2014人教A版高中数学必修三1.1.1 《算法的概念》教案
- 格式:doc
- 大小:148.01 KB
- 文档页数:4
1.1.1算法的概念一、三维目标:1、知识与技能:(1)了解算法的含义,体会算法的思想。
(2)能够用自然语言叙述算法。
(3)掌握正确的算法应满足的要求。
(4)会写出解线性方程(组)的算法。
(5)会写出一个求有限整数序列中的最大值的算法。
(6)会应用Scilab 求解方程组。
2、过程与方法:通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法。
由于思考问题的角度不同,同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法。
3、情感态度与价值观:通过本节的学习,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一各有力工具,进一步提高探索、认识世界的能力。
二、重点与难点:重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
难点:把自然语言转化为算法语言。
三、学法与教学用具:学法:1、写出的算法,必须能解决一类问题(如:判断一个整数n(n>1)是否为质数;求任意一个方程的近似解;……),并且能够重复使用。
2、要使算法尽量简单、步骤尽量少。
3、要保证算法正确,且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的,但让计算机去执行“倒一杯水”“替我理发”等则是做不到的。
教学用具:电脑,计算器,图形计算器四、教学设想:1、创设情境:算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。
但是我们却从小学就开始接触算法,熟悉许多问题的算法。
如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。
我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解线性方程组的算法,求两个数的最大公因数的算法等。
教材章节:§1.1.1课题:算法的概念教学目标:1.学问与力量:(1)体会算法思想,感悟算法含义.(2)了解算法的主要特点:有限性、确定性、程序性、普适性.(3)能用自然语言写出简洁问题的算法.(4)培育同学严密的规律思维力量,建立数学与算法思想的联系,提升同学的数学素养和算法意识.2.过程与方法:本节课突出重点突破难点的关键是重在对案例的算法的分析,案例的选择也主要从算法的典型性、与已往学问的连续性和可接受性的角度动身,使同学能够通过案例的学习理解算法的本质.依据本课时内容特点,教学中接受:小组争辩,合作探究的方式,促进学问的“动态生成”.3.情态与价值:培育同学独立思考、合作沟通的意识;增加同学算法意识.重点:体会算法思想,感悟算法含义,把握算法的主要特点.难点:用自然语言写出算法过程.教学过程:一、本意引言算法是数学及其应用的重要组成部分,是计算科学的重要基础.算法在科学技术、社会进展中发挥着越来越大的作用,并日益融入社会生活的很多方面,算法思想也正在成为一般公民的常识,成为现代人应具备的一种基本数学素养.中国古代数学在世界数学史上一度居于领先地位.它留意实际问题的解决,以算法为中心,寓理于算,其中蕴涵了丰富的算法思想.计算机是20世纪最宏大的创造,它把人类社会带进了信息技术时代,而算法是计算机科学的重要基础,有算法计算机才能正常工作.要想了解计算机的工作原理,算法的学习是一个开头.二、导入新课同学们肯定都会使用计算机吧?会.会用计算机干什么?上网、玩玩耍、查资料、听音乐、看电影……这些只是计算机的使用.那么计算机是依据什么工作的?我们是怎样和计算机沟通的?依据计算机程序运行的.真正会用计算机是要会编写计算机程序来把握、指挥计算机工作.如设计玩耍软件.如何编写计算机程序?算法正是编程的初步和基础.从今日开头我们就来学习第一章算法初步.通过这一章的学习我们将学会用自然语言描述算法、画出程序框图、进一步编写出计算机程序.三、算法的概念实际问题:一个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡1个大人或两个小孩,他们三人都会划船,但都不会游泳.试问他们怎样渡过河去?请你分步写出一个渡河方案.第一步,两个小孩同船过河去;其次步,一个小孩划船回来;第三步,一个大人划船过河去;第四步,对岸的小孩划船回来;第五步,两个小孩同船渡过河去.1.算法概念的探究一:探究1:解下面的二元一次方程组2121x yx y-=-⎧⎨+=⎩需要什么样的步骤?解:第一步,①+②×2,得51x=③;其次步,解③得15x=;第三步,②-①×2,得53y=④;第四步,解④,得35y=.第五步,得到方程组的解为1535xy⎧=⎪⎪⎨⎪=⎪⎩同学也可能使用加减消元法、代入消元法,也有可能先用加减消元法后用代入消元法.不管使用那一种方法,只需强调依据肯定规章解决问题的这些步骤就构成了解二元一次方程组的一个“算法”.思考:写出解一般的二元一次方程组()1111221222(1)(2)a xb y ca b a ba xb y c+=⎧-≠⎨+=⎩的具体步骤.这五个步骤就构成了解一般的二元一次方程组的一个“算法”.我们再依据这一算法编制计算机程序,就可以让计算机来解全部满足条件1221a b a b-≠的二元一次方程组(只需转变其中的111222,,,,,a b c a b c值)了.这样的算法就具有了肯定得普遍适用性,不是为解决一个问题而设计算法,而是为了解决一类问题,这才是算法的真正价值.小结:在数学中,依据肯定规章解决某一类问题的明确和有限的步骤称为算法.现代意义上的算法是可以用计算机来解决的某一类问题的程序或步骤.老师:你能举一个用算法解决问题的例子吗?对于好的例子可以作为后续学习、争辩的课题.老师:其实算法并不奇特,就在我们的身边,生活中处处体现算法的思想,算法使我们的生活更高效、更有条理.2.算法概念的探究二:探究2:设计一个算法,推断7是否为质数. 第一步,用2除7,得到余数1,所以2不能整除7; 其次步,用3除7,得到余数1,所以3不能整除7; 第三步,用4除7,得到余数3,所以4不能整除7; 第四步,用5除7,得到余数2,所以5不能整除7; 第五步,用6除7,得到余数1,所以6不能整除7; 因此,7是质数.变式一:设计一个算法,推断1997是否为质数.分析:用2~1996逐一去除1997求余数,需要1995个步骤,这些步骤基本是重复操作,我们可以按下面的思路优化这个算法,削减算法的步骤.(1)用i 表示2~1996中的任意一个整数,并从2开头取数;(2)用i 除1997,得到余数r .若r=0,则1997不是质数;若r≠0,将i 的值增加1,再执行同样的操作;(3)这个操作始终进行到i 取1996为止.老师可以在同学相互补充的基础上做点睛的指导优化算法,着重解决如下难点: (1)重复的操作应当怎样处理? (2)给一个什么样的条件结束算法?变式二:推断一个大于2的整数n 是否为质数的算法步骤如何设计? 第一步,给定一个n ;其次步,令i=2. 大于2的整数n . 第三步,用i 除n ,得到余数r .第四步,推断“0r =”是否成立.若是,则n 不是质数,结束算法;否则,将i 增加1,仍用i 表示; 第五步,推断“(1)i n >-”是否成立.若是,则n 是质数,结束算法;否则返回第三步.老师:对于反复操作的问题只需给一个循环操作的条件,不管多么简单都可以交给计算机去完成,这样的一类问题都得到了解决,意义是不行估量的如:数列求和问题、筛选问题、排序问题等等.算法的普适性,数学的强大工具性得到了完善体现.小结:算法最重要的特征是什么?普适性:能解决一类问题,具有普遍适用的特点.明确性:算法中的每一个步骤必需是有明确的定义的,不允许有模棱两可的解析,也不允许有多义性.有限性:算法必需能在有限步完成.程序性:算法是有肯定规律次序的步骤序列,编制成计算机程序后是可以执行的. 3.应用举例例1.(见教材P3 例1(2))例2.(见教材P4 例2)写出用“二分法”求方程220x -=(0)x >的近似解的算法. 解:详见教材例3.写出一个求有限整数列中的最大值的算法。
]湖南省蓝山二中高一数学《1.1.1 算法的概念》教案 新人教A 版必
修3
一 教材分析
1 教材背景 算法是新课标教材新增加的内容,从古至今算法思想都能在解决问题中得到体现,他不仅是数学及应用的重要组成部分,也是信息技术的重要基础。
随着信息技术的发展,算法思想已成为数学素养的一部分。
所以学习算法是非常必要的。
2 本节课的地位及作用
这部分的学习一方面为日后系统的学习算法打下良好的基础,另一方面中学数学中的算法内容和其它许多内容是密切联系在一起的,比如线性方程组的求解、数列的求和等。
体会算法的思想有助于更好的解决其它数学问题。
二 重点难点及关键
重点:体会算法的思想,理解算法的含义,了解算法的特征。
难点:把自然语言合理的转化成算法语言。
关键:本节课突出重点突破难点的关键是重在对案例的算法的分析,案例的选择也主要从算法的典型性、与往知识的连续性和可接受性的角度出发,使学生能够通过案例的学习理解算法的本质。
三 目标分析
1知识目标
通过分析具体问题过程与步骤,建立算法的概念,感受算法的思想,了解算法的含义,能用自然语言描述解决具体问题的算法。
2能力目标
使学生体会算法思想的同时,发展有条理的思考表达能力,提高逻辑思维能力。
3情感目标
通过体验算法表述的过程,培养学生的创新意识,认识到计算机是人类征服自然的一各有力工具,进一步提高探索、认识世界的能力。
四 学情分析 算法这部分的使用性很强,与日常生活联系紧密,虽然是新引入的章节,但很容易激发学生的学习兴趣。
在教师的引导下,通过多媒体辅助教学,学生比较容易掌握本节课的内容。
五 教法分析
采用“问题探究式”教学法,以多媒体为辅助手段,让学生主动发现问题、分析问题、解决问题,培养学生的探究论证、逻辑思维能力。
六 教学设计
1创设情景
问题1: 回顾二元一次方程组的解法,设计算法解二元一次方程组。
⎩⎨⎧=+-=-②
y x ①y x 1212 分析:解二元一次方程组的主要思想是消元的思想,有代入消元和加减消元两种消元的方法,下面用加减消元法写出它的求解过程.
解:方法一
第一步:② - ①×2,得: 5y=3; ③
第二步:解③得 5
3=y ; 第三步:将53=y 代入①,得 5
1=x . 方法二
第一步:② - ①×2,得: 5y=3; 第二步:5
3=y 第三步:②⨯2+①,得:5x=1;
第四步:x=5
1 以上步骤也适用与解一般的二元一次方程组
例1.写出求方程组()01221222111≠-⎩⎨
⎧=+=+b a b a ②c y b x a ①c y b x a 的解的算法.
解:第一步:②×a 1 - ①×a 2,得:()12211221c a c a y b a b a -=- ③
第二步:解③得 1
2211221b a b a c a c a y --=; 第三步:将12211221b a b a c a c a y --=代入①,得1
2212112b a b a c b c b x --=. 评注:1.以上求解的步骤就是解二元一次方程组的算法.
2.本题的算法是由加减消元法求解的,同样利用代入消元也可达到解方程组的目的,解决一个问题不一定只有一种算法
(设计意图:在这一环节始终突出以学生为主体为学生提更足够的思考空间,把学习的主动权交给学生,通过事例总结出算法的概念)
总结:算发是解决某类问题的,每一步做什么都是明确的,步骤是有限。
2新课介绍
算法的概念:按照一定规则解决某一类问题的明确和有限的步骤。
问题2:计算s=1+2+3┈+n+┈的步骤能否设计成算法?(不能,要加无限个数,不可能在有限步骤内完成)
例2. 设计算法判断任意一个大于2的正整数n 是否是质数。
分析:首先考虑判断一个具体的数是否是质数的方法,以7和35为例。
根据质数的定义,可以这样判断:依次用2~6去除7如果它们中有一个数能整除7,则7不是质数,否则7是质数。
第一步 用2除7,得到余数1,所以2不能整除7
第二步 用3除7,得到余数1,所以3不能整除7
第三步 用4除7,得到余数3,所以4不能整除7
第四步 用5除7,得到余数2,所以5不能整除7
第五步 用6除7,得到余数1,所以6不能整除7,因此,7是质数。
类似的写出判断35是否为质数的算法:
第一步 用2除35,得到余数1,所以2不能整除7
第二步 用3除35,得到余数2,所以3不能整除7
第三步 用4除35,得到余数3,所以4不能整除7
第四步 用5除35,得到余数0,所以5能整除35,因此,35不是质数. 根据以上分析,对于任意大于2的正整数n ,判断它是否为质数的算法如下: 第一步 给出大于2的正整数
第二部 令i=2
第三部 用i 除n ,得到余数r
第四部 判断“r=0”是否成立。
若是,则n 不是质数,结束算法;否则将 i 的值增加1,仍用 i 表示
第五步 判断 “i >(n -1)” 是否成立。
若是,则n 是质数,结束算法;否则,返回第三步。
(设计意图:通过这个例子从特殊到一般的过程,使学生进一步体会到算法概括性,逻辑性有限性,练习把自然语言转化成规范的算法语言)
例3.用二分法设计一个求方程022
=-x 的近似根的算法. 分析:该算法实质是求2的近似值的一个最基本的方法.
解:设精确度为d,初始区间【a,b】且()()0〈b f a f
算法:
第一步:令()22-=x x f 第二步:令m=(a+b)/2
第三步:若()()0 m f a f ⋅,则b=m ;否则,令a=m.
第四步:判断|a-b|<d 是否成立或f (m )是否为0?若是,则m 为方程满足条件的近似根;若否,则返回第二步.以a=1,b=2d=0.005为例用多媒体课件演示
(设计意图:通过解决具体问题的过程体会算法思想,另外二分法求方程近似解是上学期所学内容,这个例子突出体现了算法与其它知识是紧密联系的,可以使学生认识到算法的重要性)
3课堂小结:通过以上几个例子,引导学生总结出算法的特征
1概括性 能够解决一类问题,并能重复使用。
2逻辑性 算法从初始步骤开始分为若干个明确的步骤,前一部是后一步的
前提,而且每一步都是正确无误的,从而组成了有很强逻辑性的步骤序列。
3有穷性 一个算法必须保证执行了有限步骤之后结束。
4不唯一性 求解某一问题的算法不一定只有一个。
5普遍性 许多问题都可以设计成合理的算法去解决。
4课堂练习。