系统振荡处理
- 格式:ppt
- 大小:1.60 MB
- 文档页数:46
一、频率调整又称频率控制,是电力系统中维持有功功率供需平衡的主要措施,其根本目的是保证电力系统的频率稳定。
电力系统频率调整的主要方法是调整发电功率和进行负荷管理。
按照调整范围和调节能力的不同,频率调整可分为一次调频、二次调频和三次调频。
一次调频是指当电力系统频率偏离目标频率时,发电机组通过调速系统的自动反应,调整有功出力以维持电力系统频率稳定。
一次调频的特点是响应速度快,但是只能做到有差控制。
【在电网并列运行的机组当外界负荷变化引起电网频率改变时,网内各运行机组的调节系统将根据各自的静态特性改变机组的功率,以适应外界负荷变化的需要,这种由调节系统自动调节功率,以减小电网频率改变幅度的方法,称为一次调频。
一次调频是一种有差调节,不能维持电网频率不变,只能缓和电网频率的改变程度】二次调频,也称为自动发电控制(AGC),是指发电机组提供足够的可调整容量及一定的调节速率,在允许的调节偏差下实时跟踪频率,以满足系统频率稳定的要求。
二次调频可以做到频率的无差调节,且能够对联络线功率进行监视和调整。
【对负荷变化比较大,变化周期长所引起的频率偏移,单靠调速器不能把它限制在规定范围里,就要用调频器来调频,这叫二次调频】三次调频的实质是完成在线经济调度,其目的是在满足电力系统频率稳定和系统安全的前提下合理利用能源和设备,以最低的发电成本或费用获得更多的、优质的电能。
【三次调频就是协调各发电厂之间的负荷经济分配,从而达到电网的经济、稳定运行】二、系统振荡1、系统振荡产生的原因:发电机失磁,同步失效,引起电压严重下降,导致邻近电网失去稳定。
电网发生严重故障,因故障切除时间过长,造成电网稳定破坏。
电网受端失去大电源或送端甩去大量负荷,引起联络线输送功率超过静稳定极限。
环状网络或多回线路中,一回线路故障跳闸后电网等值阻抗增大且其它线路输送功率大量增加,超过静稳定极限,造成电网静稳定破坏。
大容量机组跳闸,使电网等值阻抗增加,并使电网电压严重下降,造成联络线稳定极限下降,引起电网稳定性破坏。
电力系统的低频振荡问题分析及处理措施发布时间:2022-06-01T07:50:30.742Z 来源:《新型城镇化》2022年10期作者:谢福梅[导读] 现代社会的发展决定了电力资源成为国家经济的重要命脉之一,电力系统是否能够安全稳定运行将直接关乎人民社会生活的健康与可持续发展,因此保证电网正常可靠运行具有重大意义。
然而,大规模跨区互联电网的形成必然将给电网运行方式和结构参数带来巨大变化。
其中,长距离、重负荷输电通道的出现无疑将对电力系统低频振荡问题带来严重影响,加之如今发电机更多地采用高放大倍数和快速励磁控制系统,低频振荡问题将会更加恶化以致严重威胁电网的安全稳定运行。
为此,重点研究电网大规模跨区互联阶段下出现的低频振荡现象迫切并且极具现实意义。
谢福梅国网四川阿坝州电力有限责任公司四川阿坝州 623200摘要:现代社会的发展决定了电力资源成为国家经济的重要命脉之一,电力系统是否能够安全稳定运行将直接关乎人民社会生活的健康与可持续发展,因此保证电网正常可靠运行具有重大意义。
然而,大规模跨区互联电网的形成必然将给电网运行方式和结构参数带来巨大变化。
其中,长距离、重负荷输电通道的出现无疑将对电力系统低频振荡问题带来严重影响,加之如今发电机更多地采用高放大倍数和快速励磁控制系统,低频振荡问题将会更加恶化以致严重威胁电网的安全稳定运行。
为此,重点研究电网大规模跨区互联阶段下出现的低频振荡现象迫切并且极具现实意义。
关键词:电力系统;低频振荡问题;处理措施目前低频振荡危害已经成为影响电力系统安全稳定运行的首要因素,对日益普遍的电力联网状况提出了更加严峻的挑战。
为了更好地推进西电东送、南北互供、全国联网的电力发展战略,强化对电力系统低频振荡的控制方法的分析,是促进国家电力事业稳定健康发展的关键途径。
1 电网振荡的分类1.1按照相关机组分类(1)地区振荡模式:地区振荡模式为少数机组之间或少数机组对整个电网之间的振荡模式。
电力系统低频振荡的原因及抑制方法分析电力系统低频振荡的原因及抑制方法分析随着电力系统低频振荡对系统稳定性危害的逐渐显现,对系统低频振荡的分析越来越受到关注,本文分析了系统低频振荡产生的原因,比拟了常见的抑制低频振荡的措施,比照了优缺点,对柔性交流输电系统技术在抑制低频振荡中的应用进行展望。
【关键词】低频振荡抑制措施电力系统电力系统联网开展初期,发电厂同步发电机联系较为紧密,阻尼绕组会产生足够大的阻尼,抑制振荡开展,低频振荡在那时少有产生。
随着电网规模互联的不断扩大,出现了大型电力系统之间的互联,电力系统联系因而变得越来越密切,世界许多地区电网都发现了0.2Hz至2.5Hz范围内的低频振荡,低频振荡问题逐渐受到业内关注。
电力系统低频振荡一旦发生,如果没有及时抑制,将会导致电网不稳定乃至解列,严重威胁电力系统的稳定平安运行,甚至诱发联锁事故,造成严重后果。
1 低频振荡产生的原因1.1 负阻尼导致低频振荡有文献记载了运用阻尼转矩的方法,针对单机无穷大系统分析低频振荡的原因,最主要的原因是系统中产生负阻尼因素,从而抵消系统自有的正阻尼性,导致系统的总阻尼很小甚至为负值。
如果系统阻尼很小,在受到扰动后,系统中功率振荡始终难以平息,就会造成等幅或减幅的低频振荡。
如果系统阻尼为负值,在受到扰动后,低频振荡会不断积累增加,影响系统稳定。
1.2 发电机电磁惯性导致低频振荡电力系统中励磁控制是通过调整励磁电压来改变励磁电流,从而到达调整发电机运行工况的目的。
控制励磁电流就是在调整气隙合成磁场,它使得发电机机端的电压调整为所需值,同时也调整了电磁转矩。
故改变励磁电流大小便可以调整电磁转矩和机端电压。
在励磁自动控制时,因发电机励磁绕组有电感,励磁电流比励磁电压滞后,故会产生一个滞后的控制,滞后的控制在一定因素下会引起系统低频振荡。
1.3 电力系统非线性奇异现象导致低频振荡依据小扰动分析法,系统的特征根中有一个零根或一对虚根时,系统处在稳定边界;系统的特征根都为负实部时,系统处于稳定的;系统特征根中有一对正实部的复数或一个正实数时,系统处于不稳定。
电力系统振荡的结果及处理方式2012/7/13 15:35:41当发生短路或突然有大负荷切除或投入时,发电机与大系统之间的功角会发生变化,发电机的输出功率就会沿着发电机的功角特性曲线来回摆动,这就是电力系统的振荡。
电力系统振荡的结果有两种:一个是发电机的输出功率和负载能重新在一个点上实现平衡,经过一段时间的振荡后重新达到稳定,保持同步运行。
一个是发电机的输出功率和负载能无法再在任何一个点上实现平衡,从而导致发电机失去同步。
发电机的原动机输入力矩突然变化,如:水轮机调速器不正常动作;系统发生突然短路;大机组或大容量线路突然变化等。
通常,短路是引起系统振荡,破坏稳定运行的主要原因。
电力系统振荡的预防:预防是多方面的,有继电保护上的要求,如快速切断故障线路;也有运行操作上的要求,如避免使发电机的容量大于被投入空载线路的充电功率,避免发电机带空载线路启动和以全电压向空载线路合闸;也有设计上的考虑,如避免发生发电机的次同步共振。
系统振荡有多种:异步振荡、同步振荡、低频振荡异步振荡——其明显特征是,系统频率不能保持同一个频率,且所有电气量和机械量波动明显偏离额定值。
如发电机、变压器和联络线的电流表,功率表周期性地大幅度摆动;电压表周期性大幅摆动,振荡中心的电压摆动最大,并周期性地降到接近于零;失步的发电厂间的联络的输送功率往复摆动;送端系统频率升高,受端系统的频率降低并有摆动。
引起电力系统异步振荡的主要原因:1、输电线路输送功率超过极限值造成静态稳定破坏;2、电网发生短路故障,切除大容量的发电、输电或变电设备,负荷瞬间发生较大突变等造成电力系统暂态稳定破坏;3、环状系统(或并列双回线)突然开环,使两部分系统联系阻抗突然增大,引启动稳定破坏而失去同步;4、大容量机组跳闸或失磁,使系统联络线负荷增大或使系统电压严重下降,造成联络线稳定极限降低,易引起稳定破坏;5、电源间非同步合闸未能拖入同步。
异步系统振荡的一般现象:(1)发电机,变压器,线路的电压,电流及功率周期性的剧烈摆动,发电机和变压器发出有节奏的轰鸣声。
电力电子化电力系统的振荡问题及其抑制措施摘要:伴随着我国电力事业的不断发展以及相关技术的进步,电力电子化电力系统的发展中,所遇到的振荡问题也寻求到了有效的抑制措施。
基于此,本文针对电力电子装置引起振荡的原因分析进行分析,并且利用增加虚拟阻尼、改进控制目标、减小测量环节延时以及增加抑制振荡的电力电子装置关键词:电力电子化;电力系统;振荡问题引言:伴随着电力电子装置的应用,我国电力系统的整体质量不断提升,并且电力系统的电力电子化趋势越来越明显。
在电力电子设备应用时,会对整体的电力系统造成一定的振荡,这一现象产生已经有了较长的历史,并且直接影响到了电力系统的整体稳定。
为了保证电力电子装置以及电力系统的整体稳定,必须要能够针对电力电子装置引起振荡的原因进行分析,并保证寻求正确的抑制方法。
1.电力电子装置引起振荡的原因分析电力电子装置对于电力系统的建设以及使用具有十分重要的意义,在当前的电力半导体技术发展过程中,已经能够从单个电子开关发展到多个串并联的应用,适合在高压大电流的环境下进行应用。
电力电子装置连入到了电力系统之中以后,如果不能够安稳运行,就会产生电流的不稳定现象,电力电子装置实际应用时,由于以下的原因产生振荡,降低了整体的电力系统使用质量。
1.1振荡产生的数学机理当前较为常见的电力电子装置引发的振荡,其可以有效利用数学机理开展分析。
结合非线性动力学的理论针对电力电子装置进行分析,一般情况下非线性的系统振荡可以分为四个主要类型,分别为系统周期性振荡、准周期振荡、系统混沌解对应的非周期振荡以及平衡点附近运动轨迹对应的负/弱阻尼振荡。
在实践当中,周期性振荡的发生过程电流电压变化如图1所示。
图 1 振荡发生时母线、电压、系统电流变化示意图混沌引起的非周期性震荡则是体现在了经典的两机系统当中,其中两台发电机的电动势幅值以及相位都会出现直轴暂态电抗。
现阶段的电力振荡分析都需要能够立足于平衡点的线性化理论,同时要能够结合低频振荡以及次同步振荡进行有效的分析,在这种前提之下,能够了解到电力系统周期当中的一些规律,从而探索电力系统振荡的机理[1]。
系统振荡特点及常用防保护误动措施作者:鲁爱萍郭亮来源:《中国科技博览》2017年第02期[摘要]通过对电力系统发生振荡时特点的分析、找出系统振荡和发生短路时的区别,针对问题提出防范措施,并对系统采用比较多的利用电气量的变化速度不同原理所构成的振荡闭锁装置进行阐述。
[关键词]电力系统振荡;短路;区别;措施;闭锁中图分类号:TM773 文献标识码:A 文章编号:1009-914X(2017)02-0123-010 引言电力系统振荡,主要是由于短路切除故障较慢而引起系统的动态稳定破坏而造成的。
当输变电设备传输功率超过静稳定极限、或是当系统因严重的无功功率而引起电压降低、以及当系统发生短路故障时切除过慢或者运用非同期方式检定重合闸时,运行方式为并列的发电机间可能会发生失步的现象,从而使系统发生振荡。
而在振荡持续过程中,发电机的电势之间或是电力系统不同部分等值的电源电势间相角将随着时间而作出周期性变化,致使系统中的线路电流、各节点电压及距离保护配合的测量阻抗会呈现出周期性变化,这就会导致系统配置的距离保护等动作,对应开关会跳闸,可能引起重要线路跳闸、甩负荷、解列电厂等事故发生。
所以研究电力系统发生振荡时对各类型保护造成的影响,从而采取措施避免继电保护的误动,对系统的稳定运行有积极的作用。
1 电力系统振荡的特点1.1 保护的安装处流过数值特别大的、呈现周期性变化的振荡电流。
一般其最大值可能会大于发生三相短路时的电流,则保护装置配置的电流测量元件就会误动作。
1.2 被保护的线路母线上流过的电流,也会呈现出周期性变化。
如果该母线位于振荡的中心附近时,系统两侧电势的幅值如果相等,并且其中各电气元件阻抗角如果相同,那么保护安装处的电压可能会降低接近零电位,则保护装置配置的低电压元件就会误动作。
1.3 距离保护的测量阻抗也将发生周期性的变化。
当测量阻抗小于预先规定的整定阻抗时,将造成保护误动作。
1.4 三相对称,因此不会出现负序和零序分量。
、系统振荡有何现象?如何处理?现象:振荡时发电机电流表、功率表及连结失去同期的电厂或部分系统的输电线及变压器的电流表、功率表明显地周期性地剧烈摆动,同时,系统中各点电压将发生波动,振荡中心的电压波动最大,照明灯光随电压波动一明一暗,发电机(调相机)发出有节奏的嗡嗡声响,在失去同期的受端系统中,频率下降,在送端的系统频率则升高。
处理:1)发电厂应迅速采取措施恢复正常频率,使两部分系统的频率尽快接近相同。
2)频率升高的电厂,迅速降低频率,直到振荡消失或降低到不低于49.2赫时为止。
3)频率降低的电厂,应充分利用备用容量和事故过载能力提高频率,直至消除振荡或恢复到正常频率为止,必要时,可以联系受电端切除部分负荷。
4)不论频率升高或降低的电厂都要按发电机事故过负荷规定,最大限度地提高励磁电流,受端负荷中心调相机按调度要求调整励磁电流,防止电压升高、负荷加大而恶化稳定水平。
5)调度值班人员争取在3-4分钟内将振荡消除,否则应在适当地点解列。
6)在系统振荡时,除现场事故规定者外,发电厂值班人员不得解列任何机组。
7)若由于机组失磁而引起系统振荡时,应立即恢复励磁,否则将失磁机组解列。
但应注意区别汽轮发电机失磁异步运行时,功率、电流也有小的摆动。
8)环状系统(或并列双回路)解列操作而引起振荡时,应立即投入解列的开关。