(新课标)高考数学一轮复习名校尖子生培优大专题高频考点分析之关于线线、线面及面面垂直的问题新人教A版
- 格式:doc
- 大小:1.34 MB
- 文档页数:18
四、关于线线、线面及面面垂直的问题:典型例题:例1.已知矩形ABCD ,1AB =,BC =ABD ∆沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,【 】A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 【答案】B 。
【考点】空间中直线与直线之间的位置关系。
【解析】 如图,AE ⊥BD ,CF ⊥BD ,依题意,1AB =,BC =AE =CF3BE EF FD ===。
A ,若存在某个位置,使得直线AC 与直线BD 垂直,则∵BD ⊥AE ,∴BD ⊥平面AEC ,从而BD ⊥EC ,这与已知矛盾,排除A ;B ,若存在某个位置,使得直线AB 与直线CD 垂直,则CD ⊥平面ABC ,平面ABC ⊥平面BCD 。
取BC 中点M ,连接ME ,则ME ⊥BD ,∴∠AEM 就是二面角A BD C --的平面角,此角显然存在,即当A 在底面上的射影位于BC 的中点时,直线AB 与直线CD 垂直,故B 正确;C ,若存在某个位置,使得直线AD 与直线BC 垂直,则BC ⊥平面ACD ,从而平面ACD ⊥平面BCD ,即A 在底面BCD 上的射影应位于线段CD 上,这是不可能的,排除C ;D ,由上所述,可排除D 。
故选 B 。
例2.如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点(I)证明:平面BDC 1⊥平面BDC(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比。
【答案】解:(I)证明:∵由题设,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,∴BC⊥CC 1,BC⊥AC,CC 1AC=C ,∴BC⊥平面ACC 1A 1。
第四节直线、平面平行的判定及其性质高频考点考点一线面平行的判定及性质1.线面平行的判定及性质是每年高考的必考内容,多出现在解答题中的第(1)、(2)问,难度适中,属中档题.2.高考对线面平行的判定及性质的考查常有以下两个命题角度:(1)以多面体为载体,证明线面平行问题;(2)以多面体为载体,考查与线面平行有关的探索性问题.[例1](1)(2013·福建高考)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠P AD=60°.①当正视方向与向量AD的方向相同时,画出四棱锥P-ABCD的正视图(要求标出尺寸,并写出演算过程);②若M为P A的中点,求证:DM∥平面PBC;③求三棱锥D-PBC的体积.(2)(2014·日照模拟)如图所示,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE 于点F,且点F在线段CE上.①求证:AE⊥BE;②设点M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面ADE.[自主解答](1)法一:①在梯形ABCD中,过点C作CE⊥AB,垂足为E.由已知得,四边形ADCE为矩形,AE=DC=3,在Rt△BEC中,由BC=5,CE=4,依勾股定理得BE=3,从而AB=6.又由PD⊥平面ABCD,得PD⊥AD,所以在Rt△PDA中,由AD=4,∠P AD=60°,得PD=AD tan 60°=4 3.正视图如图(1)所示:图(1)图(2)②证明:如图(2)所示,取PB 中点N ,连接MN ,CN .在△P AB 中,∵M 是P A 中点,∴MN ∥AB 且MN =12AB =3. ∵又CD ∥AB ,CD =3,∴MN ∥CD ,MN =CD ,∴四边形MNCD 为平行四边形, ∴DM ∥CN .∵DM ⊄平面PBC ,CN ⊂平面PBC ,∴DM ∥平面PBC .③V D -PBC =V P -DBC =13S △DBC ·PD ,又∵S △DBC =6,PD =43,∴V D -PBC =8 3.法二:①同法一.②证明:取AB 的中点E ,连接ME ,DE .在梯形ABCD 中,BE ∥CD ,且BE =CD , ∴四边形BCDE 为平行四边形,∴DE ∥BC .∵DE ⊄平面PBC ,BC ⊂平面PBC ,∴DE ∥平面PBC .∵在△P AB 中,ME ∥PB ,ME ⊄平面PBC ,PB ⊂平面PBC ,∴ME ∥平面PBC .∵DE ∩ME =E ,∴平面DME ∥平面PBC .∵DM ⊂平面DME ,∴DM ∥平面PBC .③同法一.(2)①证明:由DA ⊥平面ABE 及AD ∥BC ,得BC ⊥平面ABE ,又AE ⊂平面ABE ,所以AE ⊥BC ,因为BF ⊥平面ACE ,AE ⊂平面ACE ,所以BF ⊥AE ,又BC ∩BF =B ,BC ,BF ⊂平面BCE ,所以AE ⊥平面BCE .因为BE ⊂平面BCE ,故AE ⊥BE .②在△ABE 中,过点M 作MG ∥AE 交BE 于点G ,在△BEC 中,过点G 作GN ∥BC 交CE 于点N ,连接MN ,则由CN CE =BG BE =MB AB =13,得CN =13CE .因为MG ∥AE ,AE ⊂平面ADE ,MG ⊄平面ADE , 所以MG ∥平面ADE ,又GN ∥BC ,BC ∥AD ,AD ⊂平面ADE ,GN ⊄平面ADE ,所以GN ∥平面ADE ,又MG ∩GN =G ,所以平面MGN ∥平面ADE ,因为MN ⊂平面MGN ,所以MN ∥平面ADE .故当点N 为线段CE 上靠近C 的一个三等分点时,MN ∥平面ADE .线面平行问题的常见类型及解题策略(1)线面平行的证明问题.判断或证明线面平行的常用方法有:①利用线面平行的定义(无公共点);②利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α);③利用面面平行的性质(α∥β,a ⊂α⇒a ∥β);④利用面面平行的性质(α∥β,a ⊄α,a ⊄β,a ∥α⇒a ∥β).(2)线面平行的探索性问题.①对命题条件的探索常采用以下三种方法:a .先猜后证,即先观察与尝试给出条件再证明;b .先通过命题成立的必要条件探索出命题成立的条件,再证明其充分性;c .把几何问题转化为代数问题,探索命题成立的条件.②对命题结论的探索常采用以下方法:首先假设结论存在,然后在这个假设下进行推理论证,如果通过推理得到了合乎情理的结论就肯定假设,如果得到了矛盾的结果就否定假设.1. (2013·新课标全国卷Ⅱ)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(1)证明:BC1∥平面A1CD;(2)设AA1=AC=CB=2,AB=22,求三棱锥C-A1DE的体积.解:(1)证明:连接AC1交A1C于点F,则F为AC1的中点.又D 是AB 中点,连接DF ,则在△ABC 1中,BC 1∥DF .因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD .(2)因为ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥平面ABC ,则AA 1⊥CD .由已知AC =CB ,D 为AB 的中点,所以CD ⊥AB .又AA 1∩AB =A ,AA 1,AB ⊂平面ABB 1A 1, 所以CD ⊥平面ABB 1A 1.由AA 1=AC =CB =2,AB =22,得∠ACB =90°,CD =2,A 1D =6,DE =3,A 1E =3, 故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D .所以VC -A 1DE =13×12×6×3×2=1. 2. 如图所示,在直四棱柱ABCD -A 1B 1C 1D 1中,已知DC =DD 1=2AD =2AB ,AD ⊥DC ,AB ∥DC .(1)求证:D 1C ⊥AC 1;(2)设E 是DC 上一点,试确定E 的位置,使D 1E ∥平面A 1BD ,并说明理由. 解:(1)证明:在直四棱柱ABCD -A 1B 1C 1D 1中,连接C1D,∵DC=DD1,∴四边形DCC1D1是正方形,∴DC1⊥D1C.又AD⊥DC,AD⊥DD1,DC∩DD1=D,DC,DD1⊂平面DCC1D1,∴AD⊥平面DCC1D1,又D1C⊂平面DCC1D1,∴AD⊥D1C.∵AD⊂平面ADC1,DC1⊂平面ADC1,且AD∩DC1=D,∴D1C⊥平面ADC1,又AC1⊂平面ADC1,∴D1C⊥AC1.(2)连接AD1,AE,D1E,设AD1∩A1D=M,BD∩AE=N,连接MN,∵平面AD1E∩平面A1BD=MN,要使D1E∥平面A1BD,可使MN∥D1E,又M是AD1的中点,则N是AE的中点.又易知△ABN≌△EDN,∴AB=DE.即E是DC的中点.综上所述,当E是DC的中点时,可使D1E∥平面A1BD.考点二面面平行的判定与性质[例2]如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.[自主解答](1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G∥EB,A1G=EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.【互动探究】在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D. 证明:如图所示,连接A1C交AC1于点H,∵四边形A1ACC1是平行四边形,∴H是A1C的中点,连接HD,∵D为BC的中点,∴A1B∥DH.∵A1B⊂平面A1BD1,DH⊄平面A1BD1,∴DH∥平面A1BD1. 又由三棱柱的性质知,D1C1∥BD,D1C1=BD∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又∵DC1∩DH=D,∴平面A1BD1∥平面AC1D.【方法规律】判定面面平行的四种方法(1)利用定义:即证两个平面没有公共点(不常用).(2)利用面面平行的判定定理(主要方法).(3)利用垂直于同一条直线的两平面平行(客观题可用).(4)利用平面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行(客观题可用).(2013·陕西高考)如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 是底面中心, A 1O ⊥底面ABCD ,AB =AA 1= 2.(1)证明:平面 A 1BD ∥平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.解:(1)证明:由题设知, BB 1∥DD 1,BB 1=DD 1∴四边形BB 1D 1D 是平行四边形, ∴BD ∥B 1D 1.又BD ⊄平面CD 1B 1,B 1D 1⊂平面CD 1B 1,∴BD ∥平面CD 1B 1.∵A 1D 1∥B 1C 1∥BC ,A 1D 1=B 1C 1=BC ,∴四边形A 1BCD 1是平行四边形,∴A 1B ∥D 1C .又A 1B ⊄平面CD 1B 1,D 1C ⊂平面CD 1B 1,∴A 1B ∥平面CD 1B 1.又∵BD ∩A 1B =B ,∴平面A 1BD ∥平面CD 1B 1.(2)∵A 1O ⊥平面ABCD ,∴A 1O 是三棱柱ABD -A 1B 1D 1的高.又∵AO =12AC =1,AA 1=2,∴A 1O =AA 21-OA 2=1.又∵S△ABD=12×2×2=1,∴VABD-A1B1D1=S△ABD×A1O=1.考点三平行关系的综合应用[例3]如图所示,平面α∥平面β,点A∈α,点C∈α,点B∈β,点D∈β,点E,F 分别在线段AB,CD上,且AE∶EB=CF∶FD.(1)求证:EF∥平面β;(2)若E,F分别是AB,CD的中点,AC=4,BD=6,且AC,BD所成的角为60°,求EF的长.[自主解答](1)证明:①当AB,CD在同一平面内时,由平面α∥平面β,平面α∩平面ABDC=AC,平面β∩平面ABDC=BD,∴AC∥BD.∵AE∶EB=CF∶FD,∴EF∥BD.又EF⊄β,BD⊂β,∴EF∥平面β.②当AB与CD异面时,如图所示,设平面ACD∩平面β=DH,且DH=AC.∵平面α∥平面β,平面α∩平面ACDH=AC,∴AC∥DH,∴四边形ACDH是平行四边形,在AH上取一点G,使AG∶GH=CF∶FD,连接EG,FG,BH.又∵AE∶EB=CF∶FD=AG∶GH,∴GF∥HD,EG∥BH.又EG ∩GF =G ,BH ∩HD =H ,∴平面EFG ∥平面β.又EF ⊂平面EFG ,∴EF ∥平面β.综合①②可知EF ∥平面β.(2)如图所示,连接AD ,取AD 的中点M ,连接ME ,MF .∵E ,F 分别为AB ,CD 的中点,∴ME ∥BD ,MF ∥AC ,且ME =12BD =3,MF =12AC =2.∴∠EMF 为AC 与BD 所成的角或其补角, ∴∠EMF =60°或120°.∴在△EFM 中,由余弦定理得EF =ME 2+MF 2-2ME ·MF ·cos ∠EMF = 32+22±2×3×2×12=13±6, 即EF =7或EF =19.【方法规律】1.解决本题的关键是构造过EF 且平行平面α和平面β的平面.2.通过线面、面面平行的判定和性质,可实现线线、线面、面面平行的转化. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,则当点Q 在什么位置时,平面D 1BQ ∥平面P AO?如图所示,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则当点Q在什么位置时,平面D1BQ∥平面P AO?解:当Q为CC1的中点时,平面D1BQ∥平面P AO.证明如下:∵Q为CC1的中点,P为DD1的中点,∴QB∥P A.∵P,O分别为DD1,DB的中点,∴D1B∥PO.又∵D1B⊄平面P AO,PO⊂平面P AO,QB⊄平面P AO,P A⊂平面P AO,∴D1B∥平面P AO,QB∥平面P AO,又D1B∩QB=B,D1B,QB⊂平面D1BQ,∴平面D1BQ∥平面P AO.—————————————[课堂归纳——通法领悟]————————————————1个转化——三种平行关系间的转化性质定理线线平行判定定理性质定理线面平行判定定理性质定理面面平行判定定理2个注意点——证明平行问题应注意的两个问题(1)在推证线面平行时,必须满足三个条件:一是直线a在已知平面外;二是直线b在已知平面内;三是两直线平行.(2)把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则该直线与交线平行.。
三、关于线线、线面及面面平行的问题:典型例题:例1.下列命题正确的是【】A、若两条直线和同一个平面所成的角相等,则这两条直线平行B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D、若两个平面都垂直于第三个平面,则这两个平面平行【答案】C。
【考点】立体几何的线、面位置关系及线面的判定和性质。
【解析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确。
故选C。
例2.设l是直线,α,β是两个不同的平面【】A. 若l∥α,l∥β,则a∥βB. 若l∥α,l⊥β,则α⊥βC. 若α⊥β,l⊥α,则l⊥βD. 若α⊥β, l∥α,则l⊥β【答案】B。
【考点】线面平行、线面垂直、面面平行、面面垂直的判定和性质。
【解析】利用面面垂直的判定定理可证明B是正确的,对于其它选项,可利用举反例法证明其是错误命题:A,若l∥α,l∥β,则满足题意的两平面可能相交,排除A;B,若l∥α,l⊥β,则在平面α内存在一条直线垂直于平面β,从而两平面垂直,故B正确;C,若α⊥β,l⊥α,则l可能在平面β内,排除C;D,若α⊥β, l∥α,则l可能与β平行,相交,排除D。
故选 B。
例3.如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(Ⅰ)求证:BE=DE;(Ⅱ)若∠BCD=1200,M为线段AE的中点,求证:DM∥平面BEC.【答案】解:(Ⅰ)证明:取BD 中点为O ,连接OC ,OE ,∵BC=CD,∴CO⊥BD,又∵EC⊥BD,CO∩EC=C,∴BD⊥平面OCE.。
又∵OE ⊂平面OCE.,∴BD⊥OE,即OE 是BD 的垂直平分线。
高考总复习2025第6节 空间角与距离的计算课标解读1.理解直线的方向向量与平面的法向量.2.能用向量语言表述直线与直线、直线与平面、平面与平面的夹角.3.能用向量方法解决点到直线、点到平面、相互平行的直线、相互平行的平面间的距离问题和夹角问题.体会向量方法在研究几何问题中的作用.强基础 固本增分知识梳理1.直线的方向向量与平面的法向量(1)直线的方向向量:O是直线l上一点,在直线l上取非零向量a,则对于直线l 上任意一点P,由数乘向量的定义及向量共线的充要条件可知,存在实数λ,使得把与向量a平行的非零向量称为直线l的方向向量.(2)平面的法向量:直线l⊥平面α,取直线l的方向向量a,称向量a为平面α的法向量.(3)方向向量和法向量均不为零向量且不唯一.2.利用空间向量求角(1)异面直线所成的角两条异面直线所成的角,可以转化为两条异面直线的方向向量的夹角来求得.也就是说,若异面直线l1,l2所成的角为θ,其方向向量分别是u,v,则异面直线所成角只能是锐角或直角,所以加“绝对值”(2)直线与平面所成的角直线与平面所成的角,可以转化为直线的方向向量与平面的法向量的夹角.如图,直线AB与平面α相交于点B,设直线AB与平面α所成的角为θ,直线AB的方向向量为u,平面α的法向量为n,则线面角与两个向量所成的锐角是互余的关系(3)平面与平面的夹角平面α与平面β相交,形成四个二面角,我们把这四个二面角中不大于90°的二面角称为平面α与平面β的夹角.若平面α,β的法向量分别是n1和n2,则平面α与平面β的夹角即为向量n1和n2的夹角或其补角.设平面α与平面β的夹角为θ,则误区警示利用公式求二面角的平面角时,要注意<n1,n2>与二面角大小的关系是相等还是互补,需要结合图形进行判断.常用结论最小角定理:c o s θ=c o s θ1c o s θ2.如图,若O A为平面α的一条斜线,O为斜足,O B为O A在平面α内的射影,O C为平面α内的一条直线,其中θ为直线O A与O C所成的角,θ1为直线O A与O B所成的角,即线面角,θ2为直线O B与O C所成的角,那么c o s θ=c o s θ1c o s θ2.自主诊断题组一 思考辨析(判断下列结论是否正确,正确的画“√”,错误的画“×”)1.设a ,b 是异面直线l 1,l 2的方向向量,则直线l 1与l 2所成的角就是向量a ,b 的夹角.( )2.设a 是直线l 的方向向量,b 是平面α的法向量,则直线l 与平面α所成的角就是向量a ,b 的夹角.( )3.设a ,b 是两个平面α,β的法向量,则α与β所成的二面角的大小等于向量a ,b 的夹角的大小.( )× × × √题组二回源教材5.(人教A版选择性必修第一册1.4.2节练习2(1)(2)改编)如图,在棱长为1的正方体ABCD-A1B1C1D1中,E为线段DD1的中点,F为线段BB1的中点.则(1)点A1到直线B1E的距离为__________;(2)直线FC1到直线A E的距离为__________.6.(人教A 版选择性必修第一册习题1.4第2题改编)如图,在直三棱柱ABC -A 1B 1C 1中,AB ⊥AC , AB =AC =1,AA 1=2.以A 为原点,建立如图所示空间直角坐标系,则平面BCC 1B 1的法向量为______________________. (1,1,0)(答案不唯一)题组三连线高考7.(1992·全国,理14)如图,在棱长为1的正方体ABCD-A1B1C1D1中,M,N分别为A1B1和BB1的中点,那么直线AM与CN夹角的余弦值为( )D解析以D为原点,DA,DC,DD1所在直线为x轴、y轴、z轴,建立如图所示空间直角坐标系.8.(2005·辽宁,14)如图,正方体的棱长为1,C,D分别是两条棱的中点,A,B,M是顶点,那么点M到截面ABCD的距离是__________.第1课时 线线角与线面角研考点 精准突破考点一 异面直线所成的角A解析以点A为原点,AB,AD,AP所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系,令P A=AB=6,而E,F分别是棱CD,P A的中点,则B(6,0,0),C(6,6,0),P(0,0,6),E(3,6,0),F(0,0,3),解析以D为原点,DA,DC,DD1所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系.考点二 直线与平面所成的角例2(2023·全国甲,理18)如图,在三棱柱ABC-A1B1C1中,A1C⊥平面ABC,∠ACB=90°,AA1=2,A1到平面BCC1B1的距离为1.(1)证明:A1C=AC;(2)已知AA1与BB1距离为2,求AB1与平面BCC1B1所成角的正弦值.(1)证明∵AC⊥底面ABC,BC⊂平面ABC,∴A1C⊥BC.∵∠ACB=90°,∴BC⊥AC.又A1C,AC⊂平面ACC1A1,∴BC⊥平面ACC1A1.∵BC⊂平面BCC1B1,∴平面ACC1A1⊥平面BCC1B1.如图,过点A1作A1O⊥CC1交CC1于点O,又平面ACC1A1∩平面BCC1B1=CC1,∴A1O⊥平面BCC1B1.∵A1到平面BCC1B1的距离为1,∴A1O=1.∵A1C⊥平面ABC,AC⊂平面ABC,∴A1C⊥AC.又A1C1∥AC,∴A1C⊥A1C1.又CC1=AA1=2,(2)解(方法1)连接BA1.∵BC⊥A1C,BC⊥AC,∴在Rt△A1CB中有A1C2+BC2=B12,在Rt△ACB中有AC2+BC2=AB2,又AC=A1C,∴AB=BA1.过点B作BD⊥AA1交AA1于点D,则D为AA1的中点,且BB1⊥BD,则BD即为直线AA1与BB1的距离,∴BD=2.(方法2 空间向量法)∵A1C⊥平面ABC,∠ACB=90°,∴A1C,AC,BC两两垂直.如图,以C为坐标原点,建立空间直角坐标系.[对点训练2](2022·全国甲,理18)在四棱锥P-ABCD中,PD⊥底面ABCD, CD∥AB,AD=DC=CB=1, AB=2,DP= .(1)证明:BD⊥P A;(2)求PD与平面P AB所成的角的正弦值.(1)证明 ∵PD ⊥平面ABCD ,BD ⊂平面ABCD ,∴PD ⊥BD.取AB 的中点E ,连接DE.∴BD ⊥AD.∵PD ⊂平面P AD ,AD ⊂平面P AD ,且PD ∩AD=D ,∴BD ⊥平面P AD.又P A ⊂平面P AD ,∴BD ⊥P A.。
考点21 线线、线面、面面的位置关系【考点剖析】1.最新考试说明:1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定.2.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定.3.理解空间直线、平面位置关系的定义,并了解可以作为推理依据的公理和定理.能证明一些空间位置关系的简单命题. 2.命题方向预测:1.点、线、面的位置关系是本节的重点,也是高考的热点.以考查点、线、面的位置关系为主.2.线面平行、面面平行的判定及性质是命题的热点.着重考查线线、线面、面面平行的转化及应用,同时考查逻辑推理能力与空间想象能力.3.线线、线面、面面垂直的问题是命题的热点.着重考查垂直关系的转化及应用,同时考查逻辑推理能力与空间想象能力.4.线线、线面、面面的位置关系问题,往往是平行、垂直关系综合考查,题型有选择题、填空题及解答题.难度中、低档题兼有. 3.课本结论总结: 1.平面的基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 2.直线与直线的位置关系(1)位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a ,b 所成的角(或夹角).②X 围:02π⎛⎤ ⎥⎝⎦,.3.直线与平面的位置关系有平行、相交、在平面内三种情况.4.平面与平面的位置关系有平行、相交两种情况.5.公理4平行于同一条直线的两条直线互相平行. 6.定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 7.直线与平面平行的判定与性质判定性质定义 定理图形条件 a ∩α=∅a ⊂α,b ⊄α,a ∥b a ∥αa ∥α,a ⊂β,α∩β=b结论 a ∥αb ∥αa ∩α=∅a ∥b8.面面平行的判定与性质判定性质定义定理图形条件 α∩β=∅ a ⊂β,b ⊂β,a ∩b =P ,a ∥α,b ∥αα∥β,α∩γ=a ,β∩γ=bα∥β,a⊂β结论α∥β α∥β a ∥b a ∥α9.(1)判定直线和平面垂直的方法 ①定义法.②利用判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. ③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也垂直于这个平面.(2)直线和平面垂直的性质①直线垂直于平面,则垂直于平面内任意直线.②垂直于同一个平面的两条直线平行.③垂直于同一条直线的两平面平行.10.斜线和平面所成的角斜线和它在平面内的射影所成的锐角,叫斜线和平面所成的角.11.平面与平面垂直(1)平面与平面垂直的判定方法①定义法.②利用判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.(2)平面与平面垂直的性质两平面垂直,则一个平面内垂直于交线的直线垂直于另一个平面.12.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:二面角棱上的一点,在两个半平面内分别作与棱垂直的射线,则两射线所成的角叫做二面角的平面角.4.名师二级结论:(1)异面直线的判定方法:判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线.反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.(2)公理1的作用:①检验平面;②判断直线在平面内;③由直线在平面内判断直线上的点在平面内.(3)公理2的作用:公理2及其推论给出了确定一个平面或判断“直线共面”的方法.(4)公理3的作用:①判定两平面相交;②作两平面相交的交线;③证明多点共线.(5)平行问题的转化关系:(6)垂直问题的转化关系线线垂直判定性质线面垂直判定性质面面垂直性质(7)证明直线相交,通常用平面的基本性质,平面图形的性质等;(8)利用公理4或平行四边形的性质证明两条直线平行.5.课本经典习题:(1)必修2第37页用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.其中真命题的序号是( ).A.①② B.②③ C.①④ D.③④【经典理由】考查线面、线线的平行和垂直关系。
四、关于线线、线面及面面垂直的问题:典型例题:例1.已知矩形ABCD ,1AB =,BC =ABD ∆沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,【 】A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 【答案】B 。
【考点】空间中直线与直线之间的位置关系。
【解析】 如图,AE ⊥BD ,CF ⊥BD ,依题意,1AB =,BC =AE =CF3BE EF FD ===。
A ,若存在某个位置,使得直线AC 与直线BD 垂直,则∵BD ⊥AE ,∴BD ⊥平面AEC ,从而BD ⊥EC ,这与已知矛盾,排除A ;B ,若存在某个位置,使得直线AB 与直线CD 垂直,则CD ⊥平面ABC ,平面ABC ⊥平面BCD 。
取BC 中点M ,连接ME ,则ME ⊥BD ,∴∠AEM 就是二面角A BD C --的平面角,此角显然存在,即当A 在底面上的射影位于BC 的中点时,直线AB 与直线CD 垂直,故B 正确;C ,若存在某个位置,使得直线AD 与直线BC 垂直,则BC ⊥平面ACD ,从而平面ACD ⊥平面BCD ,即A 在底面BCD 上的射影应位于线段CD 上,这是不可能的,排除C ;D ,由上所述,可排除D 。
故选 B 。
例2.如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点(I)证明:平面BDC 1⊥平面BDC(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比。
【答案】解:(I)证明:∵由题设,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,∴BC⊥CC 1,BC⊥AC,CC 1AC=C ,∴BC⊥平面ACC 1A 1。
专题21 利用传统方法求线线角、线面角、二面角与距离的问题【考点预测】知识点1:线与线的夹角(1)位置关系的分类:⎪⎩⎪⎨⎧⎩⎨⎧点一个平面内,没有公共异面直线:不同在任何相交直线平行直线共面直线 (2)异面直线所成的角①定义:设a b ,是两条异面直线,经过空间任一点O 作直线a a b b ''∥,∥,把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:(0]2π,③求法:平移法:将异面直线a b ,平移到同一平面内,放在同一三角形内解三角形. 知识点2:线与面的夹角①定义:平面上的一条斜线与它在平面的射影所成的锐角即为斜线与平面的线面角. ②范围:[0]2π,③求法:常规法:过平面外一点B 做'⊥BB 平面α,交平面α于点'B ;连接'AB ,则'∠BAB 即为直线AB 与平面α的夹角.接下来在△'Rt ABB 中解三角形.即sin 斜线长''∠==BB hBAB AB (其中h 即点B 到面α的距离,可以采用等体积法求h ,斜线长即为线段AB 的长度);知识点3:二面角(1)二面角定义:从一条直线出发的两个半平面所组成的图形称为二面角,这条直线称为二面角的棱,这两个平面称为二面角的面.(二面角l αβ--或者是二面角A CD B --)(2)二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角;范围[0]π,. (3)二面角的求法 法一:定义法在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角,如图在二面角l αβ--的棱上任取一点O ,以O 为垂足,分别在半平面α和β内作垂直于棱的射线OA 和OB ,则射线OA 和OB 所成的角称为二面角的平面角(当然两条垂线的垂足点可以不相同,那求二面角就相当于求两条异面直线的夹角即可).法二:三垂线法在面α或面β内找一合适的点A ,作AO β⊥于O ,过A 作AB c ⊥于B ,则BO 为斜线AB 在面β内的射影,ABO ∠为二面角c αβ--的平面角.如图1,具体步骤:①找点做面的垂线;即过点A ,作AO β⊥于O ;①过点(与①中是同一个点)做交线的垂线;即过A 作AB c ⊥于B ,连接BO ; ①计算:ABO ∠为二面角c αβ--的平面角,在Rt ABO △中解三角形.图1 图2 图3 法三:射影面积法凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式('''cos =A B C ABCS S S S θ=射斜,如图2)求出二面角的大小; 法四:补棱法当构成二面角的两个半平面没有明确交线时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题.当二平面没有明确的交线时,也可直接用法三的摄影面积法解题.法五:垂面法由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角.ba A OBbAB CB'C'A'例如:过二面角内一点A 作AB α⊥于B ,作AC β⊥于C ,面ABC 交棱a 于点O ,则BOC ∠就是二面角的平面角.如图3.此法实际应用中的比较少,此处就不一一举例分析了.知识点4:空间中的距离求点到面的距离转化为三棱锥等体积法求解. 【题型归纳目录】 题型一:异面直线所成角 题型二:线面角 题型三:二面角 题型四:距离问题 【典例例题】题型一:异面直线所成角例1.(2022·吉林·长春市第二实验中学高三阶段练习)如图,在棱长为2的正方体1111ABCD A B C D -中,,,,M N E F 分别是111,,DD BC C D 的中点,则异面直线MN 与EF 所成的角为( )A .2πB .3π C .6πD .4π 【答案】C【解析】取1CC 的中点H ,连接FH ,EH ,NH ,ME ,由正方体的性质可知//NH ME 且NH ME =,所以MNHE 为平行四边形, 所以//MN EH ,所以异面直线MN 与EF 所成的角的平面角为FEH ∠, 又2AB =,则EH FH =,FE则222cos 2EH EF FH FEH EH EF +-∠=⨯⨯,所以6FEH π∠=,故选:C .例2.(2022·四川内江·模拟预测(理))如图,在直三棱柱111ABC A B C -中,BC ⊥面11ACC A ,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为( )A B C D .35【答案】C【解析】连接1CB 交1BC 于D ,若E 是AC 的中点,连接,BE ED ,由111ABC A B C -为直棱柱,各侧面四边形为矩形,易知:D 是1CB 的中点, 所以1//ED AB ,故直线1BC 与直线1AB 夹角,即为ED 与1BC 的夹角BDE ∠或补角,若1BC =,则1CE =,BD CD ==, BC ⊥面11ACC A ,EC ⊂面11ACC A ,则CB CE ⊥,而1EC CC ⊥,又1BC CC C =,1,BC CC ⊂面11BCC B ,故EC ⊥面11BCC B , 又CD ⊂面11BCC B ,所以CE CD ⊥.所以32ED =,BE =, 在①BDE中222592cos 2BD ED BE BDE BD ED +-+-∠=⋅.故选:C例3.(2022·全国·模拟预测)已知正方体中1111ABCD A B C D -,E ,G 分别为11A D ,11C D 的中点,则直线1A G ,CE 所成角的余弦值为( ) ABCD【答案】C【解析】如图所示:取AB 的中点F ,连接EF ,CF ,易知1A G CF ∥,则①ECF (或其补角)为直线1A G 与CE 所成角.不妨设2AB =,则CF =EF =3EC =,由余弦定理得cos ECF ∠==1A G 与CE 所成角的. 故选:C .例4.(2022·全国·模拟预测)在如图所示的圆锥中,底面直径为4,点C 是底面直径AB 所对弧的中点,点D 是母线PB 的中点,则异面直线AB 与CD 所成角的余弦值为( )A .12 BC.2D .45【答案】B【解析】设底面圆心为O ,连接PO ,OC ,取PO 的中点E ,连接DE ,CE ,则DE AB ∥,且DE =CDE ∠为AB 与CD 所成的角(或其补角).由题意知OB =4PB =,所以2PO =,所以CE = 由题意知OC AB ⊥,OC PO ⊥,AB PO O =,AB ,PO ⊂平面POB , 所以OC ⊥平面POB .又OC ⊂平面POC ,所以平面POC ⊥平面POB , 又平面POC平面POB PO =,DE ⊂平面POB 且DE PO ⊥,所以DE ⊥平面POC ,因为CE ⊂平面POC ,所以DE CE ⊥.又12DE OB ==4CD =,所以cos CDE ∠= 故选:B .例5.(2020·黑龙江·哈师大附中高三期末(文))如图,在正三棱柱ABC ﹣A 1B 1C 1中,AB =AA 1=2,M 、N 分别是BB 1和B 1C 1的中点,则直线AM 与CN 所成角的余弦值等于( )AB C .25D .35【答案】D【解析】作BC 的中点E ,连接1B E ,作BE 的中点F ,连接MF 、1A F , 即AMF ∠为异面直线AM 与CN 所成的角,由已知条件得1B E =MF =AM =由余弦定理得AF ==在①AMF 中,有余弦定理可知2222cos AF AM MF AM MF AMF =+-⋅⋅∠,即13552cos 44AMF =+-∠,解得3cos 5AMF ∠=,故选:D .例6.(2023·全国·高三专题练习(文))如图,在四面体ABCD 中,90BCD AB ∠=︒⊥,平面BCD ,AB BC CD ==,P 为AC 的中点,则直线BP 与AD 所成的角为( )A .π6B .π4C .π3D .π2【答案】D【解析】在四面体ABCD 中,AB ⊥平面BCD ,CD ⊂平面BCD ,则AB CD ⊥,而90BCD ∠=︒, 即BC CD ⊥,又AB BC B ⋂=,,AB BC ⊂平面ABC ,则有CD ⊥平面ABC ,而BP ⊂平面ABC , 于是得CD BP ⊥,因P 为AC 的中点,即AC BP ⊥,而AC CD C =,,AC CD ⊂平面ACD , 则BP ⊥平面ACD ,又AD ⊂平面ACD ,从而得BP AD ⊥,所以直线BP 与AD 所成的角为π2.故选:D例7.(2022·河南省杞县高中模拟预测(文))如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,90ACB ∠=︒,1BC AA ==1AC =,则异面直线1AC 与1CB 所成角的余弦值为( )A B C D 【答案】B【解析】把三棱柱补成如图所示长方体,连接1B D ,CD ,则11B D AC ∥, 所以1CB D ∠即为异面直线1AC 与1CB 所成角(或补角).由题意可得2CD AB ==,112B D AC ==,1CB所以22211111cos 2CB B D CD CB D CB B D +-∠=⋅==故选:B .例8.(2022·全国·高三专题练习)在正方体ABCD ﹣A 1B 1C 1D 1中,过点C 做直线l ,使得直线l 与直线BA 1和B 1D 1所成的角均为70,则这样的直线l ( ) A .不存在 B .2条 C .4条 D .无数条【答案】C【解析】在正方体ABCD ﹣A 1B 1C 1D 1中,连接1,A D BD ,如图,则有11//BD B D ,显然11A B A D BD ==,即直线BA 1和B 1D 1所成角160∠=A BD ,过点C 做直线l 与直线BA 1和B 1D 1所成的角均为70可以转化为过点B 做直线l '与直线BA 1和BD 所成的角均为70,A BD '∠的平分线AO 与直线BA 1和BD 都成30的角,让l '绕着点B 从AO 开始在过直线AO 并与平面A BD'垂直的平面内转动时,在转动到l '⊥平面A BD '的过程中,直线l '与直线BA 1和BD 所成的角均相等,角大小从30到90, 由于直线l '的转动方向有两种,从而得有两条直线与直线BA 1和BD 所成的角均为70, 又A BD '∠的邻补角大小为120,其角平分线与直线BA 1和BD 都成60的角,当直线l '绕着点B 从A BD '∠的邻补角的平分线开始在过该平分线并与平面A BD '垂直的平面内转动时, 在转动到l '⊥平面A BD '的过程中,直线l '与直线BA 1和BD 所成的角均相等,角大小从60到90, 由于直线l '的转动方向有两种,从而得有两条直线与直线BA 1和BD 所成的角均为70, 综上得,这样的直线l '有4条,所以过点C 与直线BA 1和B 1D 1所成的角均为70的直线l 有4条. 故选:C例9.(2022·湖南·长沙一中高三开学考试)已知点A 为圆台O 1O 2下底面圆O 2的圆周上一点,S 为上底面圆O1的圆周上一点,且SO 1=1,O 1O 2O 2A=2,记直线SA 与直线O 1O 2所成角为θ,则( ) A .0,6πθ⎛⎤∈ ⎥⎝⎦B .0,3πθ⎛⎤∈ ⎥⎝⎦C .,63ππθ⎡⎤∈⎢⎥⎣⎦D .,42ππθ⎡⎤∈⎢⎥⎣⎦【答案】C【解析】由题意,设上、下底面半径分别为12,R R ,其中121,2R R ==, 如图,过S 作SD 垂直下底面于D ,则12O O SD ∥,所以直线SA 与直线12O O 所成角即为直线SA 与直线SD 所成角,即ASD ∠θ=, 而tanAD SD θ==,由圆的性质,222213R O D AD O D R =-+=,所以tanAD SD θ==⎣,所以,63ππθ⎡⎤∈⎢⎥⎣⎦,故选:C .例10.(2022·湖北武汉·模拟预测)已知异面直线a ,b 的夹角为θ,若过空间中一点P ,作与两异面直线夹角均为π3的直线可以作4条,则θ的取值范围是______.【答案】ππ,32⎛⎤⎥⎝⎦【解析】如图,将异面直线a 、b 平移到过P 点,此时两相交直线确定的平面为α,如图,a 平移为a ',即P A ,b 平移为b ',即BE .设①APB =θ,PC α⊂且PC 是①APB 的角平分线,则PC 与a '和b '的夹角相等,即PC 与a 、b 夹角均相等, ①将直线PC 绕着P 点向上旋转到PD ,当平面PCD ①α时,PD 与a '、b '的夹角依然相等,即PD 与a 、b 的夹角依然相等;将直线PC 绕着P 点向下旋转时也可得到与a 、b 的夹角均相等的另外一条直线,易知PC 与P A 夹角为2θ,当PC 向上或向下旋转的过程中,PC 与P A 夹角增大,则若要存在与两异面直线夹角均为π3的直线,有π2π233θθ<⇒<;①同理,①APE =πθ-,将①APE 的角平分线绕着P 向上或向下旋转可得两条直线与a 、b 的夹角均为π3,则πππ233θθ-<⇒>, 如此,即可作出4条直线与异面直线a 、b 夹角均为π3,又①0<θ≤π2,①θ∈ππ,32⎛⎤ ⎥⎝⎦. 故答案为:ππ,32⎛⎤ ⎥⎝⎦. 例11.(2022·江苏常州·模拟预测)在三棱锥A BCD -中,已知AB ⊥平面BCD ,BC CD ⊥,若2AB =,4BC CD ==,则AC 与BD 所成角的余弦值为___________.【解析】如图,取,,BC AB AD 中点,,E F G ,连接,,EF FG EG ,所以//,//EF AC FG BD ,则EFG (或其补角)即为AC 与BD 所成角,因为AB ⊥平面BCD ,所以AB BC ⊥,所以AC =EF =因为BC CD ⊥,所以BD FG =取BD 中点H ,连接,GH EH ,所以//HG AB ,所以HG ⊥平面BCD ,所以HG EH ⊥,又112GH AB ==,122EH CD ==,所以EG ==所以222cosEFG +-∠==所以AC 与BD题型二:线面角例12.(2022·福建·三明一中模拟预测)已知正方体1111ABCD A B C D -中,AB =E 为平面1A BD 内的动点,设直线AE 与平面1A BD 所成的角为α,若sin α=则点E 的轨迹所围成的面积为___________. 【答案】π【解析】如图所示,连接1AC 交平面1A BD 于O ,连接EO ,由题意可知1AC ⊥平面1A BD ,所以AEO ∠是AE 与平面1A BD 所成的角,所以AEO ∠=α.由sin α=tan 2α=,即2AO EO =.在四面体1A A BD -中,11BD A D A B ===1AB AD AA ===,所以四面体1A A BD -为正三棱锥,O 为1BDA △的重心,如图所示:所以解得BO =2AO ,又因为2AO EO=, 所以1EO =,即E 在平面1A BD 内的轨迹是以O 为圆心,半径为1的圆,所以2π1πS =⨯=.故答案为:π.例13.(2022·全国·模拟预测(理))如图,在三棱台111ABC A B C -中,1AA ⊥平面ABC ,90ABC ∠=︒,111111AA A B B C ===,2AB =,则AC 与平面11BCC B 所成的角为( )A .30B .45︒C .60︒D .90︒【答案】A 【解析】将棱台补全为如下棱锥D ABC -,由90ABC ∠=︒,111111AA A B B C ===,2AB =,易知:2DA BC ==,AC =由1AA ⊥平面ABC ,,AB AC ⊥平面ABC ,则1AA AB ⊥,1AA AC ⊥,所以BD =CD =222BC BD CD +=,所以122BCD S =⨯⨯=△A 到面11BCC B 的距离为h ,又D ABC A BCD V V --=,则111222323h ⨯⨯⨯⨯=⨯h = 综上,AC 与平面11BCC B 所成角[0,]2πθ∈,则1sin 2h AC θ==,即6πθ=. 故选:A例14.(2022·河南安阳·模拟预测(理))如图,在三棱锥P -ABC 中,底面ABC 是直角三角形,AC =BC =2,PB =PC ,D 为AB 的中点.(1)证明:BC ①PD ;(2)若AC ①PB ,P A =3,求直线P A 与平面PBC 所成的角的正弦值.【解析】(1)证明:如图,取BC 中点E ,连接PE ,DEPB PC =,E 为BC 中点PE BC ∴⊥又D 为AB 的中点,所以//DE AC底面ABC 是直角三角形,AC =BC =2,AC BC ∴⊥即DE BC ⊥,,PE DE E PE DE =⊂平面PDEBC ∴⊥平面PDE ,BC PD ∴⊥(2)由(1)知,AC BC ⊥,又AC PB ⊥且,,PB BC C PB BC =⊂平面PBCAC ∴⊥平面PBC ,∴直线P A 与平面PBC 所成的角为APC ∠在Rt APC 中,2,3AC PA ==2sin 3AC APC PA ∴∠==. ∴直线P A 与平面PBC 所成的角的正弦值为23.例15.(2022·河南安阳·模拟预测(理))如图,在四面体ABCD 中,AB AD =,BC CD =,E 为BD 的中点,F 为AC 上一点.(1)求证:平面ACE ⊥平面BDF ;(2)若90BCD ∠=︒,60BAD ∠=︒,AC =,求直线BF 与平面ACD 所成角的正弦值的最大值.【解析】(1)在四面体ABCD 中,AB AD BC CD ==,,E 为BD 的中点,则,AE BD CE BD ⊥⊥, 而AE CE E =,,AE CE ⊂平面ACE ,于是得BD ⊥平面ACE ,又BD ⊂平面BDF ,所以平面ACE ⊥平面BDF .(2)依题意不妨设2BC CD ==,90BCD ∠=︒,则BD CE ==60BAD ∠=︒,则AB AD BD ===AE =在ACE中,AC =222cos 2AE CE AC AEC AE CE +-∠==⋅sin AEC ∠=,11sin 22AEC S AE CE AEC =⋅∠== 由(1)得,1433B ACD AEC V S BD -=⋅=,因22212AD CD AC +==,即90ADC ∠=,则12ACD S AD CD =⋅= 设点B 到平面ACD 的距离为h,则114333B ACD ACD V S h -=⋅=⨯=,解得h =B 到平面ACD设直线BF 与平面ACD 所成角为θ,所以sin h BF θ==. 因为22212AB BC AC +==,所以90ABC ∠=,故当BF AC ⊥时,BF最短,此时2BF ==⨯,正例16.(2022·吉林·长春市第二实验中学高三阶段练习)如图,已知四棱锥P ABCD -中,PD ⊥平面ABCD ,且1,4,5AB DC AB DC PM PC ==∥.(1)求证:PA 平面MDB ;(2)当直线,PC PA 与底面ABCD 所成的角都为4π,且4,DC DA AB =⊥时,求出多面体MPABD 的体积. 【解析】(1)证明:连接,AC BD ,设,AC BD 交于点O ,连接OM ,因为AB CD , 所以14OA AB OC CD ==, 因为15PM PC =, 所以14PM OA MC OC==, 所以OM PA ∥,又OM ⊂平面MDB ,PA ⊄平面MDB所以PA 平面MDB ;(2)因为PD ⊥平面ABCD ,所以PAD ∠即为直线PA 与底面ABCD 所成的角的平面角,PCD ∠即为直线PC 与底面ABCD 所成的角的平面角, 所以4PAD PCD π∠=∠=,所以4PD AD CD ===,()144102ABCD S +⨯==梯形,14482BCD S =⨯⨯=△, 设点M 到平面ABCD 的距离为h , 因为15PM PC =, 所以41655h PD ==, 故14010433P ABCD V -=⨯⨯=,11612883515M BCD V -=⨯⨯=, 所以40128243155P ABCD M BCD MPABD V V V --=-=-=多面体.例17.(2022·全国·高三专题练习(文))已知正三棱柱111ABC A B C -中,2AB =,M 是11B C 的中点.(1)求证:1//AC 平面1A MB ;(2)点P 是直线1AC 上的一点,当1AC 与平面ABC 所成的角的正切值为2时,求三棱锥1P A MB -的体积.【解析】(1)证明:连接1AB 交1A B 于点N ,连接MN ,因为四边形11AA B B 为平行四边形,11AB A B N ⋂=,则N 为1AB 的中点,因为M 为11B C 的中点,则1//MN AC ,1AC ⊄平面1A MB ,MN ⊂平面1A MB ,故1//AC 平面1A MB .(2)因为1CC ⊥平面ABC ,1AC ∴与平面ABC 所成的角为1CAC ∠,因为ABC 是边长为2的等边三角形,则2AC =,1CC ⊥平面ABC ,AC ⊂平面ABC ,1CC AC ∴⊥,则11tan 2CC CAC AC∠==, 所以,124CC AC ==,1//AC 平面1A MB ,1P AC ∈,所以,点P 到平面1A MB 的距离等于点1C 到平面1A MB 的距离,因为M 为11B C 的中点,则11111211222A MC A B C S S ===△△则1111111111433P A MB C A MB B A C M A C M V V V BB S ---===⋅=⨯=△. 例18.(2022·四川省泸县第二中学模拟预测(文))如图,在四棱锥S ABCD -中,底面ABCD 为矩形,SAD为等腰直角三角形,SA SD ==2AB =,F 是BC 的中点.(1)在AD 上是否存在点E ,使得平面SEF ⊥平面ABCD ,若存在,求出点E 的位置;若不存在,请说明理由.(2)SBC △为等边三角形,在(1)的条件下,求直线SE 与平面SBC 所成角的正弦值.【解析】(1)在线段AD 上存在点E 满足题意,且E 为AD 的中点.如图,取AD 中点E 连接EF ,SE ,SF ,因为四边形ABCD 是矩形,所以AB AD ⊥.又E ,F 分别是AD ,BC 的中点,所以//EF AB ,AD EF ⊥.因为SAD 为等腰直角三角形,SA SD =,E 为AD 的中点,所以SE AD ⊥.因为SE EF E =,SE ⊂平面SEF ,EF ⊂平面SEF ,所以AD ⊥平面SEF .又AD ⊂平面ABCD .所以平面SEF ⊥平面ABCD .故AD 上存在中点E ,使得平面SEF ⊥平面ABCD .(2)过点E 作EG SF ⊥于点G ,由(1)知AD ⊥平面SEF ,又//BC AD则BC ⊥平面SEF ,EG ⊂平面SEF ,所以BC EG ⊥,又SF BC F ⋂=,所以EG ⊥平面SBC ,所以直线SE 与平面SBC 所成的角为ESG ∠,由SAD 为等腰直角三角形,SA SD ==4AD ==,2SE =.又2EF AB ==,因为SBC △为等边三角形,4BC AD ==,所以SF =在SEF 中,2SE EF ==,SF =所以1EG =. 则1sin 2EG ESG SE ∠==, 即直线SE 与平面SBC 所成角的正弦值为12.例19.(2022·江苏南通·模拟预测)如图,在矩形ABCD 中,AB =2AD =4,M ,N 分别是AB 和CD 的中点,P 是BM 的中点.将矩形AMND 沿MN 折起,形成多面体AMB -DNC .(1)证明:BD //平面ANP ;(2)若二面角A -MN -B 大小为120°,求直线AP 与平面ABCD 所成角的正弦值.【解析】(1)证明:连接MD 交AN 于点O ,连接OP ,①四边形AMND 为矩形①O 为MD 的中点,又①P 为BM 的中点①//OP BD ,①BD ⊄平面ANP ,OP ⊂平面ANP ,①BD //平面ANP(2)①AM MN ⊥,BM MN ⊥,①①AMB 即为二面角A MN B --的平面角,120AMB ∠=,且MN ①平面ABM ,①BC ①平面ABM ,①BC ⊂平面ABCD ,①平面ABCD ①平面ABM过P 作PQ AB ⊥于点Q ,①PQ ①平面ABCD ,①①P AB 即为AP 与平面ABCD 所成角,2AM MB ==,AB =1PB =,①12PQ =,BQ =,①AQ =①AP ==①1sinPAB ∠==题型三:二面角例20.(2023·河北·高三阶段练习)如图,ABCD 为圆柱OO '的轴截面,EF 是圆柱上异于,AD BC 的母线.(1)证明:BE ⊥平面DEF ;(2)若AB BC ==B DEF -的体积最大时,求二面角B DF E --的正弦值.【解析】(1)证明:如图,连接AE ,由题意知AB 为O 的直径,所以AE BE ⊥.因为,AD EF 是圆柱的母线,所以AD EF ∥且AD EF =,所以四边形AEFD 是平行四边形.所以//AE DF ,所以BE DF ⊥.因为EF 是圆柱的母线,所以EF ⊥平面ABE ,又因为BE ⊂平面ABE ,所以EF BE ⊥.又因为DF EF F =,DF EF ⊂、平面DEF ,所以BE ⊥平面DEF .(2)由(1)知BE 是三棱锥B DEF -底面DEF 上的高,由(1)知,EF AE AE DF ⊥∥,所以EF DF ⊥,即底面三角形DEF 是直角三角形.设,DF AE x BE y ===,则在Rt ABE △中有:226x y +=,所以221113322B DEF DEF x y V S BE x y -+⎛=⋅=⋅⋅=≤= ⎝,当且仅当x y ==E ,F 分别是AB ,CD 的中点时,三棱锥B DEF -的体积最大, (另等积转化法:13B DEF D BEF D BCF B CDF CDF V V V V S BC ----====⋅易得当F 与CD 距离最远时取到最大值,此时E 、F 分别为AB 、CD 中点)下面求二面角B DF E --的正弦值:由(1)得BE ⊥平面DEF ,因为DF ⊂平面DEF ,所以BE DF ⊥.又因为,EF DF EF BE E ⊥=,所以DF ⊥平面BEF .因为BF ⊂平面BEF ,所以BF DF ⊥,所以BFE ∠是二面角B DF E --的平面角,由(1)知BEF 为直角三角形,则3BF ==.故sin BE BFE BF ∠==B DF E --例21.(2023·全国·高三专题练习(理))如图,在三棱锥P ABC -中,2AB BC ==,PA PB PC AC ====O 为AC 的中点.(1)证明:PO ①平面ABC ;(2)若点M 在棱BC 上,且PM 与面ABC 求二面角M PA C --的平面角的余弦值.【解析】(1)证明:连接OB .法一:①2,AB BC AC ===①222AB BC AC +=,即①ABC 是直角三角形,又O 为AC 的中点,①OA OB OC ==又①PA PB PC ==,①POA POB POC ∆≅∆≅∆①90POA POB POC ∠=∠=∠=.①,,PO AC PO OB OBAC O ⊥⊥=,OB 、AC ⊂平面ABC ①PO ①平面ABC .法二:连接OB ,PA PC =,O 为AC 的中点①PO AC ⊥因为2,AB BC PA PB PC AC ======①,AB BC BO PO ⊥==222PO OB PB +=,①PO OB ⊥①,,PO AC PO OB OBAC O ⊥⊥=,OB 、AC ⊂平面ABC .①PO ①平面ABC .(2)由(1)知,PO ①面ABC ①OM 为PM 在面ABC 上的射影,①①PMO 为PM 与面ABC 所成角,①tan PO PMO OM ∠===①1OM =, 在①OMC 中由正弦定理可得1MC =,①M 为BC 的中点.作ME ①AC 于E ,①E 为OC 的中点,作EF PA ⊥交P A 于F ,连MF①MF ①P A ①①MFE 即为所求二面角M PA C --的平面角,ME =34EF AE =①tanME MFE EF ∠===①cos MFE ∠= 例22.(2022·广东·大埔县虎山中学高三阶段练习)如图,AB 是圆的直径,P A 垂直圆所在的平面,C 是圆上的点.(1)求证:平面P AC ①平面PBC ;(2)若AB =2,AC =1,P A =1,求:二面角C PB A 的正切值.【解析】(1)因为PA ⊥平面ABC ,BC ⊂平面ABC ,所以PA BC ⊥, 因为AB 是圆的直径,C 是圆上的点,所以BC AC ⊥,因为PA AC A =,所以BC ⊥平面PAC ,因为BC ⊂平面PBC ,所以平面P AC ①平面PBC .(2)过C 作CD AB ⊥,垂足为D ,过D 作DE PB ⊥,垂足为E ,连CE ,如图:因为PA ⊥平面ABC ,CD ⊂平面ABC ,所以PA CD ⊥,因为PA AB A =,所以CD ⊥平面PAB ,所以CD PB ⊥,因为DE PB ⊥,DE CD D ⋂=,所以PB ⊥平面CDE ,所以PB CE ⊥, 所以DEC ∠是二面角C -PB -A 的平面角,因为2AB =,1AC =,AC CB ⊥,所以60CAB ∠=,所以3sin 602CD AC =⋅=12AD =,13222BD =-=, 因为1PA=,2AB =,所以PBsin PA PBA PB ==,在直角三角形DEB中,3sin 2DE BD EBD =⋅==,在直角三角形DEC中,tan CD DEC DE ===所以二面角C -PB -A 例23.(2022·北京·景山学校模拟预测)如图,正三棱柱111ABC A B C -中,E ,F 分别是棱1AA ,1CC 上的点,平面BEF ⊥平面11ABB A ,M 是AB 的中点.(1)证明://CM 平面BEF ;(2)若2AC AE ==,求平面BEF 与平面ABC 夹角的大小.【解析】(1)证明:在等边ABC 中,M 为AB 的中点,所以CM AB ⊥, 在正三棱柱111ABC A B C -中,平面ABC ⊥平面11ABB A ,平面ABC 平面11ABB A AB =,CM ⊂平面ABC ,所以CM ⊥平面11ABB A ,过F 在平面BEF 内作FN BE ⊥,垂足为N ,平面BEF ⊥平面11ABB A ,平面BEF 平面11ABB A BE =,FN ∴⊥平面11ABB A ,//CM FN ∴, CM ⊂/平面BEF ,FN ⊂平面BEF ,//CM ∴平面BEF .(2)由题设//CF 平面11ABB A ,平面FCMN 平面11ABB A MN =, //CF NM ∴,∴四边形CFNM 是平行四边形,又//MN AE 且12MN AE =, 所以112CF NM AE ===,延长EF ,AC ,相交于点G ,连接BG ,则C 、F 分别为AG 、EG 的中点, 则平面BEF 与平面ABC 所成的角就是二面角E BG A --,可知CG AC BC ==,BG AB ∴⊥,所以BG ⊥平面11ABB A ,EBA ∴∠是二面角E BG A --的平面角, 又AE AB =,AB AE ⊥,所以45EBA ∠=︒,即平面BEF 与平面ABC 所成的角为45︒;例24.(2022·湖南·雅礼中学二模)如图,在正方体1111ABCD A B C D -中,点E 在线段1CD 上,12CE ED =,点F 为线段AB 上的动点.(1)若EF 平面11ADD A ,求AF FB的值; (2)当F 为AB 中点时,求二面角E DF C --的正切值.【解析】(1)过E 作1EG D D ⊥于G ,连接GA .则∥EG CD ,而CD FA ∥,所以EG FA ∥.因为EF 平面11,ADD A EF ⊂平面EFAG ,平面EGAF 平面11ADD A GA =, 所以EF GA ∥,所以四边形EGAF 是平行四边形,所以GE AF =.因为12CE ED =,所以11D E GE DC D C=.所以13AF AB =, 所以12AF FB =. (2)过E 作EH CD ⊥于D ,过H 作HM DF M ⊥于,连接EM ,因为平面11CDD C ⊥平面,ABCD EH CD ⊥,所以EH ⊥平面ABCD ,因为DF ⊂平面ABCD ,所以EH DF ⊥,又HM DF ⊥,所以DF ⊥平面EMH ,因为EM ⊂平面EMH ,所以DF EM ⊥.所以EMH ∠是二面角E DF C --的平面角.设正方体的棱长为3a ,则2,EH a DH a ==.在Rt ADF 中,DF =, 则11,22DHF S DF MH DH AD MH =⋅=⋅⇒=tan EH EMH MH∠∴==即二面角E DF C --例25.(2022·天津·耀华中学一模)如图,在四棱锥E ABCD -中,平面ABCD ⊥平面ABE ,AB DC ∥,AB BC ⊥,222AB BC CD ===,AE BE ==M 为BE 的中点.(1)求证:CM ∥平面ADE ;(2)求平面EBD 与平面BDC 夹角的正弦值;【解析】(1)取AE 中点G ,连接,GM GD ,如图,因为M 是EB 中点,则//MG AB 且12MG AB =,又//AB CD ,2AB CD =, 所以//MG CD 且MG CD =,所以MGDC 是平行四边形,所以//CM DG ,DG ⊂平面ADE ,CM ⊄平面ADE ,所以//CM 平面ADE ;(2)取AB 中点F ,连接,EF CF ,CF 交BD 于点O ,连接OE , 由已知//AB DC ,AB BC ⊥,2AB CD =,得CDFB 是正方形, CF BD ⊥,EA EB =,则EF AB ⊥,因为平面ABCD ⊥平面ABE ,平面ABCD 平面ABE AB =,EF ⊂平面ABE , 所以EF ⊥平面ABCD ,又BD ⊂平面ABCD ,所以EF BD ⊥, 又BD FC ⊥,EF CF F =,所以BD ⊥平面ECF ,又OE ⊂平面BCF ,所以BD OE ⊥,所以EOC ∠是二面角E BD C --的平面角,又2OF =,2==EF ,所以===OEsin EF EOF OE ∠==()sin sin πsin EOC EOF EOF ∠=-∠=∠= 所以平面EBD 与平面BDC.例26.(2022·浙江·海宁中学模拟预测)如图所示,在四边形ABCD 中,//AD BC ,AB AD ⊥,1.2AD AB BC ==现将ABD △沿BD 折起,使得点A 到E 的位置.(1)试在BC 边上确定一点F ,使得BD EF ⊥;(2)若平面EBD ⊥平面BCD ,求二面角E BC D --所成角的正切值.【解析】(1)因为//AD BC ,AB AD ⊥,12AD AB BC ==,所以45ABD ADB DBC ∠=∠=∠=︒,BD =,BC , 所以BAD ①BDC ,所以90BAD BDC ∠=∠=︒,所以BD CD ⊥,在四边形ABCD 内过点A 作AM BD ⊥于点M ,并延长交BC 于.F则点M 为BD 中点,所以F 也为BC 中点.将ABD △沿BD 折起,使得点A 到E 的位置时,有EM BD MF BD ⊥⊥,,所以BD ⊥平面EFM ,也为EF ⊂平面EFM ,所以BD EF ⊥,(2)过点M 作MN BC ⊥交BC 于点.N 则1.2MN AB = 则在三棱锥E BCD -中,因为平面EBD ⊥平面BCD ,所以EM ⊥平面.BCD因为MN BC ⊥,连接EN ,则有.EN BC ⊥所以ENM ∠即为二面角E BC D --的平面角,设122AD AB BC ===,则 1.EM MN ==所以在Rt EMN △中,tan EM ENM MN∠==所以二面角E BC D --例27.(2022·湖北武汉·模拟预测)如图,在三棱锥P ABC -中,平面PAC ⊥平面ABC ,4PA PC ==,AB BC ⊥,D ,E 分别为PC ,AC 中点,且BD AC ⊥.(1)求AB BC的值; (2)若4AC =,求二面角E BD C --的余弦值.【解析】(1)作DF AC ⊥于F ,连接DF ,BF ,①平面PAC ⊥平面ABC ,平面PAC 平面C ABC A =,DF AC ⊥,PE ⊂面PAC①DF ⊥平面ABC .①DF PE ∥.①PE ⊥平面ABC ,AC ⊂平面ABC①DF AC ⊥,①AC BD ⊥,BD DF D =,BD ,DF ⊂平面BFD ,①AC ⊥平面BFD ,BF ⊂平面BFD ,①AC ⊥BF ,①D ,E 分别为PC ,AC 中点,4PA PC ==,DF AC ⊥,①3AF FC =,①AB BC ⊥,AC ⊥BF ,①22,AB AF AC BC FC AC =⋅=⋅①AB BC ==(2)由4AC AB =⇒=2BC BE CD ED ====,取BD 中点为G ,连接DG ,CG .由BED ,BCD △为等腰三角形,故BD EG ⊥,BD CG ⊥,则EGC ∠为二面角E BD C --的平面角.BD ==EG CG ==22221cos 5EGC +-∠==.所以二面角E BD C --的余弦值为15. 例28.(2022·陕西·西北工业大学附属中学二模(理))在如图所示的圆锥中,PA 、PB 、PC 是该圆锥的三条不同母线,M 、N 分别为PA 、PB 的中点,圆锥的高为h ,底面半径为r ,:3:2h r =,且圆锥的体积为32π.(1)求证:直线MN 平行于圆锥的底面;(2)若三条母线PA 、PB 、PC 两两夹角相等,求平面MNC 与圆锥底面的夹角的余弦值.【解析】(1)连接AB ,在PAB △中,M 、N 分别为PA 、PB 的中点,所以//MN AB ,因为MN ⊄平面ABC ,AB平面ABC ,所以//MN 平面ABC ; (2)由21323V r h ππ==圆锥,且:3:2h r =,可解得6,4h r === 因为三条母线PA 、PB 、PC 两两夹角相等,所以ABC为等边三角形,则边长为2sin60r ︒= 设MN 的中点为D ,点D 在底面的投影为E ,则32h DE ==, 连接,CE CD ,则DCE ∠为平面MNC 与圆锥底面的夹角,在PAC △中,cos 13PAC ∠==, 则在MAC △中,(22223713MC =+-⨯=,所以CD ===,则5CE ==,所以cos34CE DCE CD ∠===.所以平面MNC例29.(2022·天津河北·二模)如图,四边形ABCD 是边长为2的菱形,60ABC ∠=︒,四边形P ACQ 是矩形,1PA =,且平面PACQ ⊥平面ABCD .(1)求直线BP 与平面P ACQ 所成角的正弦值;(2)求平面BPQ 与平面DPQ 的夹角的大小;【解析】(1)连接BD 交AC 于O ,连接OP ,四边形ABCD 是菱形,BD AC ∴⊥,平面PACQ ⊥平面ABCD ,平面PACQ ⋂平面ABCD AC =,BD ⊂平面ABCD ,BD ∴⊥平面PACQ ,BPO ∴∠即为BP 与平面ACQP 所成角.四边形PACQ 为矩形,PA AC ∴⊥,又平面PACQ ⊥平面ABCD ,平面PACQ ⋂平面ABCD AC =,PA ⊂平面PACQ ,PA ∴⊥平面ABCD ,PA AB ∴⊥,BP ∴在Rt POB △中,OB =sin OB BPO BP ∴∠==故BP 与平面ACQP(2)取PQ 的中点M ,连接BM 、DM ,由(1)知,PA ⊥平面ABCD ,四边形ABCD 是菱形,四边形PACQ 为矩形,BP BQ ∴=,DP DQ =,BM PQ ∴⊥,DM PQ ⊥,BM D ∴∠即为二面角B PQ D --的平面角,在BDM 中,BD =2BM DM ==, 由余弦定理知,22244121cos 22222BM DM BD BMD BM DM +-+-∠===-⋅⨯⨯, 120BMD ∴∠=︒, 故二面角B PQ D --的大小为120︒,则平面BPQ 与平面DPQ 的夹角为60︒.例30.(2021·江苏苏州·高三阶段练习)已知四棱锥Q ABCD -的底面ABCD 是边长为2的正方形,且平面QAD ⊥平面ABCD .(1)证明:AB QD ⊥;(2)若点Q 到平面ABCD 的距离为2,记二面角B QD A --的正切值为m ,求1QD m +的最小值. 【解析】(1)在四棱锥Q ABCD -中,ABCD 是正方形,则AB AD ⊥,因平面QAD ⊥平面ABCD ,平面QAD ⋂平面ABCD AD =,AB平面ABCD ,则AB ⊥平面QAD ,而QD ⊂平面QAD ,所以AB QD ⊥. (2)在平面QAD 内过Q 作QM AD ⊥于M ,过点A 作AN QD ⊥于N ,连接BN ,如图,因平面QAD ⊥平面ABCD ,平面QAD ⋂平面ABCD AD =,则QM ⊥平面ABCD ,即有2QM =, 由(1)知AB QD ⊥,而ABAN A =,,AB AN ⊂平面ABN ,于是得QD ⊥平面ABN ,BN ⊂平面ABN ,则BN QD ⊥,因此,ANB ∠是二面角B QD A --的平面角,2tan AB m ANB AN AN =∠==, 在QAD 中,4AN QD QM AD ⋅=⋅=,即4AN QD =,显然2QD ≥, 于是得1232AN QD QD QD m QD +=+=+≥,当且仅当2QD =时取“=”, 所以1QD m+的最小值是3. 题型四:距离问题例31.(2022·四川广安·模拟预测(文))如图,四棱锥E ABCD -中,底面ABCD 为直角梯形,其中AB BC ⊥,CD AB ∥,面ABE ⊥面ABCD ,且224AB AE BE BC CD =====,点M 在棱AE 上.(1)若2EM AM =,求证:CE ∥平面BDM .(2)当AE ⊥平面MBC 时,求点E 到平面BDM 的距离.【解析】(1)连接AC 与BD 交于点N ,连接MN ,①AB CD ∥,24AB CD ==,①CND ANB △△∽, ①12CD CN AB AN ==, 又因为2EM AM =, ①12CN EM AN MA==, ①CE MN ∥,又①CE ⊄平面BDM ,MN ⊂平面BDM ,①CE ∥平面BDM .(2)①AE ⊥平面MBC ,BM ⊂平面MBC ,①AE BM ⊥,①AB BE =,①M 是AE 的中点,①平面ABE ⊥平面ABCD ,①点E 到平面ABCD 的距离为4sin 60d =︒=在BDM 中,BD =DM =BM =①12BDM S =⋅△ ①111223E BDM E ABD M ABD E ABD ABD V V V V S d ----=-==⨯⨯⨯△114262=⨯⨯⨯⨯①点E 到平面BDM 的距离h 满足13=,所以距离h =. 例32.(2022·全国·模拟预测(文))如图,在三棱锥P ABC -中,平面PAB ⊥平面ABC ,AC BC =,PA PB =,且点C 在以点O 为圆心AB 为直径的半圆AB 上.(1)求证:AB PC ⊥;(2)若2AC =,且PC 与平面ABC 所成角为4π,求点B 到平面PAC 的距离. 【解析】(1)连接,OP OC ,因为PA PB =,AC BC =,故AB OP ⊥,AB OC ⊥,又OP OC O ⋂=,,OP OC ⊂平面OPC ,故AB ⊥平面OPC .又PC ⊂平面OPC ,故AB PC ⊥(2)由(1)因为AB OP ⊥,且平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC 于AB ,故OP ⊥平面ABC ,故PC 与平面ABC 所成角为4PCO π∠=,故OC OP =,又点C 在以点O 为圆心AB 为直径的半圆AB 上,AC BC =,2AC =,故OC OP OA OB ====2PA AC PC ===,设点B 到平面PAC 的距离为h ,则因为P ABC B PAC V V --=,即2111222323h ⨯⨯⨯,解得h 例33.(2022·河南安阳·模拟预测(文))如图,在三棱锥P ABC -中,底面ABC 是直角三角形,2AC BC ==,PB PC =,D 为AB 的中点.(1)证明:BC PD ⊥;(2)若3PA =,PB A 到平面PDC 的距离.【解析】(1)证明:取BC 中点E ,连接PE ,DE ,因为底面ABC 是直角三角形,AC BC =,所以90ACB ∠=︒, 因为D 为AB 的中点,所以//DE AC ,所以DE BC ⊥, 又PB PC =,所以PE BC ⊥,因为PE ,DE ⊂平面PDE ,PE DE E =,所以BC ⊥平面PDE , 因为PD ⊂平面PDE ,所以BC PD ⊥.(2)连接AE ,CD ,由(1),因为PE BC ⊥,112CE BC ==,PC PB ==2PE =,因为AC BC ⊥,所以AE ==又3PA =,所以222PE AE PA +=,即AE PE ⊥,因为PE BC ⊥,BC AE E =,BC ,AE ⊂平面ABC , 所以PE ⊥平面ABC , 所以11142223323P ABC ABC V S PE -=⋅=⨯⨯⨯⨯=, 因为D 是AB 的中点,所以1223P ACD P ABC V V --==,因为直角三角形ABC ,所以1122CD AB ==⨯ 因为PE ⊥平面ABC ,DE ⊂平面ABC ,所以PE DE ⊥,又112DE AC ==,所以PD所以在等腰PCD 中,CD所以13222PCD S ==, 设点A 到平面PDC 的距离为d ,因为P ACD A PCD V V --=, 所以2133PCD S d =⋅,则43d =, 所以点A 到平面PDC 的距离为43.例34.(2022·全国·高三专题练习)如图,在直棱柱1111ABCD A B C D -中,底面ABCD 是直角梯形,//,AB DC AB BC ⊥,33,6AB DC BC ===,点P 在面11ADD A 上,过点P 和棱1BB 的平面把直棱柱分成体积相等的两部分.(1)求截面与直棱柱的侧面11BCC B 所成角的正切值; (2)求棱1DD 到截面的距离.【解析】(1)如图所示,作出截面为1BB PQ 交AD 于Q ,A 1D 1于Q 1.1111ABCD A B C D -为直棱柱,1BB ∴⊥平面1111D C B A ,11,BQ BC BB BB ∴⊥⊥QBC ∴∠为截面与直棱柱的侧面11BCC B 所成角的平面角.过Q 作QH AB ⊥,垂足为11,H AB B C ⊥,,//QH BC QBC BQH ∴∴∠=∠,由题意可得:212ABCD ABQ S S ∴==,1362ABQ S QH ∴=⨯⨯=,4QH ∴=. 过Q 作QM BC ⊥,垂足为M ,则()11412622QBCD MBQ MCDQ S S S QM QM ∴==⨯⨯++⨯+⨯=,解得:53QM =, 所以4,335BH AH ==, 115tan tan 12QM PB C QBM BM ∴∠=∠==. 即截面与直棱柱的侧面11BCC B 所成角的平面角的正切值为512. (2)因为1//DD 截面,所以棱1DD 到截面的距离即为点D 到截面的距离.1BB ⊥平面,ABCD ∴平面1BB PQ ⊥平面ABCD ,交线为BQ ,过D 作DT BQ ⊥,垂足为,T DT ∴⊥平面1BB PQ ,则DT 的长度为棱1DD 到截面所在平面的距离.因为16132BCD S =⨯⨯=△,162QBCD ABCD S S ==,3QBD QBCD BCD S S S =-=, 即132QBD S BQ DT =⨯⨯=.因为133BQ =,所以332181313DT ⨯⨯== 所以棱1DD 到截面所在平面的距离为1813. 例35.(2021·湖南师大附中高三阶段练习)如图,已知ABC 为等边三角形,D ,E 分别为AC ,AB 边的中点,把ADE 沿DE 折起,使点A 到达点P ,平面PDE ⊥平面BCDE ,若4BC =.。
高考数学复习考点题型专题讲解题型:点、线、面性质【高考题型一】:点、线、面位置关系及性质。
『解题策略』:画★号的可用于证明依据(大题的第一问),其它的只用于判断(小题)。
①两条直线平行的判定:ⅰ.定义:在同一个平面内且没有公共点的两条直线平行。
★ⅱ.如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行(线面平行⇒线线平行)。
★ⅲ.平行于同一直线的两直线平行(平行线的传递性)。
★ⅳ.垂直于同一平面的两直线平行。
★ⅴ.两平行平面与同一个平面相交,那么两条交线平行(面面平行⇒线线平行)。
ⅵ.如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行。
ⅶ.三个平面两两相交,三条交线平行或交于一点(如有两条交线平行,则三条互相平行)。
★ⅷ. 两直线的方向向量存在系数λ,即:12//l l 或1l 与2l 重合⇔12//v v (12,v v 是两条直线的方向向量)。
②两条直线垂直的判定:ⅰ.定义:若两直线成90︒角,则这两直线互相垂直。
★ⅱ.一条直线与两条平行直线中的一条垂直,也必与另一条垂直。
★ⅲ.一条直线垂直于一个平面,则垂直于这个平面内的任意一条直线(线面垂直⇒线线垂直)。
★ⅳ.三垂线定理和它的逆定理:在平面内的一条直线,若和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直(若和斜线垂直,则和射影垂直)。
ⅴ.如果一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直。
ⅵ.三个两两垂直的平面的交线两两垂直。
★ⅶ.两直线的方向向量数量积为零。
③直线与平面平行的判定:ⅰ.定义:若一条直线和平面没有公共点,则这直线与这个平面平行。
★ⅱ.如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行(线线平行⇒线面平行)(关键是找线,找线一般思路是利用中位线或平行四边形。
)。
★ⅲ.两个平面平行,其中一个平面内的直线平行于另一个平面。
ⅳ.如果一个平面和平面外的一条直线都垂直于同一平面,那么这条直线和这个平面平行。
四、关于线线、线面及面面垂直的问题:典型例题:例1.已知矩形ABCD ,1AB =,BC .将ABD ∆沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,【 】A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 【答案】B 。
【考点】空间中直线与直线之间的位置关系。
【解析】 如图,AE ⊥BD ,CF ⊥BD ,依题意,1AB =,BC =AE =CF3BE EF FD ===。
A ,若存在某个位置,使得直线AC 与直线BD 垂直,则∵BD ⊥AE ,∴BD ⊥平面AEC ,从而BD ⊥EC ,这与已知矛盾,排除A ;B ,若存在某个位置,使得直线AB 与直线CD 垂直,则CD ⊥平面ABC ,平面ABC ⊥平面BCD 。
取BC 中点M ,连接ME ,则ME ⊥BD ,∴∠AEM 就是二面角A BD C --的平面角,此角显然存在,即当A 在底面上的射影位于BC 的中点时,直线AB 与直线CD 垂直,故B 正确;C ,若存在某个位置,使得直线AD 与直线BC 垂直,则BC ⊥平面ACD ,从而平面ACD ⊥平面BCD ,即A 在底面BCD 上的射影应位于线段CD 上,这是不可能的,排除C ;D ,由上所述,可排除D 。
故选 B 。
例2.如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点(I)证明:平面BDC 1⊥平面BDC(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比。
【答案】解:(I)证明:∵由题设,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,∴BC⊥CC 1,BC⊥AC,CC 1AC=C ,∴BC⊥平面ACC 1A 1。
又∵DC 1⊂平面ACC 1A 1,∴DC 1⊥BC。
∵由题设,AC=BC ,=12AA 1,D 是棱AA 1的中点,∴∠A 1DC 1=∠ADC=450,∴∠CDC=900,即DC 1⊥D C 。
又∵DCBC=C ,∴DC 1⊥平面BDC 。
又∵DC 1⊂平面BDC 1,∴平面BDC 1⊥平面BDC 。
(Ⅱ)设棱锥B -DACC 1的体积为V 1,AC a =,则()3112a 11V a a a 322+=⨯⨯⨯=。
又∵三棱柱ABC -A 1B 1C 1的体积31V a a 2a a 2=⨯⨯⨯=, ∴()11V V V 1:1-=:。
∴平面BDC 1分此棱柱为两部分体积的比为1:1。
【考点】直三棱柱的性质,平面和平面的位置关系,棱柱和棱锥的体积。
【解析】(I)要证明平面BDC 1⊥平面BDC ,只要证一个平面的一条直线垂直于另一个平面即可。
由由题设可证得DC 1⊥BC,DC 1⊥DC,由DCBC=C 得DC 1⊥平面BDC ,而DC 1⊂平面BDC 1,因此平面BDC 1⊥平面BDC 。
(Ⅱ)求出三棱柱ABC -A 1B 1C 1的体积和棱锥B -DACC 1的体积即可求得结果。
例3.如图1,在Rt△ABC 中,∠C=90°,BC=3,AC=6,D ,E 分别是AC ,AB 上的点,且DE∥BC,DE=2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C⊥CD,如图2. (1)求证:A 1C⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由【答案】解:(1)∵CD⊥DE,A 1E⊥DE,,∴DE⊥平面A 1CD 。
又∵A 1C ⊂平面A 1CD ,∴A 1C⊥DE。
又∵A 1C⊥CD,∴A 1C⊥平面BCDE 。
(2)如图建立空间直角坐标系C xyz -,则B (0,3,0),C (0,0,0),D (-2,0,0),E (-2。
2。
0),A 1(0,0,)。
∴()()1A B 0,323, BE 21,0=-=-- ,,。
设平面A 1BE 法向量为()n=x y z,,,则1A B n=0 BE n=0⎧⋅⎪⎨⋅⎪⎩,即3y 2x y=0⎧-⎪⎨--⎪⎩,∴1x=y 2⎧⎪⎪⎨⎪-⎪⎩。
∴(n=12-,又∵M 是A 1D 的中点,∴M(-1,0。
∴(CM 1,0=- 。
设CM 与平面A 1BE法向量所成角为ϑ,则CM n cos ==1CM nθ⋅+⋅∴0=45ϑ。
∴CM 与平面A 1BE 所成角为0009045=45-。
(3)设线段BC 上点P ,设P 点坐标为()0p 0 ,,,则[]p 0,3∈ 。
则()()1A P 0,p 23, DP 2,0P =-=,, 设平面A 1DP 法向量为()1111n =x y z ,,则1111py =02x py =0⎧-⎪⎨+⎪⎩∴1111z 1x =py 2⎧⎪⎪⎨⎪-⎪⎩。
∴()1n =3p 6-,。
假设平面A 1DP 与平面A 1BE 垂直,则1n n =0⋅,即3p 123p=0++,解得p=2-。
与[]p 0,3∈ 不符。
∴线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直。
【考点】线面垂直的判定,线面角的计算,两平面垂直的条件。
【解析】(1)根据线面垂直的判定进行判定。
(2)建立空间直角坐标系可易解决。
(3)用反证法,假设平面A 1DP 与平面A 1BE 垂直,得出与已知相矛盾的结论即可。
例4.如图1,在Rt△ABC 中,∠C=90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F⊥CD,如图2。
(1) 求证:DE∥平面A 1CB ; (2) 求证:A 1F⊥BE;(3) 线段A 1B 上是否存在点Q ,使A 1C⊥平面DEQ ?说明理由。
【答案】解:(1)证明:∵在图1 Rt△ABC 中,∠C=90°,D ,E 分别为AC ,AB 的中点, ∴DE∥BC。
∵在图2中,DE ⊂平面A 1CB ,∴DE∥平面A 1CB 。
(2)证明:∵DE⊥A 1D ,DE⊥CD,A 1D∩CD=D,∴DE⊥平面A 1CD 。
∵A 1F ⊂平面A 1CB ,∴DE⊥A 1F 。
又∵A 1F⊥C D ,CD∩DE=D,CD ⊂平面BEDC ,DE ⊂平面BEDC ,∴A 1F⊥平面BEDC 。
又∵BE ⊂平面BEDC ,∴A 1F⊥BE,(3)线段A 1B 上存在点Q ,使A 1C⊥平面DEQ ,点Q 为A 1B 的中点。
理由如下:取A1C 中点P ,连接DP ,QP 。
∵PD12CB ,DE 12CB ,∴PD DE 。
∴DEQP 是平行四边形,∴D、E 、Q 、P 四点共面。
由(2)知,DE⊥平面A 1CD ,又A 1C ⊂平面A 1CD ,∴DE⊥A 1C 。
∵P,Q 是A 1B 和A 1C 的中点,∴PQ∥CB∥DE。
∴PQ ⊥A 1C 。
又∵AD=CD ,A 1P=CP ,∴PD⊥A 1C 。
又∵PQ∩PD=P, ∴A 1C⊥平面PQD ,即A 1C⊥平面DEQ 。
【考点】线面平行,线线垂直,线面垂直的判定,三角形中位线的性质,平行四边形的判定和性质。
【解析】(1)由线面平行的判定理直接证出。
(2)要证两异面直线垂直,就要证一条直线垂直于另一条直线所在的平面。
因此考虑证明A 1F⊥平面BEDC 即可。
(3)在线段A 1B 上找出使A 1C⊥平面DEQ 的点Q ,进行证明。
例5. 如图,长方体1111D C B A ABCD -中,底面1111D C B A 是正方形,O 是BD 的中点,E 是棱1AA 上任意一点。
(Ⅰ)证明:BD 1EC ⊥ ;(Ⅱ)如果AB =2,AE =2, 1EC OE ⊥, 求1AA 的长。
【答案】解;(I )连接AC 。
∵1//AE CC ,∴1,,,E A C C 共面。
∵长方体1111D C B A ABCD -中,底面1111D C B A 是正方形,∴,,AC BD EA BD AC EA A ⊥⊥=。
∴BD ⊥面1EACC 。
∴1BD EC ⊥。
(Ⅱ)连接11AC 。
∵在矩形11ACC A 中,1OE EC ⊥, ∴11OAE EAC ∆∆∽。
∴111ACAE AO EA =。
=1AA =【考点】两直线的位置,相似三角形的判定和性质。
【解析】(I )要证1BD EC ⊥,只要BD ⊥面1EACC 即可。
一方面,由正方形的性质有AC BD ⊥,另一方面由长方体的性质有EA BD ⊥,且AC 和EA 是相交的,从而BD ⊥面1EACC 。
(Ⅱ)由1OE EC ⊥,根据角的转换可知11OAE EAC ∆∆∽,从而根据相似三角形的性质可由对应边比求出1AA 的长。
例6.如图所示,在四棱锥P-ABCD 中,AB ⊥平面PAD ,AB ∥CD ,PD =AD ,E 是PB 的中点,F 是DC 上的点且DF =21AB ,PH 为∆PAD 中AD 边上的高.(1)证明:PH ⊥平面ABCD ;(2)若PH =1,AD =2,FC =1,求三棱锥E-BCF 的体积; (3)证明:EF ⊥平面PAB .【答案】解:(1)证明:∵AB ⊥平面PAD ,PH ⊂平面PAD ,∴PH AB ⊥。
∵PH为△PAD中AD边上的高,∴PH AD⊥。
∵AB AD A=,∴PH⊥平面ABCD。
(2)连接BH,取BH中点G,连接EG。
∵E是PB的中点,∴//EG PH。
∵PH⊥平面ABCD,∴EG⊥平面ABCD。
∴1122 EG PH==。
∴111332E BCF BCFV S EG FC AD EG-∆=⋅=⋅⋅⋅⋅=(3)证明:取PA中点M,连接MD,ME。
∵E是PB的中点,∴1//2ME AB=。
∵1//2DF AB=,∴//ME DF=。
∴四边形MEDF是平行四边形。
∴//EF MD。
∵PD AD=,∴MD PA⊥。
∵AB⊥平面PAD,MD⊂平面PAD,∴MD AB⊥。
∵PA AB A =, ∴MD ⊥平面PAB 。
∴EF ⊥平面PAB 。
【考点】空间线线、线面的平行和垂直,三棱锥的体积。
【解析】(1)证明PH 垂直于平面ABCD 内的两条相交直线AB 和AD 即可。
(2)连接BH ,取BH 中点G ,连接EG ,则由三角形中位线定理和(1)PH ⊥平面ABCD ,可得三棱锥E-BCF 底面上的高1122EG PH ==,从而三棱锥E-BCF 的体积可求。