初三数学 二次函数与线段和差问题教案
- 格式:doc
- 大小:312.12 KB
- 文档页数:24
冀教版数学九年级下册《30.1 二次函数》教学设计2一. 教材分析冀教版数学九年级下册《30.1 二次函数》是学生在初中阶段最后一节关于二次函数的课程。
在前面的学习中,学生已经掌握了二次函数的基本形式、图象和性质。
本节课的主要内容是利用二次函数解决实际问题,进一步巩固学生对二次函数的理解和应用。
教材通过丰富的例题和练习题,帮助学生掌握二次函数在实际问题中的应用,培养学生的解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对二次函数的基本概念和性质有一定的了解。
但在解决实际问题时,部分学生可能会遇到理解困难,无法将理论知识与实际问题相结合。
因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行引导和解答。
三. 教学目标1.知识与技能:使学生掌握二次函数解决实际问题的方法,提高学生运用二次函数解决实际问题的能力。
2.过程与方法:通过观察、分析、归纳等方法,引导学生自主探究二次函数在实际问题中的应用。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 教学重难点1.重点:二次函数在实际问题中的应用。
2.难点:如何将实际问题转化为二次函数模型,并运用二次函数解决。
五. 教学方法1.情境教学法:通过生活实例,引导学生了解二次函数在实际问题中的应用。
2.案例教学法:分析典型例题,让学生学会将实际问题转化为二次函数模型。
3.小组讨论法:鼓励学生分组讨论,培养学生的团队合作意识和解决问题的能力。
4.引导发现法:引导学生自主探究二次函数的性质,提高学生的学习能力。
六. 教学准备1.教学课件:制作课件,展示二次函数的图象和性质。
2.练习题:挑选合适的练习题,巩固学生对二次函数的应用。
3.教学视频:准备相关教学视频,帮助学生更好地理解二次函数的实际应用。
七. 教学过程1.导入(5分钟)利用生活实例,如抛物线形状的篮球架,引导学生了解二次函数在实际问题中的应用。
冀教版数学九年级下册30.1《二次函数》教学设计一. 教材分析冀教版数学九年级下册30.1《二次函数》是本学期的重要内容,主要让学生了解二次函数的定义、性质及图像。
本节内容为后续学习二次方程、二次不等式等知识打下基础。
教材通过实例引入二次函数,让学生从实际问题中抽象出二次函数模型,培养学生的抽象思维能力。
二. 学情分析九年级的学生已具备一定的函数知识,如一次函数、正比例函数的概念和性质。
但在学习二次函数时,仍需从实际问题出发,引导学生正确列出函数关系式,并理解二次函数的图像特点。
此外,学生需要掌握如何运用二次函数解决实际问题,提高解决实际问题的能力。
三. 教学目标1.知识与技能:使学生掌握二次函数的定义、性质及图像特点,能运用二次函数解决实际问题。
2.过程与方法:通过实例引入二次函数,培养学生从实际问题中抽象出二次函数模型的能力;引导学生运用数形结合的方法,理解二次函数的图像特点。
3.情感态度与价值观:激发学生学习二次函数的兴趣,培养学生积极参与数学学习的习惯,提高学生解决实际问题的能力。
四. 教学重难点1.重点:二次函数的定义、性质及图像特点。
2.难点:如何从实际问题中抽象出二次函数模型,以及运用二次函数解决实际问题。
五. 教学方法1.情境教学法:通过实例引入二次函数,让学生从实际问题中抽象出二次函数模型。
2.数形结合法:引导学生运用数形结合的方法,理解二次函数的图像特点。
3.问题驱动法:设计富有启发性的问题,激发学生思考,提高学生解决问题的能力。
4.合作学习法:学生进行小组讨论,培养学生的团队协作能力。
六. 教学准备1.课件:制作二次函数的图像、实例等课件,以便进行生动讲解。
2.练习题:准备适量练习题,巩固学生对二次函数知识的理解。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用生活中的实例,如抛物线运动、几何图形等,引导学生从实际问题中抽象出二次函数模型。
同时,提出问题:“什么是二次函数?”让学生思考。
【课堂教学备课】唤醒主体 以情激情 以诱达思 启智悟道(生本、生成、生动)九年级(下)数学教案课题:二次函数与线段关系问题主备: 预授时间: 年 月 日 第 周【教学目标】通过本节课的教学,学生能处理二次函数中出现的有关线段的关系问题【教学重点】掌握并会运用线段关系的已知条件解决二次函数有关问题【教学难点】根据线段关系寻求正确的解决方法【教学方法】归纳、探究、引导【教学过程】(一)情景创设,引入新课提问:在解几何题中,往往出现类似AB=CD 这样的已知条件,当看到这样的已知条件时,我们会想到哪些定理或处理方法?(根据这一问题创设一激起想知道的问题情境)(等腰三角形、垂直平分线、中位线等,答对其一均给予表扬)线段关系作为已知条件往往在综合题中呈现有哪些呈现方式呢?面积关系、线段相等关系、线段份数或倍数关系知识联系(结合具体图形,图形教师可随堂画出,问题回答让学生思考教师逐渐补充)面积关系:如S △PAE :S △AEF =2:3 PE :EF=2:3相等关系:AB=CD 中位线等份数或倍数关系:AB=32 CD 线段成比例构平行线,可作为相似对应边成比例的条件根号关系:AB=3CD 可联想到线段的平方关系、可构成特殊三角形 (习惯性地寻找线段关系、特殊角)(二)引入新课例:如图,抛物线y=-x 2-4x+5交坐标轴于A 、B 、C 三点,点P 在抛物线上,PF ⊥x 轴于F 点,交AC 于E 点,若S △PAE :S △AEF =2:3,求P 点坐标分析引导:题目中的主要信息是什么?条件S △PAE :S △AEF =2:3可得出什么结论? PE :EF=2:3这种关系通常怎样处理?P 、E 横坐标相同,纵坐标有关系,如何求P例:如图,抛物线y=x 2-4x+3与y 轴交于点C ,P 在x 轴上,PC 交抛物线于M ,若PM=2CM ,求P 点坐标 y分析引导:根据上面归纳,条件PM=2CM 怎么用?C M如何构成比例关系?O A B P x根据比例关系,可先求哪条线段?这样一来,便可求哪一点坐标?如何求P 点坐标?(学生只需方法,不需解答过程) 例:如图,抛物线y= 21 (x-2)2与x 轴交于点A ,与y 轴交于点C ,直线y=x+n 交抛物线于M 、N ,M 点的横坐标为1,若点F 在MN 上,FP ⊥x 轴于P ,交抛物线于E ,且EF=EP ,求E 点坐标分析引导:题中主要信息除了抛物线这一条件外 y还有哪些信息? C F N M 点横坐标为1可以得出哪些结论?EF=EP 根据归纳可采取什么方式来解决? M E 可得了出E 、F 点坐标中存在几个未知数?可找到几个方程?O A P x六、小结:1、回顾线段关系的处理方法2、如何正确选择方法七、作业练习(2008武汉市四月调考数学试题)在平面直角坐标系中,抛物线y =ax Z +2ax 一b 与x 轴交与A,B 两点,与y 轴正半轴交于C 点,且A (-4,0) ,0C =2OB:(1)求此抛物线的解析式;(2)如图1,作矩形ABCD ,使DE 过点C,点P 是AB 边上的一动点,连接PE,作PH 上PE 交 BD 子点H.设线段PB 的长为x,线段BH 的长为1/2,当P 点运动时,求y 与x 的函数关系式并写出自变量x 的取值范围.在同一直角坐标系中,试函数的图象与(1)DE 的抛物线中Y ≧ 0的部分有何关系?(3)如图2,在(1)的抛物线中,点T 其顶点,L 为抛物线上一动点(不与T 重合),取点N(-1,0),作MN ⊥LN 且MN=2/3LN(点M,N,L 按逆时针顺序)当点L 在抛物线上运动时,直线AM 、TL 是否存在某种确定的位置关系?若存在写出你的证明结论;若不存在,请说明理由.八、教学反思课堂关注情境与问题,阅读与思维,互动与引导,练习与反馈四大要素。
将军饮马问题的应用之二次函数中求线段和差最值问题 姓名____ 班级__ 一:学习目标1、熟练掌握基本事实——两点之间线段最短及三角形的三边关系:两边之和大于第三边,两边之差小于第三边;能根据题意熟练的应用基本事实用尺规作图。
2、在具体的实例中体会“将军饮马”问题中蕴含的数学本质:利用对称思想把复杂的问题简单化,它与抛物线(轴对称图形)相结合,在初中几何求最值问题中展现了特殊的魅力,在中考中体现了重要的地位。
二:教学过程(一)复习回顾1、若抛物线 过点(0,1)、(1,0),则此抛物线的解析式为_____________2、如图1,在l 上求作一点M ,使得AM +BM 最小;3、如图2,在l 上求作一点M ,使得|AM -BM |最大。
图1 图2(二)例题讲练例1、如图,已知抛物线的方程C 1:()()1y x 2(x m)m 0m=-+->与x 轴相交于点B 、C , 与y 轴相交于点E ,且点B 在点C 的左侧(1)若抛物线C 1过点M(2,2),求实数m 的值。
(2)在(1)的条件下,在抛物线的对称轴上找一点H ,使BH+EH 最小,并求出点H 的坐标。
l 212y x bx c =++练习1、如图,已知抛物线y=﹣x 2+bx+c 与一直线相交于A (﹣1,0),C (2,3)两点,与y 轴交于点N .其顶点为D .(1)抛物线及直线AC 的函数关系式;(2)设点M (3,m ),求使MN+MD 的值最小时m 的值。
练习2:如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.B A O y x例2:如图,已知抛物线的方程C 1:()()1y x 2(x m)m 0m=-+->与x 轴相交于点B 、C , 与y 轴相交于点E ,且点B 在点C 的左侧(1)若抛物线C 1过点M(2,2),求实数m 的值。
初中数学二次函数教案初中数学二次函数教案【精选5篇】教师需要不断探索新的教学方法,如互动式教学、案例分析、情境模拟等,让学生积极参与课堂,提高学习效果。
下面是小编为大家整理的初中数学二次函数教案,如果大家喜欢可以分享给身边的朋友。
初中数学二次函数教案(篇1)教学目标1、经历用三种方式表示变量之间二次函数关系的过程,体会三种方式之间的联系与各自不同的特点2、能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题3、能够根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究教学重点和难点重点:用三种方式表示变量之间二次函数关系难点:根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究教学过程设计一、从学生原有的认知结构提出问题这节课,我们来学习二次函数的三种表达方式。
二、师生共同研究形成概念1、用函数表达式表示☆做一做书本P56矩形的周长与边长、面积的关系鼓励学生间的互相交流,一定要让学生理解周长与边长、面积的关系。
比较全面、完整、简单地表示出变量之间的关系2、用表格表示☆做一做书本P56填表由于运算量比较大,学生的运算能力又一般,因此,建议把这个表格的一部分数据先给出来,让学生完成未完成的部分空格。
表格表示可以清楚、直接地表示出变量之间的数值对应关系3、用图象表示☆议一议书本P56议一议关于自变量的问题,学生往往比较难理解,讲解时,可适当多花时间讲解。
可以直观地表示出函数的变化过程和变化趋势☆做一做书本P574、三种方法对比☆议一议书本P58议一议函数的表格表示可以清楚、直接地表示出变量之间的数值对应关系;函数的图象表示可以直观地表示出函数的变化过程和变化趋势;函数的表达式可以比较全面、完整、简单地表示出变量之间的关系。
这三种表示方式积压自有各自的优点,它们服务于不同的需要。
在对三种表示方式进行比较时,学生的看法可能多种多样。
只要他们的想法有一定的道理,教师就应予以肯定和鼓励。
九年级数学二次函数的优秀教案范本教案一:二次函数的定义和性质I. 导入部分2-3分钟针对学生对于二次函数的先前知识进行复习,引入二次函数的概念,并提问学生对于二次函数的定义是否了解。
II. 概念讲解10-12分钟1. 定义二次函数:y = ax² + bx + c2. 二次函数的图像特点:开口方向、顶点、对称轴、零点等3. 二次函数图像与系数a的关系:a的正负与开口方向的关系4. 二次函数图像与常数项c的关系:c的正负与图像位置的关系III. 性质探究15-20分钟1. 让学生观察a和c对于二次函数图像的影响,并总结规律。
2. 引导学生思考二次函数图像的最高点(最低点)是如何确定的。
IV. 习题练习10-12分钟1. 随堂练习一:给出不同的二次函数图像,让学生通过观察图像,确定函数的表达式。
2. 随堂练习二:给出一些二次函数方程,让学生画出对应的图像。
V. 拓展应用10-15分钟给出一个实际问题,让学生通过构建二次函数,解决问题。
例如:“小明投篮得分和投篮距离的关系是二次函数,请根据图像判断小明在哪个距离处得分最高。
”VI. 归纳总结5分钟让学生自主总结二次函数的定义和性质,并复习本节课所学的内容。
教案二:二次函数的图像与变化I. 导入部分2-3分钟回顾上节课所学的内容,提问学生二次函数的定义和性质。
II. 图像变换10-12分钟1. 沿x轴平移2. 沿y轴平移3. 关于x轴翻转4. 关于y轴翻转5. 压缩与伸缩III. 变换示例15-20分钟给出几个具体的例子,让学生通过变换求出对应二次函数的表达式。
IV. 变换规律总结5-10分钟引导学生总结二次函数图像变换的规律,并让他们解释为何一些变换不改变图像的顶点位置。
V. 习题练习10-12分钟1. 随堂练习一:给出变换前的图像,让学生画出对应的变换后的图像。
2. 随堂练习二:给出函数的表达式,让学生描述对应二次函数图像的变换。
VI. 拓展应用10-15分钟提出一个关于图像变换的实际问题,让学生应用所学知识进行分析和解决。
2.1 二次函数教学目标:(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯重点难点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
教学过程:一、试一试1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,2.x的值是否可以任意取?有限定范围吗?3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。
对于2,可让学生分组讨论、交流,然后各组派代表发表意见。
形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。
对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.二、提出问题某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。
将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答:1.商品的利润与售价、进价以及销售量之间有什么关系?[利润=(售价-进价)×销售量]2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元? [10-8=2(元),(10-8)×100=200(元)]3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品? [(10-8-x);(100+100x)]4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。
二次函数与线段和差问题例题精讲:如图抛物线与x轴交于A,B(1,0),与y 轴交于点C,直线经过点A,C。
抛物线的顶点为D,对称轴为直线l,(1)求抛物线解析式.(2)求顶点D的坐标与对称轴l。
(3)设点E为x轴上一点,且AE=CE,求点E的坐标.(4)设点G是y轴上的一点,是否存在点G,使得GD+GB的值最小,若存在,求出G点坐标,若不存在,说明理由。
(5)在直线l上是否存在一点F,使得△BCF的周长最小,若存在,求出点F的坐标及△BCF周长的最小值,若不存在,说明理由。
(6)在y轴上是否存在一点S,使得SD-SB的值最大,若存在,求出S点坐标,若不存在,说明理由。
(7)若点H是抛物线上位于AC上方的一点,过点H作y轴的平行线,交AC 于点K,设点H的横坐标为h,线段HK=d①求d关于h的函数关系式②求d的最大值及此时H点的坐标(8)设点P是直线AC上方抛物线上一点,当P点与直线AC距离最大值时,求P点的坐标,并求出最大距离是多少?1.如图,矩形的边OA 在轴上,边OC 在轴上,点的坐标为(10,8),沿直线OD 折叠矩形,使点正好落在上的处,E 点坐标为(6,8),抛物线经过、、三点。
(1)求此抛物线的解析式。
(2)求AD 的长.(3)点P 是抛物线对称轴上的一动点,当△PAD 的周长最小时,求点P 的坐标.2。
如图,在平面直角坐标系中,抛物线412+=x y 与轴相交于点A ,点B 与点O 关于点A 对称。
(1)填空:点B 的坐标是 。
(2)过点的直线(其中)与轴相交于点C ,过点C 作直线平行于轴,P 是直线上一点,且PB=PC,求线段PB 的长(用含k 的式子表示),并判断点P 是否在抛物线上,说明理由.(3)在(2)的条件下,若点C 关于直线BP 的对称点恰好落在该抛物线的对称轴上,求此时点P 的坐标。
3.如图,抛物线与x 轴交于A,B 两点,与y 轴交于点C,点O 为坐标原点,点D 为抛物线的顶点,点E 在抛物线上,点F 在x 轴上,四边形OCEF 为矩形,且OF=2,EF=3,.(1)写出抛物线对应的函数解析式: △AOD 的面积是(2)连结CB 交EF 于M ,再连结AM 交OC 于R ,求△ACR 的周长。
九年级数学《二次函数》教案初中数学二次函数教案篇一准备目标1、知识与技能(1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由的图象得到函数的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。
2、过程与方法通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。
3、情感态度与价值观通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。
教学重难点重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。
难点:各种性质的应用。
教学工具投影仪教学过程【创设情境,揭示课题】函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。
五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?六、布置作业:习题1-7第4,5,6题。
课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?课后习题作业:习题1-7第4,5,6题。
板书一、素质目标(一)知识教学点使学生初步了解正弦、余弦概念;能够较正确地用sinA、cosA表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数。
教学过程一、课堂导入二次函数的综合问题是中考压轴题常考题型之一,考点分值12分,难度较大。
主要考查形式为二次函数与一些简单几何图形的点存在性问题,既考查了学生的数形结合能力,又考查学生的计算能力。
此类问题出现后,大多学生都无从下手,主要是学生的综合能力、解题技巧及实战经验不足所致。
就本节二次函数与线段和差的点存在性问题,主要考查了学生是否能够在图形中寻找到线段和最小或差最大及线段长度的最值的能力。
二、复习预习勾股定理及逆定理1.定理:直角三角形两直角边a,b的平方和等于斜边c的平方。
(即:a2+b2=c2)2.勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边和另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题3.逆定理:如果三角形的三边长:a,b,c,则有关系a2+b2=c2,那么这个三角形是直角三角形。
4.用勾股定理的逆定理判定一个三角形是否是直角三角形应注意:(1)首先确定最大边,不妨设最长边为c。
(2)验证c2和a2+b2是否具有相等的关系,若a2+b2=c2,则△ABC是以∠C为直角的直角三角形。
三、知识讲解考点1 二次函数的基础知识1.一般地,如果y=ax 2+bx+c (a ,b ,c 是常数且a ≠0),那么y 叫做x 的二次函数,它是关于自变量的二次式,二次项系数必须是非零实数时才是二次函数,这也是判断函数是不是二次函数的重要依据.当b=c=0时,二次函数y=ax 2是最简单的二次函数.2.二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)的三种表达形式分别为:一般式:y=ax 2+bx+c ,通常要知道图像上的三个点的坐标才能得出此解析式;顶点式:y=a (x -h )2+k ,通常要知道顶点坐标或对称轴才能求出此解析式;交点式:y=a (x -x 1)(x -x 2),通常要知道图像与x 轴的两个交点坐标x 1,x 2才能求出此解析式;对于y=ax 2+bx+c 而言,其顶点坐标为(-2b a ,244ac b a ).对于y=a (x -h )2+k 而言其顶点坐标为(h ,k ),•由于二次函数的图像为抛物线,因此关键要抓住抛物线的三要素:开口方向,对称轴,顶点.考点2 探究线段和差的一般思路线段的和的最小值:此类问题归结为对称点问题,我们只需将其中的一个已知点关于直线的对称点找到,同时连接该对称点与另一已知的点,则该直线与已知直线的交点即为寻找的点;线段的差的最大值:此类问题归结为三点共线问题,我们只需将两个已知的点都转换到直线的同一侧,同时连接这两个已知的点得到的直线与已知直线的交点即为寻找的点;线段的最值问题:我们可以将所需线段用所设的未知数表示出来,再根据函数最值的求解方式便可以得到线段的最值了;图形周长的最值问题:此类问题可以归结为线段的和的最值问题,我们可以借助线段和的最值求法来研究。
当需要求解出线段的最值时,我们可以将线段放置于直角三角形中,运用勾股定理求解。
四、例题精析例1已知:直线l:y=﹣2,抛物线y=ax2+bx+c的对称轴是y轴,且经过点(0,﹣1),(2,0).(1)求该抛物线的解析式;(2)如图①,点P是抛物线上任意一点,过点P作直线l的垂线,垂足为Q,求证:PO=PQ.(3)请你参考(2)中结论解决下列问题:(i)如图②,过原点作任意直线AB,交抛物线y=ax2+bx+c于点A、B,分别过A、B两点作直线l的垂线,垂足分别是点M、N,连结ON、OM,求证:ON⊥OM.(ii)已知:如图③,点D(1,1),试探究在该抛物线上是否存在点F,使得FD+FO取得最小值?若存在,求出点F 的坐标;若不存在,请说明理由.【规范解答】解:(1)由题意,得,解得:,∴抛物线的解析式为:y=(2)如图①,设P(a,a2﹣1),就有OE=a,PE=a2﹣1,∵PQ⊥l,∴EQ=2,∴QP=a2+1.在Rt△POE中,由勾股定理,得PO==,∴PO=PQ;(3)①如图②,∵BN⊥l,AM⊥l,∴BN=BO,AM=AO,BN∥AM,∴∠BNO=∠BON,∠AOM=∠AMO,∠ABN+∠BAM=180°.∵∠BNO+∠BON+∠NBO=180°,∠AOM+∠AMO+∠OAM=180°,∴∠BNO+∠BON+∠NBO+∠AOM+∠AMO+∠OAM=360°∴2∠BON+2∠AOM=180°,∴∠BON+∠AOM=90°,∴∠MON=90°,∴ON⊥OM;②如图③,作F′H⊥l于H,DF⊥l于G,交抛物线与F,作F′E⊥DG于E,∴∠EGH=∠GHF′=∠F′EG=90°,FO=FG,F′H=F′O,∴四边形GHF′E是矩形,FO+FD=FG+FD=DG,F′O+F′D=F′H+F′D∴EG=F′H,∴DE<DF′,∴DE+GE<HF′+DF′,∴DG<F′O+DF′,∴FO+FD<F′O+DF′,∴F是所求作的点.∵D(1,1),).∴F的横坐标为1,∴F(1,3-4【总结与反思】1. 由抛物线y=ax2+bx+c的对称轴是y轴,就可以得出﹣=0,由待定系数法求可以求出抛物线的解析式;2. 由(1)设出P的坐标,由勾股定理就可以求出PE和PQ的值而得出结论;3. ①由(2)的结论就可以得出BO=BN,AO=AM,由三角形的内角和定理记平行线的性质就可以求出∠MON=90°而得出结论;②如图③,作F′H⊥l于H,DF⊥l于G,交抛物线与F,作F′E⊥DG于E,由(2)的结论根据矩形的性质可以得出结论.例2已知平面直角坐标系中两定点A(-1,0),B(4,0),抛物线()过点A、B,顶点为C.点P (m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式与顶点C的坐标.(2)当∠APB为钝角时,求m的取值范围.(3)若,当∠APB为直角时,将该抛物线向左或向右平移t()个单位,点P、C移动后对应的点分别记为、,是否存在t,使得首尾依次连接A、B、、所构成的多边形的周长最短?若存在,求t值并说明抛物线平移的方向;若不存在,请说明理由.【规范解答】(1)解:依题意把的坐标代入得: ;解得:抛物线解析式为顶点横坐标,将代入抛物线得(2)如图,当时,设,则过作直线轴,(注意用整体代入法)解得,当在之间时,或时,为钝角.(3)依题意,且设移动(向右,向左)连接则又的长度不变四边形周长最小,只需最小即可,将沿轴向右平移5各单位到处沿轴对称为∴当且仅当、B、三点共线时,最小,且最小为,此时,设过的直线为,代入∴即将代入,得:,解得:∴当,P、C向左移动单位时,此时四边形ABP’C’周长最小。
【总结与反思】1.二次函数待定系数法;2.存在性问题,相似三角形;3.最终问题,轴对称,两点之间线段最短例3如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,),顶点坐标为N(﹣1,),且与x轴交于A、B 两点,与y轴交于C点.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.【规范解答】解:(1)由抛物线顶点坐标为N(﹣1,),可设其解析式为y=a(x+1)2+,将M(﹣2,)代入,得=a(﹣2+1)2+,解得a=﹣,故所求抛物线的解析式为y=﹣x2﹣x+;(2)∵y=﹣x 2﹣x+,∴x=0时,y=,∴C(0,).y=0时,﹣x2﹣x+=0,解得x=1或x=﹣3,∴A(1,0),B(﹣3,0),∴BC==2.设P(﹣1,m),显然PB≠PC,所以当CP=CB时,有CP==2,解得m=±;当BP=BC时,有BP==2,解得m=±2.综上,当△PBC为等腰三角形时,点P的坐标为(﹣1,+),(﹣1,﹣),(﹣1,2),(﹣1,﹣2);(3)由(2)知BC=2,AC=2,AB=4,所以BC 2+AC2=AB2,即BC⊥AC.连结BC并延长至B′,使B′C=BC,连结B′M,交直线AC于点Q,∵B、B′关于直线AC对称,∴QB=QB′,∴QB+QM=QB′+QM=MB′,又BM=2,所以此时△QBM的周长最小.由B(﹣3,0),C(0,),易得B′(3,2).设直线MB′的解析式为y=kx+n,将M(﹣2,),B′(3,2)代入,得,解得,即直线MB′的解析式为y=x+.,).同理可求得直线AC的解析式为y=﹣x+.由,解得,即Q(﹣13所以在直线AC上存在一点Q(﹣1,),使△QBM的周长最小.3【总结与反思】(1)先由抛物线的顶点坐标为N(﹣1,),可设其解析式为y=a(x+1)2+,再将M(﹣2,)代入,得=a (﹣2+1)2+,解方程求出a的值即可得到抛物线的解析式;(2)先求出抛物线y=﹣x 2﹣x+与x轴交点A、B,与y轴交点C的坐标,再根据勾股定理得到BC==2.设P(﹣1,m),显然PB≠PC,所以当△PBC为等腰三角形时分两种情况进行讨论:①CP=CB;②BP=BC;(3)先由勾股定理的逆定理得出BC⊥AC,连结BC并延长至B′,使B′C=BC,连结B′M,交直线AC于点Q,由轴对称的性质可知此时△QBM的周长最小,由B(﹣3,0),C(0,),根据中点坐标公式求出B′(3,2),再运用待定系数法求出直线MB′的解析式为y=x+,直线AC的解析式为y=﹣x+,然后解方程组,即可求出Q点的坐标.例4如图,抛物线223=--与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横y x x坐标为2.(1)求A、B 两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.A【规范解答】解:(1)令y=0,解得x1=﹣1或x2=3,∴A(﹣1,0),B(3,0),将C点的横坐标x=2,代入y=x2﹣2x﹣3,得:y=﹣3,∴C(2,﹣3);∴直线AC的函数解析式是:y=﹣x﹣1;(2)设P点的横坐标为x(﹣1≤x≤2),则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x2﹣2x﹣3),∵P点在E点的上方,PE=(﹣x﹣1)﹣(x2﹣2x﹣3)=﹣x2+x+2=﹣(x﹣12)2+94,∴当x=12时,PE的最大值=94;(3)存在4个这样的点F,分别是:F1(1,0),F2(﹣3,0),F3(,0),F4(4,0).①如图1,连接C与抛物线和y轴的交点,那么CG∥x轴,此时AF=CG=2,因此F点的坐标是(﹣3,0);②如图2,AF=CG=2,A点的坐标为(﹣1,0),因此F点的坐标为(1,0);因此F点的坐标为(1,0);③如图3,此时C,G两点的纵坐标关于x轴对称,因此G点的纵坐标为3,代入抛物线中,即可得出G点的坐标为(1,3),由于直线GF的斜率与直线AC的相同,因此可设直线GF的解析式为:y=﹣x+h,将G点代入后,可得出直线的解析式为:y=﹣x+7.因此直线GF与x轴的交点F的坐标为:(,0);④如图4,同③可求出F的坐标为:(4,0);综合四种情况可得出,存在4个符合条件的F点.【总结与反思】1. 抛物线223y x x=--与x轴的交点即为A和B,再将A和C带入求解直线方程。