1 k
B′
A C
A′ C′
探究新知
如图,任意画两条直线 l1,l2,再画三条与 l1,l2,都相交的平 行线 l3,l4,l5. 分别度量在 l1 上截得的两条线段 AB,BC 和在 l2 上截得的两条线段 DE,EF 的长度
(1)AB 与 DE 相等吗?
BC EF
l1 A
(2)任意平移
l5,BACB
归纳总结
把平行线分线段成比例的基本事实应用到三角形中,会出现下面
两种情况.
l1A D
l2 l3
E l4
l1
l2
E D l3
A
l4
B
C l5
B
C l5
平行线分线段成比例定理推论:平行于三角形一边的直线截其他 两边(或两边的延长线),所得的对应线段成比例.
探究新知
思考:如图,在△ABC中,DE∥BC,且DE分别交AB,AC于点
A E C
要想利用前面学到的结论来证明三角形相似,需将DE平移
到BC边上去,使BF=DE,再证明
AE AC
BF BC
就可以了.
探究新知
证明:先证明两个三角形的角分别相等 在 △ADE与 △ABC中,∠A =∠A.
平行于三角形一边的 直线截其他两边(或两 边的延长线),所得的
对应线段成比例
∵ DE∥BC,∴ ∠ADE =∠B,∠AED =∠C.
∴. DE AD 2 1 BC AB 2 4 3
故选:C.
练习 6 如图, DC//EF//AB ,若 EG 1 , DC 6 ,则 GF 的长为 AB 2
( B)
A.2
B.3
C.4
D.1.5
解析:∵ EF//AB , ∴△DEG∽△DAB , ∴ DG EG 1 ,即点 G 为 DB 的中点,