光纤论文
- 格式:docx
- 大小:4.14 MB
- 文档页数:18
光纤通信技术论文光纤通信技术的出现,实现了数据的高速率,大容量的通信,下面是店铺整理了光纤通信技术论文,有兴趣的亲可以来阅读一下!光纤通信技术论文篇一浅议光纤通信技术摘要:光纤通信技术的出现,实现了数据的高速率,大容量的通信,随着通信技术的快速发展,光纤通信的应用范围将更加广泛,其相关技术的发展也将受到更广泛的关注。
文章通过论述光纤通信技术的概念,优点,以及光纤通信相关技术的发展,对光纤通信技术的相关知识进行了概述。
关键词:光纤通信;通信系统;优点;发展随着科学技术的迅猛发展,通信领域内的各种新型技术悄无声息的进行着演化,光纤通信技术的出现给通信领域带来了一场革命,使利用光纤作为传输媒介实现光传输变为了现实,实现了高速率,大容量的数据通信,光纤通信因此得到了业内人士的青睐,得到了快速的发展。
经过半个世纪的研发,光纤通信技术应用于生活中的各个领域,但就目前的光纤通信技术而言,人类开发的仅是其潜在能力的5%左右,仍有巨大的潜力等待开发,因此光纤通信技术的应用前景将十分广阔,光纤通信技术将向更高水平,更深层次发展。
1 光纤通信技术概述光纤通信技术,即利用光波作为信息载体,使用光导纤维作为传输媒介进行信号传输,达到信息的传递,其中光导纤维由纤芯,包层和涂层组成,利用纤芯和包层的折射率不同,实现光信号在纤芯内的全反射进一步实现光信号的传输。
从原理上看,光纤通信系统由光源,光发射机,光纤,光接收机和光检波器构成,光纤通信系统可以分为模拟光纤通信系统和数字光纤通信系统,其中数字光纤通信系统应用更为广泛,所有数字光纤通信系统都是以一连串的“0”和“1”组成的比特流方式进行通信。
数字光纤通信系统的原理是,在信号的发送端将所要发送的信息进行A/D转换,利用转换后的数字信号调制光源器件,经调制后的光源器件会发出携带信息的光波,即当数字信号为“1”时,光源器件发送一个光脉冲,当数字信号为“0”时,光源器件不发送脉冲,光波经光纤传输后到达接收端,在接收端,光接收机通过光检波器检测所需信号,再进行D/A转换,恢复为原来的信息,完成信息的一次传递。
编号:审定成绩:****大学(论文)设计(论文)题目:光纤学院名称:学生姓名:专业:班级:学号:指导教师:2011 年12 月摘要光纤自发明过后,不断的发展,不断的更新换代,人们越来越离不开光纤了。
光纤分为石英光纤,单漠和多模光纤,越变式和渐变式光纤。
光纤的应用广泛,尤其在通信、医学和传感器方面得到了发挥。
光纤的作用巨大,并且其功能还在拓展之中,光纤完全可以取代铜制的导线,并且更加的节约。
光线的传输应用了光的直线传播、折射,以及全发射的原理,光纤在结构上有中心和外皮两种不同介质,光从中心传播时遇到光纤弯曲处,会发生全反射现象,而保证光线不会泄漏到光纤外。
光纤通信具有很多的优点,在特殊的危险的场合被广泛利用,光纤通信也因此成为了主要的传输方式。
光纤的传输并不是完美无瑕的,其受到诸多的影响。
造成光纤损耗的原因有很多,其包含了吸收损耗,散射损耗,其他损耗。
光波通过光纤材料转换时,一部分转换成了其他形式的能量。
散射损耗由于材料不均匀将光能辐射出光纤导致的损失。
在光线中,信号的不同模式或不同频率在传输时具有不同的群速度,因而到达终端时会出现传输时延差,从而引起信号畸形,这种现象统称为色散。
光纤非线性特性分为喇曼散射、布里渊散射和折射率扰动。
光纤通信是一种以光导纤维为传输介质的通信方式,是世界新技术革命的重要标志和未来信息社会中各种信息的主要传送工具。
光纤把传送的信息先变成电信号,然后调制成光信号,并通过光纤传播;最后接收端将接收到地光信号后变成电信号,经解调后恢复原信息。
光纤通信系统主要由光发射机、光纤、光接收器以及光中继器组成。
光纤通信系统是以光为载波,利用纯度极高的玻璃拉制成极细的光导纤维作为传输媒介,通过光电变换,用光来传输信息的通信系统。
光纤通信系统是指音、图象、数据等业务通过信源编码所得到的信号转变成适合于在光纤上传输的光信号,在终端提取信息,然后转变成电信号,最后得到对应的话音、图象、数据等信息。
光纤光缆技术发展论文1.光纤技术发展的特点1.1网络的发展对光纤提出新的要求不管下一代网络如何发展,一定将要达到三个世界,即服务层面上的IP世界、传送层面上的光的世界和接入层面上的无线世界。
下一代传送网要求更高的速率、更大的容量,这非光纤网莫属,但高速骨干传输的发展也对光纤提出了新的要求。
(1)扩大单一波长的传输容量(2)实现超长距离传输(3)适应DWDM技术的运用1.2光纤标准的细分促进了光纤的准确应用光纤标准的细分促进了光纤的准确使用,细化标准的同时也提高了一些光纤的指标要求(如有些光纤几何参数的容差变小),明确了对不同的网络层次和不同的传输系统中使用的光纤的不同指标要求(如PMD值的规定),并提出了一些新的指标概念(如”色散纵向均匀性”等),对合理使用光纤取得了很好的作用。
所有这些建议的修改、子建议的出现及新子建议的起草,都意味着光纤分类及指标、测试方法有某些改进,或有重要的提升;都标志着要求光纤质量的提高或运用方向上的调整,是值得注意的光纤技术新动向。
1.3新型光纤在不断出现为了适应市场的需要,光纤的技术指标在不断改进,各种新型光纤在不断涌现,同时各大公司正加紧开发新品种。
(1)用于长途通信的新型大容量长距离光纤主要是一些大有效面积、低色散维护的新型G.655光纤,其PMD值极低,可以使现有传输系统的容量方便地升级至10~40Gbit/s,并便于在光纤上采用分布式拉曼效应放大,使光信号的传输距离大大延长。
(2)用于城域网通信的新型低水峰光纤城域网设计中需要考虑简化设备和降低成本,还需要考虑非波分复用技术(CWDM)应用的可能性。
低水峰光纤在1360~1460nm的延伸波段使带宽被大大扩展,使CWDM系统被极大地优化,增大了传输信道、增长了传输距离。
(3)用于局域网的新型多模光纤虽然多模光纤比单模光纤价格贵50%~100%,但是它所配套的光器件可选用发光二极管,价格则比激光管便宜很多,而且多模光纤有较大的芯径与数值孔径,容易连接与耦合,相应的连接器、耦合器等元器件价格也低得多。
光纤通信概述通信原理论文(一)光纤通信概述通信原理论文光纤通信是一种传输信息的方法,通过利用光纤传输光的方式来传输信息。
相较于传统的电缆传输方式,光纤传输方式有着更高的传输速度和更大的传输容量,因此已经被广泛应用于很多领域之中。
光纤通信的传输原理由两部分构成:信号的传输和光波的传输。
信号的传输是指电子信号通过光纤中的信号处理器进行数字化,然后通过调制器将其转换为光信号。
光信号的传输是指在光纤中的光信号的传输。
这两部分共同构成了光纤通信的传输原理。
光纤通信的传输速率是指可以在单位时间内传输的数据量。
它的速率一般用每秒钟传输的比特数(bps)来表示。
光纤通信的传输速率很高,可以达到1Gbps或更高。
由于传输速率越高,传输的数据量越大,因此光纤通信的传输容量也很大。
光纤通信的传输容量是指在单位时间内可以传输的最大数据量。
传输容量决定了光纤通信可以传输多少数据,传输速率决定了将这些数据传输到目的地所需的时间。
光纤通信主要有两个部分构成:发送端和接收端。
发送端是指发送信息的终端设备,它通常由一个数字到模拟转换器、一个调制器和一个激光二极管组成。
接收端是指接收信息的终端设备,它通常由一个接收器和一个放大器组成。
在光纤通信中,发送端的任务是将信号转换为光信号,并将其通过光纤发送到接收端。
接收端的任务是收集光信号并将其转换为电信号,然后将其发送到接收端的终端设备。
总的来说,光纤通信是一种高速、高容量的通信方式。
它的传输原理由信号的传输和光波的传输构成,传输速率和传输容量都很高。
通过发送端和接收端的协调工作,光纤通信可以将信息准确、快速地传输到目的地。
随着技术的不断改进,光纤通信在未来的通信领域中有着广阔的发展前景。
光纤通信工程本科毕业论文光纤通信传输技术的发展为电力通信带来了很大的改变,光纤通信技术的发展对完善电力通信系统有重要的作用。
下文是店铺为大家搜集整理的关于光纤通信工程本科毕业论文的内容,欢迎大家阅读参考!光纤通信工程本科毕业论文篇1浅析光纤通信技术应用及发展光纤通信技术在我国的发展才刚刚开始起步,还需要许多的地方需要改进。
但是,随着光纤通信技术的发展,光纤通信技术所应用到的范围也越来越广泛。
因此,当前的社会是离不开光纤通信技术的。
本文将会从新形势下光纤通信技术应用及发展分析为题,分别从光纤通信技术的应用、光纤通信技术未来的发展趋势两个方面对此进行探讨。
希望本文可以对我国光纤通信技术的发展起到帮助作用。
一、光纤通信技术的应用由于当前在全球范围之内都已经步入了网络化、信息化的社会。
所以网络对于人们越来越重要。
而光纤通信技术对于网络化、信息化的发展具有不可忽视的作用。
光纤通信技术已经渗透到了我们生活的方方面面。
包括光纤通信技术在电力通信网中的应用、光纤通信技术在广播电视网中的应用、光纤通信技术在电线干线传输网中的应用。
下面,我们就一一为大家介绍光纤通信技术在这几个领域的应用。
(一)光纤通信技术在电力通信网中的应用光纤通信技术在电力通信网中的应用极大的改善了我国供电网络的环境,改善了我国电力网络不稳点的问题。
那么,光纤通信技术为什么会被应用到电力通信网中。
这主要是因为光纤通信技术拥有了诸多的优点,这些优点对电力通信网的发展具有重要的作用。
因此,目前我国的电力通信网正在朝着光纤的方向发展下去。
光纤通信技术在电力通信网中的应用也是最为广泛的。
目前光纤通信技术在电力通信网中的应用已经形成了一套系统的、完善的体系。
近几年来光纤通信技术在电力通信网中的应用受到了社会各界的广泛好评,越来越受到人民的欢迎。
(二)光纤通信技术在广播电视网中的应用光纤通信技术出了广泛的应用于电力通信网中,在广播电视网中的应用也是非常广泛的,同时也是非常重要的,是值得我们去认真研究的。
光纤传输通信及设备论文光纤传输通信及设备论文光纤传输通信及设备论文【1】【摘要】光纤传输通信已经成为现代通信的主要支柱,在现代的通信网络中有着举足轻重的作用。
光纤传输成为了这些年来新兴的技术,因为它自身的方便和快捷的特点,引起了广大人民的欢迎。
但是,光纤通信和传输技术仍然存在问题,光纤作为一种传输的媒介,为光的传输提供了比较庞大且廉价的电信网络能够支持比较大体积和距离的传输。
所以,对我国光纤通信与传输技术的发展有着深远的影响。
【关键词】光纤传输;通信;设备目前,人类社会已步入信息时代,信息的价值也体现得越来越明显,深处信息的时代谁掌握有用的信息,谁就能够在竞争中取胜。
随着信息量的增大,传输设备显然就成为了一个突破口。
在这种条件下,以光纤为主要代表的光纤传输通信和设备技术已经相应产生,光纤传输设备比传统的模式拥有巨大的容量和速度。
近年来,通过科技人员的研究,光纤传输通信技术在应用方面有很大的进步。
一、光纤传输通信及设备的发展现状(一)传输性并不理想目前,在光纤传输通信网光缆的线路中大多数采用的是G·652这种常规性的单模光纤,这种光纤对于1.55微米的波长,尽管产生的损耗相对较少,但是色散值比较大,大约18pa/(nm·km),所以,很显然这种常规性的单模光纤运用在1.55微米波长时传输性是不理想的。
为了有效的达到越来越大的信息体积以及长距离的运输,应该使用低损耗的和低色散的单模光纤。
色散位移光纤为零时和掺饵光纤放大器进行混合使用时因为光纤的非线性产生的四波混频,会影响WDM的正常应用,这也就表明,光纤色散为零对WDM很不利。
(二)光纤通信系统所使用的光学器件需要改进近几年为了适应WDM系统的要求,我们开始研制多波长光源的器件,它大部分是把多路的激光管陈列排开,连接着一个星型耦合器能够制成混合的集成光组件。
对于光纤通信系统的接收端机,它的光电监测器以及前置放大器,大多数是向高频率或者是宽频带响应的方向进行发展,PIN光电二极管接受改进之后仍然可以符合需求,最近几年据报道发明了一种以行波式进行分布的光电检测器,它对1.55微米的光波可以检测的3db频率带宽能够达到78GHz。
光纤通信原理论文第一篇:光纤通信原理论文光纤通信原理论文浅谈掺铒光纤放大器光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。
掺铒光纤是在石英光纤中掺入了少量的稀土元素铒(Er)离子的光纤,它是掺铒光纤放大器的核心。
从20世纪80年代后期开始,掺铒光纤放大器的研究工作不断取得重大的突破。
WDM技术、极大地增加了光纤通信的容量。
成为当前光纤通信中应用最广的光放大器件。
光纤放大器是光纤通信系统对光信号直接进行放大的光放大器件。
在使用光纤的通信系统中,不需将光信号转换为电信号,直接对光信号进行放大的一种技术。
掺铒光纤放大器(EDFA即在信号通过的纤芯中掺入了铒离子Er3 + 的光信号放大器)是1985年英国南安普顿大学首先研制成功的光放大器,它是光纤通信中最伟大的发明之一。
掺铒光纤放大器的工作原理:掺铒光纤放大器主要是由一段掺铒光纤(长约10-30m)和泵浦光源组成。
其工作原理是:掺铒光纤在泵浦光源(波长980nm或1480nm)的作用下产生受激辐射,而且所辐射的光随着输入光信号的变化而变化,这就相当于对输入光信号进行了放大。
研究表明,掺铒光纤放大器通常可得到15-40db的增益,中继距离可以在原来的基础上提高100km以上。
那么,人们不禁要问:科学家们为什么会想到在光纤放大器中利用掺杂铒元素来提高光波的强度呢?我们知道,铒是稀土元素的一种,而稀土元素又有其特殊的结构特点。
长期以来,人们就一直利用在我学器件中掺杂稀土元素的方法,来改善光学器件的性能,所以这并不是一个偶然的因素。
另外,为什么泵浦光源的波长选在980nm或1480nm呢?其实,泵浦光源的波长可以是520nm、650nm、980nm、和1480nm,但实践证明波长980nm的泵浦光源激光效率最高,次之是波长1480nm的泵浦光源。
掺铒光纤放大器的基本结构:EDFA的基本结构,它主要由有源媒质(几十米左右长的掺饵石英光纤,芯径3-5微米,掺杂浓度(25-1000)x10-6)、泵浦光源(990或1480nm LD)、光耦合器及光隔离器等组成。
光纤产业现状分析论文光纤产业现状分析论文光纤作为信息传输的重要载体,在现代社会的各个领域都得到了广泛应用。
光纤的出现极大地推动了现代通信技术的进步和应用。
本文将从光纤产业的现状、优劣势分析以及发展趋势等方面进行分析。
一、光纤产业现状光纤产业的发展可以分为以下阶段:(1)创新时期。
20世纪60年代,在光纤的理论发现及美国贝尔实验室等机构不断投入研发经费下,光纤技术得到了突破性的发展与应用。
(2)起步阶段。
20世纪70年代,中国从美国引进的一万公里光纤电缆开始铺设,这标志着中国光缆工业的诞生。
同时,欧、日、韩等国家也开始加快光缆产业的发展。
(3)快速发展阶段。
21世纪初,随着互联网、移动通信等领域得到迅速发展,光纤成为了互联网、电视、电话及移动通信等领域的主流传输方式。
光缆市场需求迅速增长,光通信产业链也得到了快速的发展。
目前,国内光纤行业已进入发展成熟期。
根据《光电(海外版)》2019年2月刊援引信息产业部发布的数据显示,2018年中国光纤电缆产量达到了6700万公里以上,出口额超过10亿美元,成为全球光纤产业制造大国之一。
同时,光纤成为国内宽带接入网络的建设主要手段和城市交通、公共服务、智能制造、物联网等领域重要的信息载体。
二、光纤产业的优劣势分析1.优势分析(1)大市场潜力。
国内光纤市场发展潜力巨大,随着5G 和物联网技术的快速发展,市场需求将大幅提升。
(2)技术优势。
在制造工艺、性能参数和应用技术等方面,国内光纤产业已经具备了全方位的技术优势。
(3)产业链完备。
目前,国内光纤产业链已形成,在光模块、光器件、光源、控制部件、整机制造等领域都具有特色和优势。
(4)政策优势。
随着国家推进信息化建设,国家出台的一系列政策措施将为光纤产业的发展提供政策优势。
2.劣势分析(1)市场竞争激烈。
国内外光纤产业竞争激烈,国内光纤企业在国内市场面临激烈的价格竞争和质量竞争,同时面对国际市场上的品牌优势和行业巨头的竞争。
我国光纤通信技术论文1.1损耗低,传输距离远与一般的通信相比,光纤的损耗率要低得多。
目前,光纤的损耗可以低达0.2dB/km。
中继光放大器间距可达100多km,而传统的铜电缆中继放大器间距仅为几百米到几千米。
因此,除了用户到小站间仍使用铜电缆,其他通信网中包括电视网、跨海洋的网络全部使用光纤通信。
光纤通信在长距离传输中的优势特别明显。
目前光纤通信的最长通信距离达到10000m以上。
1.2抗干扰力量强与其他光缆相比,光纤通信具有特别明显的优点———抗电磁干扰力量极强。
光纤通信设备的主要成分是SiO的应用给光纤通信技术带来无可比拟的优势。
由于石英具有极强的抗腐蚀性和绝缘性,因此,应用到光纤通讯设备上使其同样具有较强的抗干扰力量。
光纤通信不会受到太阳黑子活动、电离层变化、雷电以及人为释放的电磁等方面的干扰,这一特性使得光纤可以应用到军事领域中。
1.3平安性和保密性高由于光纤主要依靠光波的全反射原理进行传输,光信号完全被限制在包层内,光波泄露的现象很少发生。
而且一个光缆内的许多光纤线之间也不会相互干扰,因此,光通信的抗干扰力量很强,保密性和平安性特别高。
此外,光纤的重量很轻、体积较小,这样既节约空间又使得设备的安装特别便利。
另外,用来制作光纤通信设备的原材料越来越丰富,而且价格低廉,稳定性好,同时受环境温度影响小,使用寿命很长。
光纤通信技术这些优势使其在日常生活中的应用范围和领域越来越广。
2光纤通信技术在我国的进展现状2.1一般单模光纤的现状光纤分为单模光纤和多模光纤两大类。
目前,一般单模光纤是我们生活中最常见的光纤。
单模光纤只能传输一种模式的光,且对光源的谱宽及稳定性都有较高的要求。
随着光纤通信技术的进展,单模光纤的传输距离和信息容量也在不断增加,G652.A光纤的性能还能进一步优化和提高。
符合ITUTG654规定的截止波长的单模光纤和符合G653规定的单模光纤是对G652.A光纤进行了改进。
2.2接入网光缆的进展现状光纤接入网指的是以光纤为主要媒质实现接入网的信息传送。
光纤通信论文六篇光纤通信论文范文1光纤通信是一种以光线为传媒的通信方式,它主要利用光波实现信息的传送。
光纤通信技术最基本的系统组成有三大板块,主要有:光的放射、接受和光纤传输。
该通信系统可以单独进行数字信号或者模拟信号的传输,也可以进行类似于多媒体信息和话音图像多种不同类别的信号的混合传输。
光纤通信的基本特征如下。
1.1宽频带,大容量在光纤通信技术中,光纤可容纳的传输带宽高达50000GHz。
光源的调制方式、调制特性以及光纤的色散特性确定了光纤通信技术系统的容许频带。
比如说,有一些单波长光纤的通信系统,通常使用的是密集波的分复用等简单一些的技术,从而避开通信设备存在瓶颈效应等电子问题,促使光纤宽带发挥乐观的效应,增加光纤传输的信息量。
1.2抗干扰光纤通信有一个特殊好的优点,就是它拥有极强的抗电磁干扰力量。
由于光纤通信的主要制作原料——石英,具有极强的绝缘性、抗腐蚀性,所以光纤通信具有极强的抗干扰力量。
光纤通信也不会受到电离成的变化、太阳黑子的活动和雷电等电磁干扰,更不会在意人为释放电磁的影响,石英为光纤通信技术带来了巨大的优势。
光纤的质量轻、体积小,既能有效节约空间又能保证安装便利。
而且,制作光纤的原始材料来源丰富,成本低廉,温度稳定度高、稳定性能好,所以使用寿命一般都很长。
光纤通信优势明显,促成了光纤通信技术在现代生活中的广泛应用,并且这个应用过的范围还在不断的拓展。
2光纤通信技术进展特点2.1扩大了单一波长传输的容量当今社会仅单一波长传输的容量就高达40Gbit/s,并且相关部门在这个基础上已经开头讨论160Gbit/s的传输技术。
在讨论40Gbit/s以上的传输技术时,应当对光纤的PMD做出详细的要求。
2021年,美国优先在LTU-TSG15会议中提出了将新的光纤类别引入40Gbit/s系统的倡议。
并且认为在PMD传输中一些问题有待探讨。
我们坚信在不久的将来,举世瞩目的特地的40Gbit/s的光纤类型将会消失。
利用虚拟网络仿真软件开发管理工具201208030401 通信1204 曹纲摘要SDN全名为(Software Defined Network)即软件定义网络,是现互联网中一种新型的网络创新架构,其核心技术OpenFlow通过网络设备控制面与数据面分离开来,从而实现网络流量的灵活控制,为网络及应用提供了良好的平台。
SDN是当前网络领域的热点,被业界普遍认为是未来网络发展的方向,孕育着巨大的市场机会。
SDN之所以能迅速崛起,主要的驱动力来自于数据中心,更准确的说,是来自于数据中心的网络虚拟化。
1 Mininet1.1 Mininet概述Mininet是一个轻量级软件定义网络和测试平台;它采用轻量级的虚拟化技术使一个单一的系统看起来像一个完整的网络运行想过的内核系统和用户代码,也可简单理解为SDN 网络系统中的一种基于进程虚拟化平台,它支持OpenFlow、OpenvSwith等各种协议,Mininet 也可以模拟一个完整的网络主机、链接和交换机在同一台计算机上且有助于互动开发、测试和演示,尤其是那些使用OpenFlow和SDN技术;同时也可将此进程虚拟化的平台下代码迁移到真实的环境中。
1.2 Mininet实现的特性1、支持OpenFlow、OpenvSwitch等软定义网路部件2、支持系统级的还原测试,支持复杂拓扑,自定义拓扑等3、提供Python API, 方便多人协作开发4、很好的硬件移植性与高扩展性5、支持数千台主机的网络结构1.3 Mininet实现与工作流程Mininet的安装方式比较简单,通过Git源码和自带的安装脚本方式即可安装在Ubuntu 系统中改成mininet/util/install.sh -n3v 2.3.0简单网络示例图1.3.1 创建网络由于Mininet支持自定义网络,这里先引用一个简单网络示例如图,在Mininet网络系统中直接输入mn命令,可以在此系统中创建单层的拓扑网络,从中默认创建了两台host 和一个交换机,并且激活了控制器和交换机。
同时也可以通过命令net查看到链路情况,先简单列出了示例,如在Mininet系统中启用Web服务器与客户端。
# mn*** Creating network*** Adding controller*** Adding hosts:h1 h2*** Adding switches:s1*** Adding links:(h1, s1) (h2, s1)*** Configuring hostsh1 h2*** Starting controller*** Starting 1 switchess1*** Starting CLI:mininet>1、启用与关闭Web 服务在Mininet环境中可方便建立一个Web服务器,从下面示例中可以看到从host1建立了一个Web服务器,并从另外一台Host主机想Web服务器获取HTTP请求。
mininet> h1 python -m SimpleHTTPServer 80 & #在主机h1 开启Web 服务mininet> h2 wget -O - h1 #主机h2 上下载h1 web 站点内容--2013-11-04 00:05:40-- http://10.0.0.1/Connecting to 10.0.0.1:80... connected.HTTP request sent, awaiting response... 200 OK…………Length: 760 [text/html<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><html><title>Directory listing for /</title><li><a href=".bash_history">.bash_history</a><li><a href=".wireshark/">.wireshark/</a><li><a href="install-mininet-vm.sh">install-mininet-vm.sh</a><li><a href="mininet/">mininet/</a><li><a href="of-dissector/">of-dissector/</a><li><a href="oflops/">oflops/</a><li><a href="oftest/">oftest/</a><li><a href="openflow/">openflow/</a><li><a href="pox/">pox/</a></ul><hr></body></html>0K 100% 1.65M=0s2013-11-04 00:05:40 (1.65 MB/s) - written to stdout [760/760]mininet> h1 kill %python # 杀掉web 进程10.0.0.2 - - [04/Nov/2013 00:05:40] "GET / HTTP/1.1" 200 -bash: line 23: kill: python: ambiguous job specPing 测试在Mininet 系统上,实现两主机互连测试。
mininet> h1 ping -c4 h2PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.64 bytes from 10.0.0.2: icmp_req=1 ttl=64 time=1.55 ms64 bytes from 10.0.0.2: icmp_req=2 ttl=64 time=0.094 ms64 bytes from 10.0.0.2: icmp_req=3 ttl=64 time=0.075 ms64 bytes from 10.0.0.2: icmp_req=4 ttl=64 time=0.071 ms--- 10.0.0.2 ping statistics ---4 packets transmitted, 4 received, 0% packet loss, time 3006msrtt min/avg/max/mdev = 0.071/0.448/1.553/0.638 ms/2、查看节点与链接mininet> nodesavailable nodes are:c0 h1 h2 s1mininet> neth1 h1-eth0:s1-eth1h2 h2-eth0:s1-eth2s1 lo: s1-eth1:h1-eth0 s1-eth2:h2-eth0c01.3.2 自定义拓扑Mininet支持自定义拓扑结构,在mininet/custom目录下给出了一个实例,如在topo-2sw-2host.py文件中定义了一个mytopo,则可以通过--topo选项来指定使用这一拓扑:本组实验结果:创建树形,线性拓扑由于Mininet也支持参数化拓扑,通过Python代码也可以创建一个灵活的拓扑结构,也可根据自定义传递进去的参数进行配置,并且可重用到多个环境中,下面简短列出其代码的大致结构及含义。
#!/usr/bin/pythonfrom mininet.topo import Topofrom import Mininetfrom mininet.util import dumpNodeConnectionsfrom mininet.log import setLogLevelclass SingleSwitchTopo(Topo):def __init__(self, n=2, **opts):Topo.__init__(self, **opts)switch = self.addSwitch('s1') #添加一个交换机在拓扑中for h in range(n):host = self.addHost('h%s' % (h + 1)) #添加主机到拓扑中self.addLink(host, switch) #添加双向连接拓扑def simpleTest():topo = SingleSwitchTopo(n=4)net = Mininet(topo) #主要类来创建和管理网络net.start() #启动您的拓扑网络print "Dumping host connections"dumpNodeConnections(net.hosts) #转存文件连接print "Testing network connectivity"net.pingAll() #所有节点彼此测试互连net.stop() #停止您的网络if __name__ == '__main__':setLogLevel('info') # 设置Mininet 默认输出级别,设置info 它将提供一些有用的信息simpleTest()1.3.3 验证参数化拓扑结构# python test-single.py*** Creating network*** Adding controller*** Adding hosts:h1 h2 h3 h4*** Adding switches:s1*** Adding links:(h1, s1) (h2, s1) (h3, s1) (h4, s1)*** Configuring hostsh1 h2 h3 h4*** Starting controller*** Starting 1 switchess1Dumping host connectionsh1 h1-eth0:s1-eth1h2 h2-eth0:s1-eth2h3 h3-eth0:s1-eth3h4 h4-eth0:s1-eth4Testing network connectivity*** Ping: testing ping reachabilityh1 -> h2 h3 h4h2 -> h1 h3 h4h3 -> h1 h2 h4h4 -> h1 h2 h3*** Results: 0% dropped (12/12 received)1.3.4 名字空间namespace通常情况下,主机界面有用独立的名字空间namespace,而控制节点跟交换节点都在根名字空间(root namespace)中。