第二章弯矩曲率关系
- 格式:ppt
- 大小:1.65 MB
- 文档页数:37
梁纯弯曲变形引言梁纯弯曲变形是工程力学中的一个重要概念。
在结构力学和土木工程中,梁是一种常见的结构元素,承受着各种外部荷载。
当外部荷载作用于梁上时,梁会发生变形。
本文将探讨梁在纯弯曲状态下的变形特性和相关的理论基础。
纯弯曲的概念纯弯曲是指梁所受的外部荷载仅产生弯矩作用,而不产生剪力作用。
在梁的纵轴上,上部受拉,下部受压,梁在这种状态下发生弯曲变形。
纯弯曲情况下,梁的截面仅发生弯矩引起的形状变化,并不会发生剪切变形。
纯弯曲对于大跨度的梁和悬臂梁等结构具有重要意义。
纯弯曲变形的理论基础梁纯弯曲变形的理论基础可以通过两种方法进行分析:理论分析和数值分析。
理论分析理论分析方法中,我们可以利用梁的弯矩-曲率关系来分析纯弯曲变形。
弯矩-曲率关系描述了梁截面上的弯矩和截面曲率之间的关系。
根据弯矩-曲率关系,我们可以计算出梁的曲率分布,从而得到梁的变形情况。
此外,利用材料力学中的应力-应变关系,还可以计算出梁截面上的应力分布。
数值分析数值分析方法中,我们可以使用有限元方法来模拟梁的纯弯曲变形。
有限元方法将梁划分为许多小的单元,通过求解弯矩和力的平衡方程,可以得到梁单元上的位移和应力分布。
通过将所有单元的位移组合起来,可以得到整个梁的变形情况。
纯弯曲变形的计算纯弯曲变形的计算依赖于梁的几何形状、材料特性和外部荷载。
常见的计算方法包括:基于梁理论的计算基于梁理论的计算方法适用于简单、均匀截面的梁。
在这种方法中,我们可以使用梁的截面形状和材料性质,通过弯矩-曲率关系计算出梁的曲率分布。
进一步,可以计算出梁的位移、剪力和应力等参数。
基于有限元分析的计算基于有限元分析的计算方法适用于复杂截面的梁。
在这种方法中,我们将梁划分为许多小的单元,并求解每个单元上的位移和应力分布。
通过将所有单元的位移组合起来,可以得到整个梁的变形情况。
梁纯弯曲变形的应用梁纯弯曲变形的应用广泛,特别是在土木工程和结构设计中。
通过对梁的纯弯曲变形进行分析,可以确定梁的合适截面形状和尺寸,以满足其承受的外部荷载要求。
练习1:钢筋混凝土矩形截面:b=300mm,h=600mm,h0=560mm,a s’=25mm,a s=40mm,A s’=157mm2,A s=804mm2,f y’=280MPa,f y=280MPa,E s=200GPa,E c=25.5GPa,f c=13.4MPa,f t=1.54MPa,ε0=0.002,εcu=0.0038,εs u≤10%=0.10。
.利用数值方法计算截面的M~Φ关系,并附简化计算结果M u。
2Φ10h=600mm4Φ16将程序计算出的结果导入excel生成如下表格:图1.纯弯构件截面曲率phi随弯矩M加载曲线图2.纯弯构件截面受压区高度x0随弯矩M加载曲线纯弯构件M-phi曲线数值分析程序(C++)#i#include<iostream>#include<math.h>#include<fstream>#include<iomanip>using namespace std;int main(){cout<<"设计中As=804mm2,As'=157mm2,fy=280MPa,fy'=280MPa,Es=200GPa,Ec=25.5GPa"<<endl;cout<<endl;cout<<" fc=13.4MPa,ft=1.54MPaε0=0.002,εcu=0.0038,εsu<=0.1"<<endl;cout<<endl;//给出题目的基本信息inti;double b,h,as0,as1,x0,c,t,p1,p2,p3,h0,x01,x02,d,f;double k,k1,k2,ms0,ms1,mc,f1,f2,M,sc,m1,m2,m3,mc1,e1,sc1,sc2,q;ofstreamoutfile;b=300;h=600;as0=40;as1=40;h0=h-as0;//给出题目相关参数outfile.open("data.txt");//建立数据输出文件for(mc=0.00000001;mc<=0.0038;mc=mc+0.00001){x01=0.0;x02=600.0;for(x0=0;;){x0=0.5*(x01+x02);ms1=mc/x0*(x0-25);ms0=mc/x0*(h0-x0 );//求出钢筋应变f2=200*ms1*1000;//受压区钢筋应力f1=200*ms0*1000;//受拉区钢筋应力if(f1>280){ f1=280;}if(f1<-280){f2=-280;}if(f2>280){f2=280;}//εsu<=0.1是达不到的,必定小于0.1p1=0.0;m1=0.0; p2=0.0;m2=0.0;p3=0.0;m3=0.0;for( i=0;i<=1000;i++){sc=mc*(i+0.5)/1000;if(sc<0.002){k=13.4*(1000*sc-sc*sc/0.000004);}if(sc>=0.002&&sc<=0.0038){k=13.4;}p1=p1+k*300*x0/1000;m1=m1+k*300*x0/1000*(x0*(i+0.5)/1000);}//受压区混凝土mc1=(600-x0)*mc/x0;e1=1.54/25.5/1000;//对受拉区最下缘做出判断的两个数据if(mc1<=e1)//未开裂情况下受拉区混凝土,f2受压区钢筋f1受拉区钢筋{d=600-x0;for(int j=0;j<=1000;j++){sc1=mc1*(j+0.5)/1000;k1=25.5*sc1*1000;p2=p2+k1*300*d/1000;m2=m2+k1*300*d/1000*(d*(j+0.5)/1000);}t=f1*804+p2;c=f2*157+p1;//此种情况下全结构的压力C和拉力TM=m1+f2*157*(x0-25)+m2+f1*804*(560-x0);//此种情况下的弯矩}if(mc1>=e1)//开裂情况下的受拉区混凝土,f2受压区钢筋f1受拉区钢筋{d=e1*x0/mc;for(int r=0;r<=1000;r++){sc2=e1*(r+0.5)/1000;k2=25.5*sc2*1000;p3=p3+k2*300*d/1000;m3=m3+k2*300*d/1000*(d*(r+0.5)/1000);}t=f1*804+p3;c=f2*157+p1;//此种情况下全结构的压力C和拉力TM=m1+f2*157*(x0-25)+m3+f1*804*(h0-x0);}//此种情况下的弯矩f=(c-t)/c;q=mc/x0;//f为压力和拉力之间的误差比,q为曲率if(fabs(f)<0.01){outfile<<setw(10)<<q<<endl;x0=300;break;}//输出相关数据etw(10)<<x0<< elseif(t<c)//二分法作判断,对x0做循环判断{ x02=x0;x01=x01;}else{ x01=x0;x02=x02;}}}outfile.close();system("pause");return 0;//程序结束}}。
建筑力学第二版课后习题答案建筑力学是建筑工程领域中非常重要的一门学科,它研究的是建筑结构在受力作用下的力学性能和稳定性。
对于学习建筑力学的学生来说,课后习题是巩固知识和提高能力的重要途径。
本文将为大家提供《建筑力学第二版》课后习题的答案,希望能够帮助大家更好地理解和掌握建筑力学的知识。
第一章弹性力学基础1. 弹性力学是研究物体在外力作用下发生形变时产生的应力和应变关系的学科。
主要包括应力、应变、胡克定律、弹性模量等内容。
2. 线弹性材料是指在小应变范围内,应力和应变之间的关系是线性的材料。
常见的线弹性材料有钢材、混凝土等。
3. 弹性模量是描述材料抵抗形变能力的物理量,用E表示,单位为帕斯卡(Pa)。
4. 应力是单位面积上的力的作用,用σ表示,单位为帕斯卡(Pa)。
5. 应变是物体形变程度的度量,用ε表示,是无量纲的。
6. 一维拉伸问题是指材料在轴向受力下的变形和应力分布问题。
7. 胡克定律是描述线弹性材料应力和应变之间的关系,即应力与应变成正比。
数学表达式为σ = Eε,其中σ为应力,E为弹性模量,ε为应变。
第二章梁的基本性质1. 梁是一种常见的结构构件,在建筑工程中起到承载荷载的作用。
2. 梁的基本性质包括梁的截面形状、长度、材料和受力情况等。
3. 梁的受力分析可以通过应力分析和变形分析来进行,常用的方法有静力学方法和力学性能方法。
4. 静力学方法是通过平衡方程和几何关系来分析梁的受力情况,常用的方法有力平衡法、弯矩平衡法和剪力平衡法。
5. 力学性能方法是通过分析梁的强度和刚度来确定梁的受力情况,常用的方法有强度理论和刚度理论。
6. 梁的截面形状对其受力性能有很大影响,常见的梁截面形状有矩形截面、圆形截面和T形截面等。
7. 梁的变形是指梁在受力作用下发生的形变,常见的梁的变形有弯曲变形、剪切变形和挠曲变形等。
第三章梁的弯曲1. 梁的弯曲是指梁在受到弯矩作用下产生的变形和应力情况。
2. 弯矩是指作用在梁上的力对梁产生的弯曲效应。
桥梁结构受弯构件正截面承载力计算受弯构件正截面承载力计算的关键是确定截面的极限抗弯承载力。
一般来说,截面的极限承载力由材料的强度以及构件的几何形状和尺寸等因素决定。
在受弯构件正截面承载力计算中,主要涉及以下几个方面的内容:
1.弯矩和弯矩曲率关系:根据桥梁结构的荷载情况,确定构件所受的弯矩大小和分布。
利用截面受力平衡条件以及结构力学理论,计算出构件所受的弯矩曲率关系。
2.构件材料性能:根据构件所选择的材料类型,获得相应的抗弯强度参数。
常见的桥梁构件材料有钢、混凝土等。
3.构件几何形状和尺寸:根据实际设计要求和材料特性,确定构件的几何形状和尺寸。
核心问题是确定截面的几何特性,如截面面积、截面惯性矩等。
4.极限状态设计:确定正截面承载力的设计方法和准则。
一般来说,正截面承载力计算采用极限弯矩法,即根据截面受力特征和材料的强度参数,计算出构件所能承受的最大正弯矩,并与实际受力情况进行比较,以保证构件的安全性。
在实际计算中,还需要考虑构件的受力平衡条件和边界条件等因素。
同时,还应根据国家和地方的相关规范和标准,进行合理的安全系数选择和修正。
需要注意的是,受弯构件正截面承载力计算涉及到大量的计算和分析工作,需要充分考虑各种因素的影响,并进行详细的设计和校核。
此外,
随着计算方法和技术的不断进步,对于特殊结构和复杂受力条件的桥梁,还需要使用专业的计算软件和工具进行辅助分析。
综上所述,桥梁结构受弯构件正截面承载力计算是桥梁设计中的重要环节,需要结合实际情况和设计要求,进行合理的计算和分析,以确保结构的安全可靠性。
第六章弯曲变形知识要点1、弯曲变形的概念1)、挠曲线弯曲变形后梁的轴线变为挠曲线。
平面弯曲时,挠曲线为外力作用平面内的平面曲线。
2)、平面弯曲时的变形在小变形情况下,梁的任意二横截面绕各自的中性轴作相对转动,杆件的轴线变为平面曲线,其变形程度以挠曲线的曲率来度量。
1》纯弯曲时,弯矩—曲率的关系(由上式看出,若弯曲刚度EI为常数则曲率为常数,即挠曲线为圆弧线)2》横力弯曲时,弯矩—曲率的关系3)、平面弯曲时的位移1》挠度——横截面形心在垂直于梁轴线方向上的线位移,以表示。
2》转角——横截面绕其中性轴旋转的角位移,以表示。
挠度和转角的正负号由所选坐标系的正方向来确定。
沿y轴正方向的挠度为正。
转角的正负号判定规则为,将x轴绕原点旋转90°而与y轴重合,若转角与它的转向相同,则为正,反之为负。
4)、挠曲线近似微分方程5)、受弯曲构件的刚度条件,2、积分法求梁的挠度和转角由积分常数C、D由边界条件和连续性条件确定。
对于梁上有突变载荷(集中力、集中力偶、间断性分布力)的情况,梁的弯矩M(x)不是光滑连续函数,应用上式时,应分段积分,每分一段就多出现两个积分常数。
因此除了用边界条件外,还要用连续性条件确定所有的积分常数。
边界条件:支座对梁的位移(挠度和转角)的约束条件。
连续条件:挠曲线的光滑连续条件。
悬臂梁边界条件:固定端挠度为0,转角为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等简支梁边界条件:固定绞支座或滑动绞支座处挠度为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等连接铰链处,左右两端挠度相等,转角不等3、叠加原理求梁的挠度和转角1)、叠加原理各载荷同时作用下梁任一截面的挠度和转角等于各个载荷单独作用时同一截面挠度和转角的代数和。
2)、叠加原理的限制叠加原理要求梁某个截面的挠度和转角与该截面的弯矩成线性关系,因此要求:1》弯矩M和曲率成线性关系,这就要求材料是线弹性材料2》曲率与挠度成线性关系,这就要求梁变形为小变形4、弯曲时的超静定问题——超静定梁1)、超静定梁约束反力数目多于可应用的独立的静力平衡方程数的梁称为超静定梁,它的未知力不能用静力平衡方程完全确定,必须由变形相容条件和力与变形间的物理关系建立补充方程,然后联立静力平衡方程与补充方程,求解所有的未知数。