第十七届“希望杯”全国数学邀请赛初一
- 格式:doc
- 大小:498.50 KB
- 文档页数:6
“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 018-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 024-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 032-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 038-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 048-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 056-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 064-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 071-07311.希望杯第六届(1995年)初中一年级第一试试题........................................... 078-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 085-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 096-09814.希望杯第七届(1996年)初中一年级第二试试题........................................... 103-10515.希望杯第八届(1997年)初中一年级第一试试题............................................ 111-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 118-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 127-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 136-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 145-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 159-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 167-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 171-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 176-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 182-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 186-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 193-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 198-20029.希望杯第十五届(2004年)初中一年级第一试试题 (203)30.希望杯第十五届(2004年)初中一年级第二试试题 (204)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (204)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题................................... 288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么( )A.a,b都是0.B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是( )A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是( )A. 有最小的自然数.B.没有最小的正有理数.C.没有最大的负整数.D.没有最大的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么( )A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有( )A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是( )A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多. B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______. 3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989) =(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+1 2468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x .B.甲方程的两边都乘以43x; C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34. 10.如图: ,数轴上标出了有理数a ,b ,c 的位置,其中O 是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30.12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______.3.计算:(63)36162-⨯=__________.4.求值:(-1991)-|3-|-31||=______.5.计算:111111 2612203042-----=_________.6.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。
“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题......................003-0052.希望杯第一届(1990年)初中一年级第二试试题......................010-0123.希望杯第二届(1991年)初中一年级第一试试题......................018-0204.希望杯第二届(1991年)初中一年级第二试试题......................024-0265.希望杯第三届(1992年)初中一年级第一试试题......................032-0326.希望杯第三届(1992年)初中一年级第二试试题......................038-0407.希望杯第四届(1993年)初中一年级第一试试题......................048-0508.希望杯第四届(1993年)初中一年级第二试试题......................056-0589.希望杯第五届(1994年)初中一年级第一试试题......................064-06610.希望杯第五届(1994年)初中一年级第二试试题.....................071-07311.希望杯第六届(1995年)初中一年级第一试试题.....................078-080 12希望杯第六届(1995年)初中一年级第二试试题.....................085-08713.希望杯第七届(1996年)初中一年级第一试试题.....................096-09814.希望杯第七届(1996年)初中一年级第二试试题.....................103-10515.希望杯第八届(1997年)初中一年级第一试试题.....................111-11316.希望杯第八届(1997年)初中一年级第二试试题.....................118-12017.希望杯第九届(1998年)初中一年级第一试试题.....................127-12918.希望杯第九届(1998年)初中一年级第二试试题.....................136-13819.希望杯第十届(1999年)初中一年级第二试试题.....................145-14720.希望杯第十届(1999年)初中一年级第一试试题.....................148-15121.希望杯第十一届(2000年)初中一年级第一试试题...................159-16122.希望杯第十一届(2000年)初中一年级第二试试题...................167-16923.希望杯第十二届(2001年)初中一年级第一试试题...................171-17424.希望杯第十二届(2001年)初中一年级第二试试题...................176-17825.希望杯第十三届(2002年)初中一年级第一试试题...................182-18426.希望杯第十三届(2001年)初中一年级第二试试题...................186-18927.希望杯第十四届(2003年)初中一年级第一试试题...................193-19628.希望杯第十四届(2003年)初中一年级第二试试题...................198-20029.希望杯第十五届(2004年)初中一年级第一试试题 (203)30.希望杯第十五届(2004年)初中一年级第二试试题 (204)31.希望杯第十六届(2005年)初中一年级第一试试题...................213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (204)33.希望杯第十七届(2006年)初中一年级第一试试题...................228-23334.希望杯第十七届(2006年)初中一年级第二试试题...................234-23835.希望杯第十八届(2007年)初中一年级第一试试题...................242-246 26.希望杯第十八届(2007年)初中一年级第二试试题...................248-25137.希望杯第十九届(2008年)初中一年级第一试试题...................252-25638.希望杯第十九届(2008年)初中一年级第二试试题...................257-26239.希望杯第二十届(2009年)初中一年级第一试试题...................263-26620.希望杯第二十届(2009年)初中一年级第二试试题...................267-27121.希望杯第二十一届(2010年)初中一年级第一试试题.................274-27622.希望杯第二十二届(2011年)初中一年级第二试试题.................285-28823.希望杯第二十三届(2012年)初中一年级第二试试题.................288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么( )A.a,b都是0. B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B.没有最小的正有理数.C.没有最大的负整数. D.没有最大的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么( )A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有( )A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是( )A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是( )A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多. B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.2-2=______. 3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____.7.当a=-,b=时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=××a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.2-2=(+)×(-)=(+)×1=.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-,b=时,a2-b=(-2-=0,b+a+=-+=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即千克,此时,60×30%=×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回离出发地点最远的那辆车一共行驶了多少公里2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+; B.(-13579)+1 2468;C.(-13579)×12468; D.(-13579)÷124686.×+×的值是( ) A..B..C..D..7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )11 20;413;316;617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以43 x;C. 甲方程的两边都乘以43;D. 甲方程的两边都乘以34. 10.如图: ,数轴上标出了有理数a ,b ,c 的位置,其中O 是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30.12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,,与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( ) A .225. B ..C .. D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. >-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______. 3. 计算:(63)36162-⨯=__________.4. 求值:(-1991)-|3-|-31||=______. 5. 计算:1111112612203042-----=_________.6.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。
第十八届”希望杯“全国数学邀请赛 初一 第一试2007年3月18日 上午8:30至10:00一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文1. 在2007(-1),3-1, -18(-1),18这四个有理数中,负数共有( ) (A )1个 (B )2个 (C )3个 (D )4个2.小明在作业本上画了4个角,它们的度数如图1所示,这些角中钝角有( )(A )1个 (B )2个 (C )3个 (D )4个 3.If the n-th prime number is 47, then n is( )(A )12 (B )13 (C )14 (D )15(英汉词典:the n-th prime number 第n 个质数)4.有理数a,b,c 在数轴上对应的点的位置如图2所示,给出下面四个命题:(A )abc <0 (B )a b b c a c -+-=-(C )(a-b)(b-c)(c-a)>0 (D )1a bc 〈-其中正确的命题有( )(A )4个 (B )3个 (C )2个 (D )1个 5.如图3,“人文奥运”这4个艺术字中,轴对称图形有( )(A )1个 (B )2个 (C )3个 (D )4个 6.已知p ,q ,r ,s 是互不相同的正整数,且满足p rq s=,则( ) (A )p r s q = (B )p s r q = (C ) p p r q q s +=+ (D )r r p s s q-≠-7.韩老师特制了4个同样的立方块,并将它们如图4(a )放置,然后又如图4(b )放置,则图4(b )中四个底面正方形中的点数之和为( )(A )11 (B )13 (C )14 (D )168.如图5,若AB//CD ,则∠B 、∠C 、∠E 三者之间的关系是( )(A )∠B+∠C+∠E=180º (B )∠B+∠E-∠C=180º (C )∠B+∠C-∠E=180º (D )∠C+∠E-∠B=180º9.以x 为未知数的方程2007x+2007a+2008b=0(a,b 为有理数,且b>0)有正整数解,则ab 是( )(A )负数 (B )非负数 (C )正数 (D )零 10.对任意四个有理数a ,b ,c ,d 定义新运算:a b c d=ad-bc ,已知241x x-=18,则x=( )(A )-1 (B )2 (C )3 (D )4 二、A 组填空题(每小题4分,共40分)11.小明已进行了20场比赛,其中赢的场数占95%,若以后小明一场都不输,则赢的场数恰好占96%,小明还需要进行 场比赛。
第十七届“希望杯”全国数学邀请赛(广东,山东,宁夏,海南)2006年3月19日 上午8:30至10:00校名 班 姓名 辅导教师 成绩一、 选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在下面的表格里)1、设}00|),{(},0|)},{(>>=>=y x y x T xy y x S 且,则() A 、S T S =B 、T T S =C 、S T S =D 、∅=T S 2、若xx f 1)(=的定义域为A ,)()1()(x f x f x g -+=的定义域为B ,那么( ) A 、R B A = B 、A ÙB C 、A B ⊆ D 、A B =∅3、区间[]0,m 在映射:2f x x m →+所得的象集区间为[],a b ,若区间[],a b 的长度比区间[]0,m 的长度大5,则m =() A 、5 B 、10 C 、2.5 D 、14、设0,1a a >≠若,x y a =的图像经过点14⎫-⎪⎪⎝⎭。
则a =() A 、16 B 、10 C 、2.5 D 、15、已知0a ≠,函数32()f x ax bx cx d =+++的图像关于原点对称的充要条件是 ( )A 、0b =B 、0c =C 、0d =D 、0b d ==6、若ABC ∆三条边的长依次为00sin 44,cos44,1a b c ===,则三内角,,A B C 的大小顺序为( )7、若实数x 满足3log 32cos x θ=+,则233x x -+-=() A 、352x - B 、31C 、235x -D 、 235x -或352x - 8、关于x 的方程ln 2(01)x et t -=<<,其中t 是常数,则方程根的个数是 () A 、2 B 、3C 、4D 、不能确定 9、函数22()962f x x ax a a =--+-在区间11,33⎡⎤-⎢⎥⎣⎦上的最大值为-3,则a 的值为( )A 、32-BC 2D 、210、过已知平面外一点作三条直线,这三条直线所确定的平面可将空间最多分成( )A 、12部分B 、14部分C 、15部分D 、18部分二、A 组填空题(每小题4分,共40分)11、已知定义在非零自然数集上的函数22005()((4))2005n n f n f f n n +≤⎧=⎨->⎩,则当2005n ≤时,()n f n -= ;当205207n <≤时,()n f n -= 。
“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 016-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 022-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 029-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 034-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 043-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 050-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 057-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 063-07311.希望杯第六届(1995年)初中一年级第一试试题 ........................................... 070-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 077-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 086-09814.希望杯第七届(1996年)初中一年级第二试试题............................................. 91-10515.希望杯第八届(1997年)初中一年级第一试试题............................................. 99-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 106-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 114-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 123-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 130-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 143-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 150-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 154-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 158-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 164-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 168-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 175-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 179-20029.希望杯第十五届(2004年)初中一年级第一试试题 (183)30.希望杯第十五届(2004年)初中一年级第二试试题 (184)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (184)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题 ................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题 ................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题 ................................... 288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( )A .a ,b 都是0.B .a ,b 之一是0.C .a ,b 互为相反数.D .a ,b 互为倒数.2.下面的说法中正确的是 ( )A .单项式与单项式的和是单项式.B .单项式与单项式的和是多项式.C .多项式与多项式的和是多项式.D .整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B .没有最小的正有理数.C .没有最大的负整数.D .没有最大的非负数.4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么( ) A .a ,b 同号. B .a ,b 异号.C .a >0. D .b >0.5.大于-π并且不是自然数的整数有( ) A .2个. B .3个.C .4个. D .无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是 ( )A .0个.B .1个.C .2个.D .3个.7.a 代表有理数,那么,a 和-a 的大小关系是 ( )A .a 大于-a .B .a 小于-a .C .a 大于-a 或a 小于-a .D .a 不一定大于-a .8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A .一样多.B .多了.C .少了.D .多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A .增多.B .减少.C .不变.D .增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______.3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x -2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m 的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y 的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+12468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以43x;C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34.10.如图: ,数轴上标出了有理数a,b,c的位置,其中O是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______. 3. 计算:(63)36162-⨯=__________.4. 求值:(-1991)-|3-|-31||=______. 5. 计算:1111112612203042-----=_________. 6.n 为正整数,1990n -1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n 的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。
2021年第十七届“希望杯”全国数学邀请赛一、选择题1. 否定结论“至少有两个解”的正确说法是( )A 、至少有三个解B 、至多有一个解C 、至多有两个解D 、只有一个解2. 点P (ln (2x +2-x -tan π6),cos 2)(x ∈R )位于坐标平面的( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 3. 已知y =f (x )是定义在R 上的函数条件甲:y =f (x )没有反函数;条件乙:y =f (x )不是单调函数. 则条件甲是条件乙的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件 4. 已知sin θ+cos θ=13,θ∈(-π2,π2),则θ的值等于( )A 、-arccos21+19 B 、-arccos 21-19 C 、-arccos 17+19 D 、-17-195. Suppose that a ∈R ,line (1-a )x +(a +1)y -4(a +1)=0,always passes through a fixed pointP ,and point Q is on the curve x 2-xy +1=0,Then the range of slope of a line passing through P and Q is ( )A 、[-2,+∞)B 、[-3,+∞)C 、(1,+∞)D 、(3,+∞) (英汉词典:fixed point 固定点;range 范畴;slope 斜率;to pass through 通过) 6. 函数y =5-4x -x 2+log 12(cos 2x +sinx -1)的定义域是( )A 、(0,12)B 、[-5,-7π6)∪(0,π6)C 、(-7π6,-π)∪(0,π6)D 、(0,π6)7. 关于方程x 2sin α+y 2cos α=tan α(α是常数且α≠k π2,k ∈Z ),以下结论中不正确的是( )A 、能够表示双曲线B 、能够表示椭圆C 、能够表示圆D 、能够表示直线8. F 1、F 2为椭圆的焦点,P 为椭圆上一点,∠F 1PF 2=90°,且|PF 2|<|PF 1|,已知椭圆的离心率为63,则∠PF 1F 2∶∠PF 2F 1=( ) A 、1∶5 B 、1∶3 C 、1∶2 D 、1∶19. 关于x 的方程|e |lnx |-2|=t (0<t <1),其中t 是常数,则方程根的个数是( )A 、2B 、3C 、4D 、不能确定的 10. 若双曲线x 2-y 2=a 2(a >0)关于直线y =x -2对称的曲线与直线2x +3y -6=0相切,则a 的值为( )A 、455B 、855C 、1255D 、1655二、A 组填空题11. 直线3x +2y =1上的点P 到点A (2,1),B (1,-2)的距离相等,则点P 的坐标是__________. 12. 已知向量a →与b →满足|a →|=2,|b →|=1,且夹角为60°,则使向量a →+λb →与λa →-2b →的夹角为钝角的实数λ的取值范畴是________________.13. 已知|ax -3|≤b 的解集是[-12,72],则a +b =_______________.14. 不等式(2+3)x +(2-3)x >8的解集是_________________.15. 方程(arccosx )2+(2-t )arccosx +4=0有实数解,则t 的取值范畴是________________. 16. △ABC 的三个内角为A 、B 、C ,且2C -B =180°,又△ABC 的周长与最长边的比值为m ,那么m 的最大值为__________________.17. 双曲线x (y +1)=1的准线方程为_________________. 18. 不等式x +22xy ≤a (x +y )关于一切正数x 、y 恒成立,则实数a 的最小值为___________.19. 一只小船与10m /s 的速度由南向北匀速驶过湖面,在离湖面高20米的桥上,一辆汽车由西向东以20m /s 的速度前进,如图,现在小船在水面P 点以南的40米处,汽车在桥上Q 点以西30米处(其中PQ ⊥水面),则小船与汽车间的最短距离为____________米(不考虑汽车和小船本身的大小).20. 已知正方体ABCD -A 1B 1C 1D 1的棱长为1,在正方体表面上与点A 距离为233的点的集合形成一条曲线(此曲线不一定在同一平面上),则此曲线的长度为_______________. 三、B 组填空题21. Let S n be the sum of the first n terms of an arithmetic sequence . Assume that S 3=9,S 20>0,and S 21<0 . Then the range of the common difference d is ___________,the maximum term of the sequence S 1,S 2,S 3,……,is ____________. (英汉词典:term 项;arithmetic sequence 等差数列;common difference 公差;maximum term 最大(值)项) 22. 若x ,y ∈R ,且满足x +2+y -5=6,则x +2y 的最小值是________,最大值是_______.23. 通过点E (-p2,0)的直线l ,交抛物线C :y 2=2px (p >0)于A 、B 两点,l 的倾斜角为α,则α的取值范畴是______________;F 为抛物线的焦点,△ABF 的面积为___________(用p ,α表示)24. 球面上有十个圆,这十个圆可将球面至少分成___________个区域,至多分成___________个区域. 25. 点P (x ,y )的坐标满足关系式⎩⎨⎧2x +y ≥15x +3y ≥27x ≥2y ≥3且x ,y 均为整数,则x +y 的最小值为__________,现在P 点坐标是____________.2006年第十七届“期望杯”全国数学邀请赛(高二)答案选择题:BDADBCDACB。
ABCED图12020最新“希望杯”全国数学邀请赛试题初一 第1试试题一、选择题(每小题4分,共40分) 1.若2015236x x x++=- ,则x =( ) (A )-2015(B )-403(C )-1(D )12.下面有4个判断①互为相反数的两个数的绝对值相等; ②如果n 的绝对值等于,则一定为正数;③点M 在数轴上距原点2个单位长度,且位于原点右侧.若将向左移动5个单位长度,则此点对应的值为-3;④两个数相加,它们的和一定大于其中一个加数. 其中,正确判断的个数为( ) (A )1(B )2(C )3(D )43.小明带a 元钱去超市买文具,买铅笔用去了说带钱数的13,买橡皮用去余下钱数的14,然后他又用剩下的钱数的12买了把尺子.这时小明还剩( ) (A )12a 元 (B )13a 元 (C )14a 元(D )25a 元 4.已知a ,b 是整数,且121a b -++=,则()()2412a b -⨯+=( ) (A )-2(B )-1(C )0(D )15.如图1,在△ABC 中,AB=AC ,D 、E 分别在AC 、AB 上,且BC=BD=DE=AE , 则∠A 的度数为( ) (A )18°(B )20°(C )26°(D )18076.已知x ,y ,m ,n 为有理数,若22228x y m n +=+=,则xy mn +( ) (A )有最小值4(B )有最大值4(C )有最小值8(D )有最大值87.下列判断中正确的是( )(A )在同一平面内如果有两条线段不相交,那么这两条线段就平行.(B )在同一平面内的两条直线被第三条直线所截,如果同位角相等,那么同旁内角互补.(C )等腰△ABC 中,如果连接点A 和边BC 边的中点D ,那么AD ⊥BC .(D )如果等腰直角三角形的高为10,那么它的面积等于50.8.当x =2时,多项式353mx x m -++的值是118,则多项式267m m --的值为( ) (A )-16(B )-7(C )20(D )93AB CDE图2ABCDM 图3-3 -2 03712A BC DE图5 图4FABCDEF 图69.如图2,在锐角△ABC 中,高线CD 、BE 相交于点F ,若∠A=55°,则∠BFC 的度数是( )(A )110° (B )125° (C )135° (D )145° 10.Consider the sequence 1,2,4,7,11,18,29……,in which each term is the sum of the two previous terms after the first two terms. How many of the first 100terms of the this sequence are multiples of 5?Answer:( )(A )10 (B )7 (C )2 (D )0(英汉小词典:sequence 数列;term 项;previous 前面的;multiples 倍数) 二、A 组填空题(每小题4分,共40分) 11.已知19a b =,则a ba b-=+ . 12.如图3所示,在矩形ABCD 中,AB=6cm ,且ADM S ∆:BCD S =∆ 2:3,则CM 的 长度为 cm .13.从两个重量分别为12千克和8千克且含铜量的百分比不同的合金上切下重量相等的两块,把所切下的每一块和另一块剩余的合金放在一起熔炼后得到的两块合金含铜的百分比相等,则所切下的合金的重量是 千克.14.如图4所示,点O 、A 、B 、C 、D 、E 分别对应数轴上 相应的坐标.则以O 、A 、B 、C 、D 、E 中任意两点为端 点的所有线段的长度的和为 .15.王明在早晨六点至七点之间外出晨练,出门和回家的时候,时针与分针的夹角都是110°,则王明晨练的时间为 分针.16.长方形内一点P 到其中三边的距离分别是3,4,5,而这个长方形的面积不大于100,且到另一边的距离d 也是整数,则d 最大为 .17.If 210m m +-= ,then the value of 322+2014m m +is .18.如图5,以等腰直角三角形△ABC 的直角边为边,向外作等边△ABD 和△ACE , 则∠ADE= .19.在1,2,……10000个正整数中,含有数字“4”的数的个数是 . 20.如图6,在△ABC 中,D 在BC 上且BD :DC = 3:2,E 在AB 上且 AE :EB = 2:1,F 在CA 的延长线上且AC :AF = 4:3.若△ABC 的面积 为2015,则△DEF 的面积为 . 三、B 组填空题(每小题4分,共40分)21.根据下表所给信息填空,已知甲车每月行驶400千米,乙车每月行驶350千米.(其中修理费和保养费车型 50千米耗油量 修理费(半年) 保养费(一年) 油价 甲 4升 540元 840元 6.80元/升 乙5升720元960元6.80元/升图7AB CG D A B C D (1)A B CD EF H(2) K(3)(1)甲车行驶8个月,花费 元;(结果四舍五入保留整数)(2)甲车行驶8个月,乙车行驶7个月,则花费较少的是 .(填:“甲车”或“乙车”) 22.如图7(1),在梯形ABCD 中, BC ∥AD .将梯形沿中位线EF 翻折,使上底和下底所在的直线重合,如图7(2),未重合部分(图7(2)阴影)的面积是4.将梯形沿对角线BD 翻折,使点C 落在梯形内部的点CK 处,如图7(3),重合部分(△BDK )的面积是8.若梯形的下底AD=8,则梯形的上底BC = ,图7(3)中阴影部分面积为 .23.已知三位数abc m =,def n =.若abcdef :defabc = 3 : 4,则=m ,n = . 24. A 、B 两地相距13.5km ,甲、乙两人分别从A 、B 两地同时出发,各在A 、B 间往返一次,家比乙先回到出发地,两人第一次在C 地相遇,第二次在D 地相遇,从出发到两人第二次相遇经过的时间为3小时20分针,若C 、D 两地相距3km.则甲的速度是 km/h ,乙的速度是 km/h . 25.有边长都是20厘米的正方形地板砖与正六边形地板砖共25块,总计有110条边.那么其中正六边形地板砖有 块.若不准切割地板砖,直接用这些地板砖来铺设正方形的地面,这可铺设的正方形最大面积为 平方厘米.。
第十八届“希望杯”全国数学邀请赛初一 第2试2007年4月15日 上午8:30至10:30一、选择题(本大题共10小题,每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内。
1、 假定未拧紧的水龙头每秒钟渗出2滴水,每滴水约0.05毫升,现有一个水龙头未拧紧,4小时后,才被发现拧紧,在这段时间内,水龙头共滴水约( )(用科学记数法表示,结果保留两位有效数字)(A )1440毫升。
(B )31.410⨯毫升。
(C )40.1410⨯毫升。
(D )21410⨯毫升。
2、 如图1,直线L 与∠O 的两边分别交于点A 、B ,则图中以O 、A 、B 为端点的射线的条数总和是( )。
(A )5. (B )6. (C )7. (D)8.3、 整数a,b 满足:a b ≠O 且a+b =O ,有以下判断:○1a,b 之间没有正分数; ○2a,b 之间没有负分数; ○3a,b 之间至多有一个整数; ○4a,b 之间至少有一个整数 。
其中,正确判断的个数为( )(A )1. (B )2. (C)3. (D)4. 4、 方程13153520052007x x x x +++=⨯的解是 x =( ) (A )2006,2007 (B )2007,2006 (C)2007,1003 (D)10032007 5、 如图2,边长为1的正六边形纸片是轴对称图形,它的对称轴的条数是( )。
(A )1. (B)3. (C)6. (D)9.图1LO BA图26、 在9个数:-5,-4,-3,-2,-1,0,1,2,3中,能使不等式-32x <-14成立的数的个数是( )(A )2. (B)3. (C)4. (D)5.7、 韩老师特制了4个同样的立方块,并将它们如图3(a )放置,然后又如图3(b )放置,则图3(b )中四个底面正方形中的点数之和为( )(A )11. (B)13. (C)14. (D)16.图38、 对于彼此互质的三个正整数,,a b c ,有以下判断:①,,a b c 均为奇数 ②,,a b c 中必有一个偶数 ③,,a b c 没有公因数 ④,,a b c 必有公因数 其中,不正确的判断的个数为( )(A )1 (B )2 (C )3 (D )49、 将棱长为1厘米的42个立方体积木拼在一起,构成一个实心的长方体。
第十七届“希望杯”全国数学邀请赛初一 第试年月日 上午:至:学校班学号姓名辅导教师成绩一、选择题(每小题分,共分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在下面的表格内..在数轴上,点对应的数是-,点对应的数是+,则、两点的距离是( ) () () () () .有如下四个命题:①两个符号相反的分数之间至少有一个正整数; ②两个符号相反的分数之间至少有一个负整数; ③两个符号相反的分数之间至少有一个整数; ④两个符号相反的分数之间至少有一个有理数.其中真命题的个数为( ) () () () ().图是希望中学学生参加课外活动情况的扇形统计图,其中参加数学兴趣小组的学生占参加课外活动学生总人数的( ) () () ()().设=,=,=.若<-,则( )()<< ()<< ()<< ()<<.图的交通标志中,轴对称图形有( ) ()个 ()个 ()个 ()个.对于数,符号[]表示不大于的最大整数.例如,[]=,[-]=-,则满足关系式[]=的的整数值有( )()个 ()个 ()个 ()个.在图所示的×的方格表中,记∠=α,∠=β,∠=γ,则( ) ()β<α<γ()β<γ<α()α<γ<β()α<β<γ.方程++=的正整数解有( ) ()组 ()组 ()组 ()组.如图,与是并列放在一起的两个正方形.是与的交点.如果正方形的面积是平方厘米,=厘米,则三角形的面积是( ) ()平方厘米 ()平方厘米 ()平方厘米()平方厘米 .有如下四个叙述:①当<<时,<-+;②当<<时,>-+;③当-<<时,<-+;④当-<<时,>-+. 其中正确的叙述是( ) ()①③ ()②④ ()①④()②③二、组填空题(每小题分,共分).神舟六号飞船的速度是米/秒,航天员费俊龙图图图图γβ图用分钟在舱内连做个“前滚翻”,那么当时费俊龙“翻”完一个跟斗时,飞船飞行了千米. .已知+=-,+=-,则-++=..图表示某工厂年至年的利润和总资产统计表,由图可知资产利润率最高的年份是年. (注:资产利润率=×).计算:=..图是一个流程图,图中“结束”处的计算结果是. . -,.(英汉词典: 假设; 倒数; 值).是自然数,如果+和-都是完全平方数,则等于. . =, =.(英汉词典: 解; 方程).将(+-)展开,所得多项式的系数和是..如图所示,圆的周长为个单位长度,在圆的等分点处标上,,,.先让圆周上数字所对应的数与数轴上的数-所对应的点重合,再让数轴按逆时针方向绕在该圆上,那么数轴上的数-将与圆周上的数字重合.三、组填空题(每小题分,共分.每小题两个空,每空分.).把一块正方体木块的表面涂上漆,再把它锯成块大小相同的小正方体.在这些小正方体中,没涂漆的有块,至少被漆个面的有块..如图所示,在三角形中,∠=°,=厘米,=厘米.分别以、为边作正方形、,则三角形的面积是平方厘米,的面积是平方厘米. 名称 撒哈拉 沙漠 阿拉伯 沙漠 利比亚 沙漠 澳大利亚 沙 漠戈壁 沙漠 巴塔哥尼亚 沙 漠鲁卜哈利 沙 漠卡拉哈里 沙 漠大沙 沙漠 塔克拉马干 沙 漠面积十大沙漠的总面积为万平方千米.已知地球陆地面积为亿平方千米,占地球表面积的,则十大沙漠的总面积占地球表面积的(保留三位有效数字)..甲自向走了分钟,乙自向行走,每分钟比甲多走千米.他们于途中处相遇.甲自到用时比自到用时多分钟,乙自向用时比自向用时多分钟,则甲从到用了分钟,、两处的距离是千米..将数字,,,,,,,,按任意顺序写成一排,其中相邻的个数字组成一个三位数,共有七个三位数,对这七个三位数求和,则数字~的每一种排列对应一个和(如将数字~写成,,,,,,,,,可组成,,,,,,这七个三位数,它们的和是).所求得的和中,最大的数是,最小的数是.第十七届“希望杯”全国数学邀请赛答案·评分标准 初一 第试.答案 ()选择题 题 号 答 案()组填空题图图开始写下 乘-写下结果你乘-已乘次了吗是否结束图()组填空题.评分标准()第~题:答对得分;答错或不答,得分.()第~题:答对得分;答错或不答,得分.()第~题:答对得分,每个空分;答错或不答,得分.个人整理,仅供交流学习--------------------------------------------------------------------------------------------------------------------。
第十七届“希望杯’’全国数学邀请赛初一 第2试2006年4月16日 上午8:30至10:30 得分_________一、选择题(每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后面的圆括号内. 1.a 和b 是满足ab ≠0的有理数,现有四个命题: ①422+-b a 的相反数是422+-b a ; ②a-b 的相反数是a 的相反数与b 的相反数的差; ③ab 的相反数是a 的相反数和b 的相反数的乘积; ④ab 的倒数是a 的倒数和b 的倒数的乘积. 其中真命题有( )(A)1个. (B)2个. (C)3个. (D)4个.[答案] C[分析] ③中ab 的相反数是-ab ,而a 的相反数是-a , b 的相反数是-a ,它们乘积的相反数是ab 。
[考点] 本题考察的是相反数定义与倒数定义的灵活运用。
2.在下面的图形中,不是正方体的平面展开图的是( )[答案]C[分析] 将题目中的展开图形还原,只有答案B 不能还原成正方体。
[考点] 本题考察的正方体展开图形的特点。
3.在代数式2xy 中,x 与y 的值各减少25%,则该代数式的值减少了( ) (A)50%. (B)75% (C)6437 (D)6427. [答案] C[分析]设减少后所求的代数式为m ,则有m=()()()125%125%125%x y y ---=()32125%xy -。
[考点] 本题考察的是整式乘法的运算及灵活运用。
4.若a<b<0<c<d ,则以下四个结论中,正确的是( )(A)a+b+c+d 一定是正数. (B)d+c-a-b 可能是负数. (C)d-c-b-a 一定是正数. (D)c-d-b-a 一定是正数.[答案]C[分析]本题应用特值排除法,对于A ,如果设a=-2,b=-1,c=1,d=2,则a+b+c+d=0非正数;对于B ,d+c>0,-a >-b>0,所以d+c-a-b 一定大于零;对于D ,设a=-2,b=-1,c=1,d=5,则c-d-b-a=-1。
[考点]有理数的运算。
5.在图1中,DA=DB=DC ,则x 的值是( ) (A)10. (B)20. (C)30. (D)40.[答案] A[分析]根据三角形内角和为0180,求得x=0001(180160)102-= [考点] 考察三角形角的计算。
6.已知a ,b ,c 都是整数,m=|a+b|+|b-c|+|a-c|,那么( ) (A)m 一定是奇数. (B)m 一定是偶数.(C)仅当a ,b ,c 同奇或同偶时,m 是偶数. (D)m 的奇偶性不能确定.[答案] B[分析] 利用特殊值法,设出具体数,代入代数式即可排出A 、C 、D 选项。
[考点] 有理数的运算。
7.三角形三边的长a ,b ,c 都是整数,且[a ,b ,c]=60,(a ,b)=4,(b ,c)=3.(注:[a ,b ,c]表示a ,b ,c 的最小公倍数,(a ,b)表示a ,b 的最大公约数),则a+b+c 的最小值是( )(A)30. (B)31. (C)32. (D)33.[答案] B[分析]由最小公倍数入手,由题意可知三个数中肯定有15和4,再根据最大公约数分别是4和3,以及其他已知条件,进一步推知[考点] 最大公约与最小公倍及三角形边的问题。
8.如图2,矩形ABCD 由3×4个小正方形组成.此图中,不是正方形的矩形有( ) (A)40个. (B)38个. (C)36个. (D)34个.[答案] A[分析] 本题可以从两方面考虑,一是从正面考虑,分别数出一格、两格、三格为边的矩形数的个数,再求和即可;二是从反面考虑,先求出正方形和矩形数总数,再求出正方形数,总数-正方形数=矩形数。
[考点] 考查对图形的认识 。
9.设a 是有理数,用[a]表示不超过a 的最大整数,如[1.7]=1,[-1]=-1,[0]=0,[-1.2] =-2,则在以下四个结论中,正确的是( )[答案] D 。
[分析]利用特殊值法,设a=0,则[][]0a a +-= ;设a=-1.2,则有[][]1a a +-=- [考点] 有理数的灵活运用。
10.On the number axis ,there are two points A and B corresponding to numbers 7 and b respectively ,and the distance between A and B is less than 10.Let m=5-2b 。
then the range of the value of m is( )(英汉词典:number axis 数轴;point 点;corresponding to 对应于…;respectively 分别地;distance 距离;1ess than 小于;value 值、数值;range 范围) [答案] C[分析]先根据题意列出不等式组710710b b -<⎧⎨-<⎩,由此解出b 的范围为317b -<<,再根据m=5-2b ,得出m与b 的关系:52m b -=,即53172m--<<,解不等式得出m 的取值范围。
[考点] 一元一次不等式、不定式组解法 的灵活运用 。
二、填空题(每小题4分,共40分.)[答案] 1910[分析]将原是化成1111111111(3)3(5)5(7)7(9)92612203042567290--+--+--+--+=11111111112612203042567290++++++++=1111111111223344556677889910+++++++++⨯⨯⨯⨯⨯⨯⨯⨯=111111111191 (223344591010)++-+-+-+-=[考点] 本题考察分式的简便算法。
[答案] -3[分析]由已知可得m n p +=,原式=()n m m p m n m n p--++-=1n m m pm n --+-,再进一步变形。
[考点] 本题考查了整式的运算。
13.图3是一个小区的街道图,A 、B 、C 、…、X 、Y 、Z 是道路交叉的17个路口,站在任一路口都可以沿直线看到过这个路口的所有街道.现要使岗哨们能看到小区的所有街道,那么,最少要设______个岗哨.[答案] 4[分析] 找到符合题干条件的点,而且是符合要求的最少的。
[考点] 本题考察对图形的识别与理解。
[答案] -36[分析]由题意可知,21()9m m -=,原式=2211()(1)m m m m -++=213()21)m m ⎡⎤--++⎢⎥⎣⎦=-36 [考点] 本题考察了立方差公式的灵活运用。
=_________.[答案]4026042[分析]分别对原式的分子和分母进行运算,分子为20071003⨯,分母为12,即原式为20062007⨯。
[考点]考察了分式运算中的简便运算思想。
16.乒乓球比赛结束后,将若干个乒乓球发给优胜者.取其中的一半加半个发给第一名;取余下的一半加半个发给第二名;又取余下的一半加半个发给第三名;再取余下的一半加半个发给第四名;最后取余下的一半加半个发给第五名,乒乓球正好全部发完.这些乒乓球共有 ______个. [答案] 31[分析]解决本题的关键是分别表示出给每名优胜者的乒乓球数量,并找到一般规律。
[详解]解:设乒乓球共有x 个,由题意得给第一名的球数量为:1122x +;第二名:1144x +;第三名:1188x +以此类推,第五名:113232x +.,所以有:111111111122448816163232x x x x x x =+++++++++,解得x =31。
17.有甲、乙、丙、丁四人,每三个人的平均年龄加上余下一人的年龄之和分别为29,23,21和17岁,则这四人中最大年龄与最小年龄的差是_____岁. [答案] 18[分析]设出四个人的年龄,根据题意,分别表示出三个人的平均年龄与另外一个人年龄的和。
[详解]设四个人的年龄分别是,,,a b c d,根据题意有29,23,21,173333a b c b c d c d a b a dd a b c +++++++++=+=+=+=,再将四个算式两两作差得:9d a -=,3a b -=,6b c -=,18d c -=。
所以最大年龄与最小年龄的差是18。
18.初一(2)班的同学站成一排,他们先自左向右从“1”开始报数,然后又自右向左从“1”开始报数,结果发现两次报数时,报“20”的两名同学之间(包括这两名同学)恰有15人,则全班同学共有______人. [答案] 53或25[分析]本题是发散性题目,应该分两种情况考虑。
[详解]解:设全班一共有x 个人,根据题意可知由两种情况:一、从右向左报数时,报20的同学没有到达第一遍报数为20的同学所在的位置,则有: 55x =;二、从右向左报数时,报20的同学超过第一遍报数为20的同学所在的位置,则有25x =。
的末位数字是___________.[答案] 0[分析] 将原式变形,充分运用特值法。
[详解] 原式=20062(21)m +,令1m =,原式=200722+,因为2的乘方末位分别是2、4、8、6四个数的循环,所以20072的末位数是8,所以原式的末位是0。
20.Assume that a ,b ,c ,d are all integers ,and four equations(a-2b)x=1,(b-3c)y=1,(c-4d)z=1,w+100=d have always solutions x ,y ,z ,w of positive numbers respectively,then the minimum of a is_____________. (英汉词典:to assume 假设;integer 整数;equation 方程;solution(方程的)解;positive 正的;respectively 分别地;minimum 最小值) [答案]2433[考点]本题考察了不定方程的讨论思想。
三、解答题(本大题共3小题,共40分.) 要求:写出推算过程. 21.(本小题满分10分)(1)证明:奇数的平方被8除余1.(2)请你进一步证明:2006不能表示为10个奇数的平方之和. (1)[分析] 设出奇数的一般式.证明:设任意的奇数为21n +,则根据题意可得2(21)n +=2414n n ++=4(1)1n n ++, 连续两个整数相乘肯定是偶数,因此4k(k+1)能被8整除,所以得证。