缩机在工业生产中起着至关重要的作用,但是空压机的运行也会浪费大量的能源。
通过上述空压机节能技术方案,可以有效减少能源的浪费,从而降低生产成本,并提高生产效率。
因此,我们应该及时采取措施,优化空压机的运行状态,并确保设备的长期稳定性和安全性。
空压机节能改造方案
随着工艺自动化的不断推动和节能环保意识的增强,空气压缩机
的节能改造越来越受到企业的关注。
本文将介绍空气压缩机节能改造
的四种方案。
1. 对空气压缩机进行维护
1.定期清洗空气滤芯:空气滤芯起着过滤空气中杂质的作用,而空气滤芯在长时间使用后,里面会附着许多灰尘、沙子等杂质,从
而降低了通风效率。
因此,定期清洗空气滤芯可以降低空气压缩机的
能量消耗。
2.定期检查压缩机元件:经常检查压缩机的元件,及时更换
和维护需要修理的元件,可以减少能量的损失。
3.控制压缩机的负载和卸载:利用空气压缩机的供气压力和
需气量相对平衡的特性,对压缩机进行合理的负载和卸载控制,可以
减小空气压缩机的能量浪费。
2. 更换高效节能设备
采用高效节能设备替换老旧设备,是一个节能效果比较明显的办法。
例如:高效的电机、新型节能压缩机和气动式电子制动器等。
3. 对管道系统进行优化
1.优化管道的布局:合理规划布局可以降低系统压力降低,减少能量的损失。
2.优化管道的尺寸:合理地定尺寸可以有效地减少能量的损失。
3.增加阀门调节:管道中增加适当的调节控制阀门,可以调节气体的流量、压力和负载等,从而降低能量消耗。
4. 采用压缩机变频调速技术
采用压缩机变频调速技术,即根据压力调控变频器,以达到节能的目的。
通过变频式调速,可以让空气压缩机在压力需求量小时,减少电能消耗,大大降低能耗。
综上所述,企业在考虑空气压缩机的节能改造时,可以根据具体情况,采用以上的方案,以达到最佳的节能效果。
压缩空气系统节能改造
压缩空气系统的节能改造一般包括以下方面:
1. 减少空气泄漏:空气泄漏是压缩空气系统中的一大能源浪费来源,通过修补漏气管道、更换密封件等方式减少空气泄漏,可以有效降低能耗。
2. 优化压缩机控制:通过安装自动控制系统、压缩机负荷控制器等设备,实现压缩机的智能控制和节能运行。
3. 降低压缩机负荷:通过合理选型、串联两台压缩机、定期清理冷却器等方法降低压缩机负荷,从而达到节能降耗的目的。
4. 改善压缩机进气质量:适当增加进气过滤器、安装冷却系统等设备,可以有效减少压缩机内积灰和积碳,降低系统能耗。
5. 改进管道系统设计:通过改善压缩空气管道系统的设计,减少管道阻力和压降,提高空气流通效率,从而降低能耗。
6. 定期检测和维护:定期对压缩空气系统进行巡检、清洗和维护,可以有效发现和解决各种问题,保持系统的正常运行和高效节能。
以上是压缩空气系统节能改造的参考内容,不得出现链接。
压缩机是为高炉提供压缩空气的动力设备,是钢铁企业冶炼生铁工艺流程中极其重要的设备,压缩机的工作状态不但决定着工艺质量,同时也对高炉的安全生产起着至关重要的作用。
较离心式压缩机,轴流压缩机具有效率高、流量大、工况范围宽、安全可靠等优点,被大量应用于大、中型高炉,而压缩机机组能否充分发挥应有效率,控制程序完善与否是决定性的因素。
湘钢 1压缩机为日本三菱公司生产的静叶可调式轴流压缩机,其静叶及两个防喘振阀由阿斯卡尼亚液动装置驱动。
此机组原控制系统为三菱公司 PLC 系统,由于其年代久远,自动化程度低,故障率高,可维护性差,已严重影响到机组的安全运行和装置的平稳生产,厂方决定对其进行改造。
文中介绍采用先进的国产 DCS系统 - HOLL iASMACS- S系统实现对湘钢 1压缩机组控制系统的改造。
1 轴流压缩机组工艺流程湘钢 1轴流机组装置是由拖动式汽轮机 + 轴流压缩机组成。
空气经过空气过滤器进入轴流压缩机,轴流压缩机在汽轮机驱动下旋转做功,产生高压、大流量的压缩空气,再送入高炉。
2 轴流缩机控制系统的设计2 1 控制系统构成控制系统采用第四代 DCS系统 HOLL iAS- MACS系统,系统硬件为 SM 系列,软件为MACSV系列。
该系统由主控制器( SM203)、扩展 I/O机架、防喘振控制器( YS- 80)、继电快速保护回路、工业以太网交换机、操作员站、工程师站、TSI监测仪表、硬操按钮 /开关组成。
为了保证压缩机的稳定运行和高炉的安全生产,控制系统采用冗余配置。
2 2 控制系统功能实现轴流压缩机的控制比较复杂,其控制难点主要包括:定风量 /定风压调节系统控制、防喘振控制、连锁控制等。
2 2 1 定风量 /定风压调节系统控制在高炉炼铁中,高炉正常生产需要压缩机为高炉提供稳定的工艺特性,即压缩机需定风量 /定风压运行。
但在实际生产中存在着很多干扰因素,造成了风量和风压的波动,因此需专门设置定风量 /定风压调节系统对某个特定的风量或压力进行操作。
其调节手段是采用控制静叶开度和改变转速相结合的方式。
定风量 /定风压调节系统可以通过自动或手动操作方式进行切换。
手 /自动切换时,由 DCS 输出信号驱动伺服阀控制静叶。
静叶作为压缩机定风量 /定压力操作的动作执行器,可以采用串级调节。
串级控制系统的内环是静叶定位调节,由静叶伺服控制器、电液伺服阀、静叶位置变送器组成;外环为流量 /压力传感器、流量 /压力控制器组成。
当内环切换到串级状态时,由流量 /压力控制器对比实际参数给定静叶角度设定值。
静叶伺服控制器对设定值和位置反馈进行对比,输出控制信号,作用于电液伺服阀,驱动静叶伺服油缸动作,以到达设定位置。
2 2 2 防喘振控制喘振是压缩机特有的不正常运行工况,防喘振控制是压缩机控制的核心。
该机组中,通过 YS80 判断喘振。
防喘振控制系统是通过对防喘阀开度的调节来完成的,其原理为:当压缩机接近喘振工况,即出口压力接近压缩机喘振压力时,防喘振控制系统便及时将管线上的防喘振阀打开某个角度,从而使压缩机出口压力降低,进而改变压缩机的运行工况。
这样就避免了压缩机进入喘振工况区。
轴流压缩机的运行工况分 3个区域:喘振区域、安全区域和阻塞区域。
喘振线将喘振区域与安全运行区域分开,防喘振控制的目的就是防止压缩机进入喘振区域运行。
通常喘振线是利用现场实测的压缩机不同喘振点所绘制出的喘振折线。
在实际设计中考虑到为防喘振控制留下足够的安全裕度而增加其安全和可靠性,下移 5% 作为放风线;为了再次增加可靠性,将喘振曲线平行下移 10% 作为防喘振的报警线。
具体来说,当排气压力超过报警线时,系统发出报警信号,操作人员可以进行手动调节;当排气压力值超过放风值时,防喘振调节系统可自动控制,放风阀按一定的角度打开,使工况点回到放风线以下运行,若工况继续恶化,放风阀失电全部打开。
系统检测压缩机入口喉部差压 p,经采集后进行补偿计算得 p X,再将补偿后的信号带入折线函数 p= f ( p X),经过预先标定的防喘振折线计算,得出当前工况下的调节压力设定值SV1.设定值与当前排气压力 PV2在调节功能块中进行比较计算,输出调节值作用于防喘调节阀,形成完整的闭环控制回路。
若 SV1> PV2,调节器输出 0% 使 1放空阀全关。
若 SV1< PV2,调节器输出 > 0% 使 1 防喘阀开至某一开度。
2 23 连锁控制压缩机组连锁控制主要包括:启动连锁与停车连锁。
启动联锁是对机组开机前的保护,只有在所有条件得到满足之后,才允许开机。
其联锁条件是:主放风阀全开、副放风阀全开、透平主蒸汽阀全关、轴承油压 > 0 08 MPa、控制油压 > 0 75 MPa、排汽压力 < - 0 075 MPa、静叶控制在自动控制位、静叶控制方式在启动模式、主放风阀控制在自动控制位、静叶反馈在 - 1 1 、H IC - 101输出 > 90% 、转速 < 300 r/m in. 当启动联锁完成后,进入待启动状态。
操作员根据汽轮机的升速曲线进行机组升速,机组达到额定转速后,按自动操作按钮将原控制程序中的流量调节和防喘振控制闭锁解除,并进行机组加载,直至满足工艺生产要求。
停机联锁是最后采取的一项保护措施。
其条件是:轴承油压过低、推力轴承损坏、动力油压力过低、持续逆流发生,其中任一条件得到满足,则联锁停机。
3 监视和操作界面在轴流压缩机 DCS 界面中,包括多幅单回路面板画面和多幅运行监视画面。
分别是:机组主控画面、防喘振监视画面、机组轴系状态监测画面、润滑油站监控画面、蒸汽水系统监控画面、开机联锁画面、停机联锁画面以及历史趋势、报警、事件记录、操作日志等。
通过这些监控画面,操作人员可以方便、直观地了解压缩机组的运行状态。
同时,给机组故障分析、运行管理提供了极大的方便。
4 结束语湘钢 1轴流压缩机经过了近半年的稳定运行,得到了用户的肯定。
作为国产 DCS控制系统第一次应用于进口压缩机的改造,在克服了资料短缺、工期紧张、施工难度大等一系列困机组轴系状态监测画面难,在用户的大力支持下成功地完成了此次工程。
HOLL iAS- MACS控制系统自投运以来,整个系统运行稳定可靠,对突发事件反应灵敏,调节的精确性和控制的准确性确保了高炉送风的稳定,实现了预期高可靠性的目标,为安全生产、稳定向高炉送风起到了很好的作用,使高炉产量得到显著的提高。
同时也证明了控制系统设计合理、可行,且安全可靠、运行平稳、操作方便灵活的特点。
空压机变频改造技术方案一、概述空气压缩机是利用电能将空气压缩使之作为一种动力源的设备,在工矿企业中应用十分普遍, 配套电动机的容量一般较大,且大多是常年连续运行的,故节能的潜力很大。
目前常见的压缩机有活塞式、螺杆式、离心式,不论哪一种工作方式,压缩机单位时间内产气量是一定的,目前压缩机都采用上下限控制或启停式控制,也就是说,当气缸内的压力达到设定值的上限时,空压机通过本身的压力或油压开关闭进气阀,这种工作方式频繁出现加载卸载,而且对电网、螺杆空压机本身都有极大的破坏性。
二、系统原工频运行概况1、空压机工作原理简述:原空压机的运行方式为工频状态。
压力采用两点式控制(上、下限控制),也就是当空压机气缸内压力达到设定值上限时,空压机通过本身的油压关闭进气阀,当压力下降到设定值下限时,空压机打开进气阀。
生产的工作状况决定了用气量的时常变化,这样就导致了空压机在半载或轻载下运行,或者经常是加载几分钟,卸载几分钟,频繁的卸载和加载,对电动机、空压机和电网造成很大的冲击。
再说,空压机卸荷运行时,不产生压缩空气,电动机处于空载状态,其用电量为满负载的60%左右,这部分电能被白白的浪费。
系统在设计时是针对全厂满负荷用气量来设计的,并考虑了富余,是按最大量来设计的的,而现在的工况是用气量经常变化,且经常在半载下运行,在整个系统运行时存在着严重的“大马拉小车”的现象。
为了解决这种现象,节约能源,提高经济效益,有必要对现有系统进行变频改造。
2、原系统工况存在的问题1)主电机全压起动,起动时的电流很大,会影响电网的稳定及其它用电设备的运行安全,对机械设备的冲击大,电机轴承的磨损大,所以设备维护工作量大。
2)主电机时常轻载运行,属非经济运行,电能浪费严重。
3)主电机工频运行致使空压机运行时噪音很大。
4)经常卸载和加载导致整个气网压力经常变化,不能保持恒定的工作压力。
3、拖动系统的特点:1)机械特性具有恒转矩性质,电机的轴功率PL与转速n 成正比。
2)大多处于长时间连续运行状态,但负载大小常有变动,为连续变动负载。
3)飞轮力矩大,故要求有较大的启动转矩;4)有自动卸载与装载装置,在自动卸载或装载时,负载将突变。
4、压缩机的主要控制对象是空气的压力,常见的控制方式有:1)手动调节输入或输出口的阀门开度;2)用机械方式进行自动卸载与装载控制;3)通过改变叶片的角度来调节压力或流量。
三、采用变频调速拖动系统必要性随着电力电子技术的发展,变频器在调速领域中的应用越来越广泛。
它具有性能稳定,操作方便,节能效果明显等优点。
它是一种较为成熟的高科技产品,越来越受到国内外工程技术人员和管理人员的关注和重视。
因此,对空压机进行变频改造具有很高的经济效应和社会效益。
1、从节能的角度看:由于压缩机不能排除在满负载状态下长时间运行的可能性,所以,只能按最大需求来决定电动机的容量,故设计容量一般偏大。
在实际运行中,轻载运行的时间所占的比例是非常高的。
如采用变频调速,可大大提高运行时的工作效率。
因此,节能潜力很大。
有些调节方式(如调节阀门开度和改变叶片的角度等),即使在需求量较小的情况下,也不能减小电动机的运行功率。
采用了变频调速后,当需求量较小的情况下,可降低电动机的转速,减小电动机的运行功率,从而进一步实现节能。
2、从运行质量的角度看:单电动机拖动系统大多不能根据负载的轻重连续地调节。
而采用了变频调速后,则可以十分方便地进行连续调节,能保持压力、流量等参数的稳定,从而大大提高压缩机的工作性能。
3、从减少运行成本方面看传统压缩机的运行成本由三项组成:初始采购成本、维护成本和能源成本。
其中能源成本大约占压缩机运行成本的77%。
通过能源成本降低20%-40%,再加上变频起动后对设备的冲击减少,维护和维修量也跟随降低,所以运行成本将大大降低。
4、从提高压力控制精度方面看变频控制系统具有精确的压力控制能力。
使压缩机的空气压力输出与用户空气系统所需的气量相匹配。
不再频繁的加载和卸载,变频控制压缩机的输出气量随着电机转速的改变而改变。
由于变频控制电机速度的精度提高,所以它可以使管网的系统压力变化保持恒定,有效地提高了工况的质量。