包四十三中学三角函数试题(拔高题型)
- 格式:doc
- 大小:141.00 KB
- 文档页数:3
专题12三角函数(全题型压轴题)目录①三角函数的图象与性质 (1)②函数sin()y A x ωϕ=+的图象变换 (2)③三角函数零点问题(解答题) (3)④三角函数解答题综合 (6)①三角函数的图象与性质②函数sin()y A x ωϕ=+的图象变换③三角函数零点问题(解答题)(1)求()f x 的解析式;(2)将()f x 图像向左平移12个单位得到123,,x x x ,求()()123tan 2x x x π++的值④三角函数解答题综合专题12三角函数(全题型压轴题)目录①三角函数的图象与性质 (1)②函数sin()y A x ωϕ=+的图象变换 (9)③三角函数零点问题(解答题) (12)④三角函数解答题综合 (20)①三角函数的图象与性质设()t f x =,则方程()()2220f x af x ⎡+⎣+⎦=⎤可化为由图象可得:当2t =时,方程()t f x =有2个实数根;当322t <<时,方程()t f x =有4个实数根;①当22m-=时,即②当3-=时,即t=m③当3->时,即t<m②函数sin()y A x ωϕ=+的图象变换③三角函数零点问题(解答题)由图可知,当1t =或12t -≤<当112t ≤<时,()h x 在区间⎡⎢⎣当21t <-或1t >时,()h x 在区间令ππ2πZ 62,x k k-=+∈故两个零点12,x x关于x故()122πcos cos3x x+=7.(2023春·江西·高一统考期末)已知函数由图可知,30a -≤≤,且21πt t +=,所以()12121ππsin sin 466x x t t ⎛⎫+=-+- ⎪⎝⎭故a 的取值范围为()123,0,sin x x ⎡⎤-+⎣⎦8.(2023春·湖北咸宁·高一统考期末)已知(1)求()f x 的解析式;(2)将()f x 图像向左平移12个单位得到123,,x x x ,求()()123tan 2x x x π++的值④三角函数解答题综合(2)当11π0,12x ⎡⎤∈⎢⎥⎣⎦时,不等式()π02f x kf x ⎛⎫++> ⎪⎝⎭恒成立,求实数k 的取值范围.【答案】(1)43310-(2)()3,1--【详解】(1)由题意得,向量()1,3ON = 的相伴函数为()sin 3cos f x x x =+,所以()13πsin 3cos 2sin cos 2sin 223f x x x x x x ⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭∵()85f x =,∴π4sin 35x ⎛⎫+= ⎪⎝⎭.∵ππ,36x ⎛⎫∈- ⎪⎝⎭,∴ππ0,32x ⎛⎫+∈ ⎪⎝⎭,∴23cos 1s πin 335πx x ⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭所以ππ1π3π433sin sin sin cos 33232310x x x x ⎡⎤-⎛⎫⎛⎫⎛⎫=+-=+-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(2)向量()1,3ON = 的相伴函数为()πsin 3cos 2sin 3f x x x x ⎛⎫=+=+ ⎪⎝⎭当11π0,12x ⎡⎤∈⎢⎥⎣⎦时,()π2sin 2cos 03π2π3f x kf x x k x ⎛⎫⎛⎫⎛⎫++=+++> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即ππsin cos 033x k x ⎛⎫⎛⎫+++> ⎪ ⎪⎝⎭⎝⎭,cos sin π3π3k x x ⎛⎫⎛⎫+>-+ ⎪ ⎪⎝⎭⎝⎭恒成立.所以①当π06x ≤<,即πππ332x ≤+<时,πcos 03x ⎛⎫+> ⎪⎝⎭,所以πsin π3tan π3cos 3x k x x ⎛⎫+ ⎪⎛⎫⎝⎭>-=-+ ⎪⎛⎫⎝⎭+ ⎪⎝⎭,即max πtan 3k x ⎡⎤⎛⎫>-+ ⎪⎢⎥⎝⎭⎣⎦,由于πππ332x ≤+<,所以πtan 3x ⎛⎫+ ⎪⎝⎭的最小值为πtan 33=,所以max πtan 33k x ⎡⎤⎛⎫>-+=- ⎪⎢⎥⎝⎭⎣⎦;②当π6x =,ππ32x +=,不等式ππsin cos 033x k x ⎛⎫⎛⎫+++> ⎪ ⎪⎝⎭⎝⎭化为10>成立.③当π11π612x <≤,ππ5π234x <+≤时,πcos 03x ⎛⎫+< ⎪⎝⎭,。
高中数学高考综合复习专题十三三角函数专题练习一、选择题(每题4分,共32分)1、函数的值域是()A. [-1,1]B.[-2,2]C. [0,2]D.[0,1]2、已知等于()A. 1B. 2C. –1D. –23、函数k的取值是()A. B. - C.2+ D.-2+4、为了得到函数的图象,可以将y=cos2x的图象()A.向右平移个单位长度B. 向右平移个单位长度C.向左平移个单位长度D. 向左平移个单位长度5、6、函数f(x)=2sinx(sinx+cosx)的单调递减区间是()A.7、定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是,且当时f(x)=sinx,则f()的值为()A. B. C. D.8、将函数y=f(x)sinx的图象向右平移T=个单位后,再作关于x轴的对称变换,得到函数的图象,则f(x)可以是()A. cosxB. 2cosxC. sinxD. 2sinx二、填空题(每题5分,共20分)1、已知的值为.2、已知可简化为.3、已知f(x)=asinx-bcosx且x=为f(x)的一条对称轴,则a:b的值为.4、若函数三、解答题(本大题共有4题,满分48分)1、(本题满分12分)已知2、(本题满分12分)已知3、(本题满分12分)已知函数(1)求f(x)的最小正周期;(2)(3)在(2)的条件下,求满足f(x)=1,的x的集合.4、(本题满分12分)已知函数的图象过点,且f(x)的最大值为2.(1)求f(x)的解析式,并写出其单调递增区间;(2)若函数f(x)的图象按向量作距离最小的平移后,所得图象关于y轴对称,试求向量的坐标以及平移后的图象对应的函数解析式.答案与解析一、选择题:1、选B.解析:对于含有绝对值的三角函数,基本解题策略之一是将其化为分段函数,而后分段考察,综合结论,在这里,当x≥0时,-2≤2sinx≤2即-2≤y≤2;当x<0时,y=0包含于[-2,2].于是可知所求函数值域为[-2,2],故应选B.2、选B.解析:考察目标①又由已知得②∴②代入①得,,故应选B.3、选A.解析:令∴由f(x)的图象关于点(,0)对称得f()=0即cos=0,由此解得k=.故应选A.4、选B.解析:令y=f(x)=cos2x,则f(x)=sin(2x+)①进而在保持①中的A、、“三不变”的原则下,变形目标函数:②于是由y=f(x)图象变换出图象知:y=f(x)图象应向右平移个单位得到,故应选B.5、选C.解析:由f(x)在区间[-,]上递增及f(x)为奇函数,知f(x)在区间[-,]上递增,该区间长度应小于或等于f(x)的半个周期.,应选C.6、选D.解析:由f(x)单调递减得∴应选D.7、选D.解析:由已知得应选D.8、选B.解法一:(正向考察)y=f(x)sinx图象图象由题设得==∴∴f(x)=2cosx解法二(逆向求索):图象y=-cos2x由题意得f(x)sinx=sin2x,故得f(x)=2cosx,本题应选B.解法三(代入检验):请同学们练习.二、填空题1、答案:解析:由∴于是===.2、答案:.解析:由题意得====∵∴==3、答案:a:b=-1.解析:由题设得又x=为f(x)的一条对称轴,∴当x=时f(x)取得最值∴即∴a:b=-1.4、答案:.解析:∴由①注意到由①得:②再注意到当且仅当于是由②及得三、解答题1、分析:注意到目标中出现的角,而已知中出现的角为,显然,已知式容易变形出角的函数,故考虑首先从变形已知切入,让已知主动去靠拢目标,而后目标再视具体情况决定变形方向.解:由已知得∴利用倍角公式得化简得∴原式==点评:一般地,(单)条件式求值,由目标式变形可了解“已知”延伸方向,由已知式的延伸又可了解目标的转化方向.如有可能,通过已知式的变形与目标式变形相互靠拢,总要比某一方单方面接近另一方更快捷、方便.本例便给出“已知”与“目标”相互靠拢的示范.2、分析:在三角条件求值问题中,已知某一个(或两个)角的三角函数值,要求另一个角的三角函数值,第一选择法:是从“已知”与“未知”中角的关系------有关角与特殊角之间的和差倍角关系入手.当然,当“已知”中的角与“未知”中的角关系复杂时,则要考虑“已知”与“目标”的延伸与靠拢.解法一(从角的关系式入手):注意到:∴===①∵∴又>0②∴∴③于是将②③代入①得=解法二(目标的转换与追求):注意到(目标)①(以下寻求的方向明确:由已知条件求)∵②∴∴∴③从而由②、③得=④⑤于是将④⑤代入①得.点评:当目标比较复杂或比较抽象时,首先要明确或转换目标,使已知的延伸或下一步的寻求方向更加明确与准确.3、分析:有关三角函数性质的问题,若所给函数可化为或形式,则可利用公式或认知求解.故此题求解的首要问题是将f(x)化为上述形式之一.解:==(1)(2)由f(x)为偶函数得f(-x)=f(x)对任意x∈R成立①在①中令∴注意到,故这里k=0,由此解得.(3)当时,f(x)=2cos2x∴由f(x)=1得,2cos2x=1②注意到,∴由②得,即∴所求x的集合为{}.点评:在解(2)时利用了下述充要条件:;在解决有关问题时这一充要条件会给我们带来方便.4.分析:这里仍是首先致力于将f(x)化为的形式,而后利用已知公式和原有认识求解.解:(1)f(x)=asin2x+bcos2x=由已知条件得∴于是由f(x)单调递增得∴所求f(x)的递增区间为.(2)注意到故函数y=f(x)图象按向量平移后的图象对应的函数解析式为即①注意到函数①的图象关于y轴对称∴函数①为偶函数∴∴.②在②中令由此得③注意到当k为偶数时③无解,故由③得∴∴m的绝对值最小的取值为此时且由①得因此,所求向量,平移后的图象对应的函数解析式为y=cos2x.点评:解决平移问题时,要注意识别与认知“点的平移”与“函数图象平移”的不同:.这一加一减,既展示了两种平移的区别,又反映了两种平移间的辩证关系.。
内蒙古包头四中高考数学高考数学压轴题 三角函数与解三角形多选题分类精编及解析一、三角函数与解三角形多选题1.在单位圆O :221x y +=上任取一点()P x y ,,圆O 与x 轴正向的交点是A ,将OA 绕原点O 旋转到OP 所成的角记为θ,若x ,y 关于θ的表达式分别为()x fθ=,()y g θ=,则下列说法正确的是( )A .()x f θ=是偶函数,()y g θ=是奇函数;B .()x f θ=在()0,π上为减函数,()y g θ=在()0,π上为增函数;C .()()1fg θθ+≥在02πθ⎛⎤∈⎥⎝⎦,上恒成立;D .函数()()22t f g θθ=+.【答案】ACD 【分析】依据三角函数的基本概念可知cos x θ=,sin y θ=,根据三角函数的奇偶性和单调性可判断A 、B ;根据辅助角公式知()()4f g πθθθ⎛⎫+=+ ⎪⎝⎭,再利用三角函数求值域可判断C ;对于D ,2cos sin2t θθ=+,先对函数t 求导,从而可知函数t 的单调性,进而可得当1sin 2θ=,cos θ=时,函数t 取得最大值,结合正弦的二倍角公式,代入进行运算即可得解. 【详解】由题意,根据三角函数的定义可知,x cos θ=,y sin θ=, 对于A ,函数()cos fθθ=是偶函数,()sin g θθ=是奇函数,故A 正确;对于B ,由正弦,余弦函数的基本性质可知,函数()cos f θθ=在()0,π上为减函数,函数()sin g θθ=在0,2π⎛⎫⎪⎝⎭为增函数,在,2ππ⎛⎫⎪⎝⎭为减函数,故B 错误; 对于C ,当0θπ⎛⎤∈ ⎥2⎝⎦,时,3,444πππθ⎛⎤+∈ ⎥⎝⎦()()cos sin 4f g πθθθθθ⎛⎫+=+=+∈ ⎪⎝⎭,故C 正确;对于D ,函数()()222cos sin2t fg θθθθ=+=+,求导22sin 2cos22sin 2(12sin )2(2sin 1)(sin 1)t θθθθθθ'=-+=-+-=--+,令0t '>,则11sin 2θ-<<;令0t '<,则1sin 12θ<<, ∴函数t 在06,π⎡⎤⎢⎥⎣⎦和5,26ππ⎡⎤⎢⎥⎣⎦上单调递增,在5,66ππ⎛⎫⎪⎝⎭上单调递减,当6πθ=即1sin 2θ=,cos 2θ=时,函数取得极大值1222t =⨯=又当2θπ=即sin 0θ=,cos 1θ=时,212012t =⨯+⨯⨯=,所以函数()()22t f g θθ=+取得最大值2,故D 正确.故选:ACD. 【点睛】方法点睛:考查三角函数的值域时,常用的方法:(1)将函数化简整理为()()sin f x A x ωϕ=+,再利用三角函数性质求值域; (2)利用导数研究三角函数的单调区间,从而求出函数的最值.2.在ABC 中,a ,b ,c 分别为A ∠,B ,C ∠的对边,下列叙述正确的是( ) A .若sin sin a bB A=,则ABC 为等腰三角形 B .若cos cos a bB A=,则ABC 为等腰三角形 C .若tan A tan tan 0B C ++<,则ABC 为钝角三角形 D .若sin cos a b C c B =+,则4C π∠=【答案】ACD 【分析】多项选择题,一个一个选项验证:对于A :利用正弦定理判断sin sin A B =,在三角形中只能A=B ,即可判断; 对于B :∵由正弦定理得 sin 2sin 2A B =,可以判断∴ABC 为等腰三角形或直角三角形;对于C :利用三角函数化简得tan A tan tan B C ++sin sin sin =cos cos cos A B CA B C,利用sin 0,sin 0,sin 0,A B C >>>判断cos cos cos A B C 、、必有一个小于0,即可判断; 对于D :利用正弦定理判断得cos sin C C =求出角C . 【详解】对于A :∵由正弦定理得:sin sin a bA B=,而sin sin a b B A =,∴sin sin A B =, ∵A+B+C=π,∴只能A=B ,即ABC 为等腰三角形,故A 正确;对于B :∵由正弦定理得:sin sin a bA B=, ∴若cos cos a bB A=可化为sin cos sin cos A A B B =,即sin 2sin 2A B =, ∴22A B =或22A B π+=∴ABC 为等腰三角形或直角三角形,故B 错误; 对于C :∵A+B+C=π,∴()()()()sin sin sin cos cos cos A B C C A B C C ππ+=-=+=-=,, ∴tan A tan tan B C ++sin sin sin =cos cos cos A B CA B C++ sin cos sin cos sin =cos cos cos A B B A CA B C ++sin sin =cos cos cos C CA B C+11=sin cos cos cos C A B C ⎛⎫+ ⎪⎝⎭cos cos cos =sin cos cos cos C A B C A B C +⎛⎫ ⎪⎝⎭sin sin sin =cos cos cos A B CA B C.∵tan A tan tan 0B C ++<而sin 0,sin 0,sin 0,A B C >>> ∴cos cos cos A B C 、、必有一个小于0,∴ABC 为钝角三角形. 故C 正确;对于D :∵sin cos a b C c B =+,∴由正弦定理得:sin sin sin sin cos A B A C B =+, 即sin cos sin cos sin sin sin cos B C C B B C C B +=+ ∴cos sin C C = ∵()0,C π∈∴4C π.故D 正确. 故选:ACD 【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.3.已知函数()2sin()05,||2f x x πωϕωϕ⎛⎫=+<<< ⎪⎝⎭,且对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立,3y f x π⎛⎫=+⎪⎝⎭为奇函数,则下列说法正确的是( ) A .函数()f x 的图象关于原点对称 B .函数()f x 的最小正周期为π C .函数()f x 的图象关于直线2x π=对称D .函数()f x 的单调递增区间为5,()1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z 【答案】BD 【分析】由()12f x f π⎛⎫≤ ⎪⎝⎭恒成立可得212f π⎛⎫=± ⎪⎝⎭,即()122k k ωππϕπ+=+∈Z ,由3y f x π⎛⎫=+ ⎪⎝⎭为奇函数可得()3k k ωπϕπ''+=∈Z ,即可求出2n 2)3(si f x x π⎛⎫=+⎪⎝⎭,再根据正弦函数的性质分别判断即可. 【详解】因为对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立,所以2sin 21212f πωπϕ⎛⎫⎛⎫=+=± ⎪⎪⎝⎭⎝⎭, 即sin 112ωπϕ⎛⎫+=±⎪⎝⎭,得()122k k ωππϕπ+=+∈Z ①. 2sin 2sin 333f x x x ππωπωϕωϕ⎡⎤⎛⎫⎛⎫⎛⎫+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,因为3y f x π⎛⎫=+ ⎪⎝⎭为奇函数,所以()3k k ωπϕπ''+=∈Z ②.由①②可得()(),3122k k k k ωπωπππ''-=--∈Z ,即()(42,)k k k k ω''=--∈Z .又05ω<<,所以1k k '-=,2ω=, 则(2,)33k k k k ππϕππ=+=-'∈'Z ,得3πϕ=,所以2n 2)3(si f x x π⎛⎫=+⎪⎝⎭,由于(0)0f =≠,故()f x 的图象不关于原点对称,所以A 不正确; ()f x 的最小正周期22T ππ==,所以B 正确;2sin 22sin 2sin 222333f ππππππ⎛⎫⎛⎫⎛⎫=⨯+=+=-=± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以C 不正确;令222232k x k πππππ-≤+≤+,k ∈Z ,得51212k x k ππππ-≤≤+,k ∈Z , 故函数() f x 的单调递增区间为5,()1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,所以D 正确. 故选:BD. 【点睛】关键点睛:本题考查正弦型函数的性质,解题的关键是:(1)根据“对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立”得到“212f π⎛⎫=± ⎪⎝⎭”;(2)得到“2sin 33f x x πωπωϕ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭”后,能根据“3y f x π⎛⎫=+⎪⎝⎭为奇函数”得到“()3k k ωπϕπ''+=∈Z ”.4.设M 、N 是函数()()()2sin 0,0f x x ωϕωϕπ=+><<的图象与直线2y =的交点,若M 、N 两点距离的最小值为6,1,22P ⎛⎫- ⎪⎝⎭是该函数图象上的一个点,则下列说法正确的是( )A .该函数图象的一个对称中心是()7,0B .该函数图象的对称轴方程是132x k =-+,Z k ∈ C .()f x 在71,23⎡⎤--⎢⎥⎣⎦上单调递增D .()2cos 36x f x ππ⎛⎫=+ ⎪⎝⎭【答案】ABD 【分析】根据函数()f x 的基本性质求出函数()f x 的解析式,可判断D 选项的正误,利用余弦型函数的对称性可判断AB 选项的正误,利用余弦型函数的单调性可判断C 选项的正误. 【详解】因为M 、N 是函数()()()2sin 0,0f x x ωϕωϕπ=+><<的图象与直线2y =的交点,若M 、N 两点距离的最小值为6,则函数()f x 的最小正周期为6T =,23T ππω∴==, 所以,()2sin 3x f x πϕ⎛⎫=+⎪⎝⎭,将点P 的坐标代入函数()f x 的解析式,可得12sin 226f πϕ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,则sin 16πϕ⎛⎫-= ⎪⎝⎭.0ϕπ<<,5666πππϕ∴-<-<,则62ππϕ-=,23πϕ∴=,()22sin 2sin 2cos 3336236f x x x x πππππππ⎛⎫⎛⎫⎛⎫∴=+=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,D 选项正确;对于A 选项,()7572cos 2cos 0362f πππ⎛⎫=+== ⎪⎝⎭,A 选项正确;对于B 选项,由()36x k k Z πππ+=∈,解得()132x k k Z =-+∈, 所以,函数()f x 的图象的对称轴方程是132x k =-+,k Z ∈,B 选项正确;对于C 选项,当71,23x ⎡⎤∈--⎢⎥⎣⎦时,3618x ππππ-≤+≤,所以,函数()f x 在区间71,23⎡⎤--⎢⎥⎣⎦上不单调,C 选项错误.故选:ABD. 【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成()sin y A ωx φ=+或()cos y A x ωϕ=+形式,再求()sin y A ωx φ=+或()cos y A x ωϕ=+的单调区间,只需把x ωϕ+看作一个整体代入sin y x =或cos y x =的相应单调区间内即可,注意要先把ω化为正数.5.对于函数()sin cos 2sin cos f x x x x x =++,下列结论正确的是( ) A .把函数f (x )的图象上的各点的横坐标变为原来的12倍,纵坐标不变,得到函数g (x )的图象,则π是函数y =g (x )的一个周期 B .对123,,2x x ππ⎛⎫∀∈ ⎪⎝⎭,若12x x <,则()()12f x f x < C .对,44x f x f x ππ⎛⎫⎛⎫∀∈-=+ ⎪ ⎪⎝⎭⎝⎭R 成立D .当且仅当,4x k k Z ππ=+∈时,f (x )1【答案】AC 【分析】根据三角函数的变换规则化简即可判断A ;令sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,()21f t t t =+-,判断函数的单调性,即可判断B ;代入直接利用诱导公式化简即可;首先求出()f t 的最大值,从而得到x 的取值; 【详解】解:因为()2()sin cos 2sin cos sin cos sin cos 1f x x x x x x x x x =++=+++-,令sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,所以t ⎡∈⎣,所以()21f t t t =+-, 对于A :将()sin cos 2sin cos f x x x x x =++图象上的各点的横坐标变为原来的12倍,则()sin 2cos 22sin 2cos 2g x x x x x =++,所以()()()()()sin 2cos22sin 2cos2g x x x x x πππππ+=++++++()sin 2cos22sin 2cos2x x x x g x =++=,所以π是函数y =g (x )的一个周期,故A 正确;对于B :因为3,2x ππ⎛⎫∈ ⎪⎝⎭,所以57,444x πππ⎛⎫+∈ ⎪⎝⎭,则)14t x π⎛⎫⎡=+∈- ⎪⎣⎝⎭在5,4ππ⎛⎫ ⎪⎝⎭上单调递减,在53,42ππ⎛⎫⎪⎝⎭上单调递增, 又()2215124f t t t t ⎛⎫=+-=+- ⎪⎝⎭,对称轴为12t =-,开口向上,函数()21f t t t =+-在)1⎡-⎣上单调递减, 所以函数()f x 在5,4ππ⎛⎫ ⎪⎝⎭上单调递增,在53,42ππ⎛⎫⎪⎝⎭上单调递减, 故B 错误; 对于C :sin c 4os 2sin cos 4444f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=----⎪ ⎪ ⎪ ⎪ ⎪⎝+⎝⎭⎝⎭⎭⎝⎭+⎝⎭sin c 4os 2sin cos 4444f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝+⎝⎭⎝⎭⎭⎝⎭+⎝⎭c 2424242sin os 2sin cos 4x x x x ππππππππ⎥++⎡⎤⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-------- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦4444sin cos 2sin cos 4x x x x f x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----=- ⎪ ⎪ ⎪ ⎪ ⎪=⎝⎭⎝⎭⎝⎭⎝⎭⎝+⎭+,故C 正确;因为()2215124f t t t t ⎛⎫=+-=+- ⎪⎝⎭,t ⎡∈⎣,当t =时()f t 取得最大值()max 1f t =,令4t x π⎛⎫=+= ⎪⎝⎭sin 14x π⎛⎫+= ⎪⎝⎭,所以2,42x k k Z πππ+=+∈,解得2,4x k k Z ππ=+∈,即当2,4x k k Z ππ=+∈时,函数()f x1,故D 错误;故选:AC 【点睛】本题考查三角函数的综合应用,解答的关键是换元令sin cos t x x =+,将函数转化为二次函数;6.已知函数()cos f x x x =-,则下列说法正确的是( ) A .()f x 的图象关于点,06π⎛⎫⎪⎝⎭中心对称B .()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减 C .()f x 在()0,2π上有且仅有1个最小值点 D .()f x 的值域为[]1,2- 【答案】BC 【分析】利用特殊值法可判断A 选项的正误;化简函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上的解析式,利用正弦型函数的单调性可判断B 选项的正误;由()()f x f x π+=可得()f x 的周期为π,再在[]0,π上讨论函数()f x 的单调性、最值,可判断CD 选项的正误.【详解】对于A 选项,因为06f π⎛⎫-= ⎪⎝⎭,2f π⎛⎫= ⎪⎝⎭62f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭, 所以()f x 的图象不关于点,06π⎛⎫⎪⎝⎭中心对称,故A 错误;对于B 选项,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,()cos 2sin 6f x x x x π⎛⎫=+=+ ⎪⎝⎭,27,636x πππ⎡⎤+∈⎢⎥⎣⎦,所以,函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,B 选项正确; 对于C 选项,()()()cos sin cos f x x x x x πππ+=+-+=--()cos x x f x =-=,所以π为函数()f x 的周期.当0,2x π⎡⎤∈⎢⎥⎣⎦时,()cos 2sin 6f x x x x π⎛⎫=-=- ⎪⎝⎭,,663x πππ⎡⎤-∈-⎢⎥⎣⎦,所以()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,()()min 01f x f ==-,()max 2f x f π⎛⎫== ⎪⎝⎭由B 选项可知,函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,()max 2f x f π⎛⎫== ⎪⎝⎭()()min1f x f π==-.所以,函数()f x 在()0,2π上有且只有1个最小值点,C 选项正确;对于D 选项,由C 选项可知,函数()f x 的值域为⎡-⎣,D 选项错误.故选:BC. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).7.下列结论正确的是( )A .在三角形ABC 中,若AB >,则sin sin A B > B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则三角形ABC 为等腰三角形D .在锐角三角形ABC 中,sin sin cos cos A B A B +>+ 【答案】ABD 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,利用锐角△ABC 这个条件,可得2A B π+>,结合三角函数的单调性比较sin A 与cos B 大小即可判断D . 【详解】ABC 中,A B a b >⇔>,由sin sin a bA B=,得sin sin A B >,A 正确; 在锐角三角形ABC 中,222222cos 0,02b c a A b c a bc+-=>∴+->,B 正确;ABC 中,若sin 2sin 2A B =,则22A B =或22180A B ︒+=,即A B =或90A B ︒+=,ABC 为等腰三角形或直角三角形,C 错误;在锐角三角形ABC 中,2A B π+>,022A B ππ∴>>->,sin sin 2A B π⎛⎫∴>- ⎪⎝⎭,即sin cos A B >,同理:sin cos B A >sin sin cos cos A B A B ∴+>+,D 正确.故选:ABD. 【点睛】关键点睛:本题考查正弦定理,余弦定理,正弦函数的性质,诱导公式等,学会公式的灵活应用是解答本题的关键.8.已知函数()()sin 22sin cos 644f x x x x x πππ⎛⎫⎛⎫⎛⎫=--++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭R ,现给出下列四个命题,其中正确的是( ) A .函数()f x 的最小正周期为2πB .函数()f xC .函数()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上单调递增 D .将函数()f x 的图象向左平移512π个单位长度,得到的函数解析式为()()2g x x =【答案】BD 【分析】首先利用三角恒等变形化简函数()23f x x π⎛⎫=- ⎪⎝⎭,再根据函数的性质依次判断选项,AB 选项根据解析式直接判断,C 选项可以先求23x π-的范围,再判断函数的单调性,D 选项根据平移规律直接求解平移后的解析式. 【详解】()12cos 2sin 2222f x x x x π⎛⎫=--+ ⎪⎝⎭132cos 2cos 22cos 222x x x x x =--=-23x π⎫⎛=- ⎪⎝⎭,函数()f x 的周期22T ππ==,故A 不正确;B.B 正确; C.,44x ππ⎡⎤∈-⎢⎥⎣⎦时,52,366x πππ⎡⎤-∈-⎢⎥⎣⎦,当52,362x πππ⎡⎤-∈--⎢⎥⎣⎦时函数单调递减,即,412x ππ⎡⎤∈--⎢⎥⎣⎦时函数单调递减,,124x ππ⎡⎤∈-⎢⎥⎣⎦时,函数单调递增,故C 不正确;D. ()23f x x π⎛⎫=- ⎪⎝⎭向左平移512π个单位长度,得到()52221232g x x x x πππ⎡⎤⎛⎫⎛⎫=+-=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故D 正确. 故选:BD【点睛】思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证此区间是否是函数sin y x =的增或减区间.9.已知4παπ≤≤,32ππβ≤≤,4sin 25α=,cos()10αβ+=-,则( )A .cos α=B .sin cos αα-=C .34πβα-=D .cos cos αβ= 【答案】BC【分析】 先根据4sin 25α=,判断角α的范围,再根据cos2α求cos α; 根据平方关系,判断sin cos αα-的值;利用公式cos()cos[()2]βααβα-=+-求值,并根据角的范围判断角βα-的值;利用公式()cos βα+和()cos βα-,联合求cos cos αβ.【详解】①因为4παπ≤≤,所以222παπ≤≤, 又4sin 205α=>,故有22παπ≤≤,42ππα≤≤,解出2231cos 22cos 1cos cos 55αααα=-=-⇒=⇒=,故A 错误; ②()21sin cos 1sin 25ααα-=-=, 由①知:42ππα≤≤,所以sin cos αα>,所以sin cos αα-=,故B 正确; ③由①知:42ππα≤≤,而32ππβ≤≤,所以524παβπ≤+≤,又cos()0αβ+=<,所以5342ππαβ≤+≤,解得sin()10αβ+=-,所以34cos()cos[()2]55βααβα⎛⎛⎫-=+-=-+⨯= ⎪ ⎝⎭⎝⎭又因为5342ππαβ≤+≤,22ππα-≤-≤-, 所以4πβαπ≤-≤,有34πβα-=,故C 正确;④由cos()cos cos sin sin 1010αβαβαβ+=-⇒-=-,由③知,cos()cos cos sin sin 2βααβαβ-=+=-,两式联立得:cos cos αβ=D 错误. 故选:BC【点睛】 关键点点睛:本题的关键是三角函数恒等变形的灵活应用,尤其是确定角的范围,根据三角函数值4sin 25α=,确定22παπ≤≤,且cos()0αβ+=<,进一步确定5342ππαβ≤+≤,这些都是确定函数值的正负,以及角的大小的依据.10.设函数()()1sin 0222f x x x πωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π有且仅有3个零点,则( )A .在()0,π上存在1x 、2x ,满足()()122f x f x -=B .()f x 在()0,π有且仅有1个最小值点C .()f x 在0,2π⎛⎫ ⎪⎝⎭上单调递增D .ω的取值范围是1723,66⎡⎫⎪⎢⎣⎭【答案】AD【分析】 化简函数()f x 的解析式为()sin 6f x x πω⎛⎫=+ ⎪⎝⎭,令6t x πω=+,由[]0,x π∈可求得,66t ππωπ⎡⎤∈+⎢⎥⎣⎦,作出函数sin ,066y t t ππωπω⎛⎫=≤≤+> ⎪⎝⎭的图象,可判断AB 选项的正误;由图象得出346ππωππ≤+<可判断D 选项的正误;取3ω=,利用正弦型函数的单调性可判断C 选项的正误.【详解】 ()3131sin sin sin cos sin 2226f x x x x x x ππωωωωω⎛⎫⎛⎫=++=+=+ ⎪ ⎪⎝⎭⎝⎭, 当[]0,x π∈时,,666x πππωωπ⎡⎤+∈+⎢⎥⎣⎦,令6t x πω=+,则,66t ππωπ⎡⎤∈+⎢⎥⎣⎦, 作出函数sin ,066y t t ππωπω⎛⎫=≤≤+> ⎪⎝⎭的图象如下图所示:对于A 选项,由图象可知,max 1y =,min 1y =-,所以,在()0,π上存在1x 、2x ,满足()()122f x f x -=,A 选项正确;对于B 选项,()f x 在()0,π上有1个或2个最小值点,B 选项错误;对于D 选项,由于函数()f x 在[]0,π有且仅有3个零点,则346ππωππ≤+<,解得172366ω≤<,D 选项正确; 对于C 选项,由于172366ω≤<,取3ω=,当0,2x π⎛⎫∈ ⎪⎝⎭时,53663x πππ<+<, 此时,函数()f x 在区间0,2π⎛⎫ ⎪⎝⎭上不单调,C 选项错误. 故选:AD.【点睛】 关键点点睛:本题考查利用正弦型函数在区间上的零点个数判断正弦型函数的基本性质,解本题的关键在于换元6t x πω=+,将问题转化为函数sin y t =在区间,66ππωπ⎡⎤+⎢⎥⎣⎦上的零点个数问题,数形结合来求解.。
高中数学必修4三角函数综合测试题及答案详解(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修4三角函数综合测试题及答案详解(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修4三角函数综合测试题及答案详解(word版可编辑修改)的全部内容。
必修4三角函数综合测试题及答案详解一、选择题1.下列说法中,正确的是( )A.第二象限的角是钝角B.第三象限的角必大于第二象限的角C.-831°是第二象限角D.-95°20′,984°40′,264°40′是终边相同的角2.若点(a,9)在函数y=3x的图象上,则tan错误!的值为()A.0 B。
错误! C.1 D。
错误!3.若|cosθ|=cosθ,|tanθ|=-tanθ,则错误!的终边在()A.第一、三象限B.第二、四象限C.第一、三象限或x轴上D.第二、四象限或x轴上4.如果函数f(x)=sin(πx+θ)(0<θ〈2π)的最小正周期是T,且当x=2时取得最大值,那么( )A.T=2,θ=错误! B.T=1,θ=πC.T=2,θ=π D.T=1,θ=错误!5.若sin错误!=-错误!,且π<x〈2π,则x等于()A。
错误!π B.错误!πC。
错误!π D。
错误!π6.已知a是实数,而函数f(x)=1+a sin ax的图象不可能是( )7.将函数y=sin x的图象向左平移φ(0≤φ〈2π)个单位长度后,得到y=sin错误!的图象,则φ=( )A。
错误! B.错误!C.错误!D.错误!8.若tanθ=2,则错误!的值为( )A.0 B.1C.错误!D.错误!9.函数f(x)=错误!的奇偶性是( )A.奇函数B.偶函数C.既是奇函数又是偶函数D.既不是奇函数也不是偶函数10.函数f(x)=x-cos x在(0,+∞)内( )A.没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点11.已知A为锐角,lg(1+cos A)=m,lg错误!=n,则lgsin A的值是()A.m+错误!B.m-nC。
内蒙古包头市中考数学二轮复习拔高训练卷专题9 锐角三角函数姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共36分)1. (3分)(2020·上海模拟) 在Rt△ABC中,∠C=90°,若BC=3,AC=4,则sinB的值为()A .B .C .D .2. (3分)已知△ABC中,∠C=90°,BC=3,AB=4,那么下列说法正确的是()A . sinB=B . cosB=C . tanB=D . cotB=3. (3分)(2018·松桃模拟) 如图,矩形ABCD中,O为AC的中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠C OB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB∶OE=3∶2.其中正确结论的个数是()A . 1B . 2C . 3D . 44. (3分)已知∠A为锐角,且tanA=,则∠A的取值范围是()A . 0°<∠A<30°B . 30°<∠A<45°C . 45°<∠A<60°D . 60°<∠A<90°5. (3分)(2011·茂名) 如图,已知:45°<∠A<90°,则下列各式成立的是()A . sinA=cosAB . sinA>cosAC . sinA>tanAD . sinA<cosA6. (3分)(2017·泸州) 如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A .B .C .D .7. (3分)在Rt△ABC中,∠C=90°,sinB=,则cosA的值为()A .B .C .D .8. (3分) (2016九上·太原期末) 如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC 的正弦值是()A . 2B .C .D .9. (3分)如图,两条宽度均为40m的国际公路相交成α角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是().A . m2B . m2C . 1600sinα(m2)D . 600cosα(m2)10. (3分)(2018·嘉兴模拟) 小明沿着坡比为1:的山坡向上走了600m,则他升高了()A . mB . 200 mC . 300 mD . 200m11. (3分)(2017·岱岳模拟) 一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为()A . 10 海里/小时B . 30海里/小时C . 20 海里/小时D . 30 海里/小时12. (3分)如图,四边形BDCE内接于以BC为直径的⊙A,已知:BC=10,cos∠BCD=,∠BCE=30°,则线段DE的长是()A .B . 7C . 4+3D . 3+4二、填空题 (共6题;共21分)13. (3分)请计算:(1+π)0+(﹣)﹣2+2sin60°﹣| +1|=________.14. (3分)(2018·方城模拟) 如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3 ),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为________.15. (3分)如图,菱形ABCD的对角线AC、BD交于点O,其中AC=8,BD=6,以OC、OB为边作矩形OBEC,矩形OBEC的对角线OE、BC交于点F,再以CF、FE为边作第一个菱形CFEG,菱形CFEG的对角线FG、CE交于点H,如此继续,得到第n个菱形的周长等于________ .16. (3分)某水库水坝的坝高为10米,迎水坡的坡度为1:2.4,则该水库迎水坡的长度为________ 米.17. (3分)如图,某城市的电视塔AB坐落在湖边,数学老师带领学生隔湖测量电视塔AB的高度,在点M 处测得塔尖点A的仰角∠AMB为22.5°,沿射线MB方向前进200米到达湖边点N处,测得塔尖点A在湖中的倒影A′的俯角∠A′NB为45°,则电视塔AB的高度为________米(结果保留根号).18. (6分)某坡面的坡度为1:,某车沿该坡面爬坡行进了________ 米后,该车起始位置和终止位置两地所处的海拔高度上升了5米三、解答题 (共7题;共43分)19. (5分)某厂家新开发的一种电动车如图,它的大灯A射出的光线AB,AC 与地面MN 所夹的锐角分别为8°和10°,大灯A与地面离地面的距离为1m求该车大灯照亮地面的宽度BC.(不考虑其它因素)(参数数据:sin8°=,tan8°=,sin10°=,tan10°=)20. (5分)(2018·乌鲁木齐) 如图,小强想测量楼CD的高度,楼在围墙内,小强只能在围墙外测量,他无法测得观测点到楼底的距离,于是小强在A处仰望楼顶,测得仰角为37°,再往楼的方向前进30米至B处,测得楼顶的仰角为53°(A,B,C三点在一条直线上),求楼CD的高度(结果精确到0.1米,小强的身高忽略不计).21. (5分)如图,在平面直角坐标系中,四边形OABC的顶点O为坐标原点,点C在x轴的正半轴上,且BC⊥OC 于点C,点A的坐标为(2,2),AB=4,∠B=60°,点D是线段OC上一点,且OD=4,连接AD.(1)求证:△AOD是等边三角形;(2)求点B的坐标;(3)平行于AD的直线l从原点O出发,沿x轴正方向平移.设直线l被四边形OABC截得的线段长为m,直线l与x轴交点的横坐标为t.①当直线l与x轴的交点在线段CD上(交点不与点C,D重合)时,请直接写出m与t的函数关系式(不必写出自变量t的取值范围)②若m=2,请直接写出此时直线l与x轴的交点坐标.22. (5分)(2017·乌鲁木齐模拟) 钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测.一日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛(设M,N为该岛的东西两端点)最近距离为14km(即MC=14km).在A点测得岛屿的西端点M在点A的东北方向;航行4km后到达B点,测得岛屿的东端点N在点B的北偏东60°方向,(其中N,M,C在同一条直线上),求钓鱼岛东西两端点MN之间的距离(结果保留根号).23. (5分) (2016九上·威海期中) 海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.24. (8分)如图,某同学站在旗杆正对的教学楼上点C处观测到旗杆顶端A的仰角为30°,旗杆底端B的俯角为45°,已知旗杆距离教学楼12米,求旗杆AB的高度.(结果精确到0.1.≈1.732,≈1.414)(参考数据:sin30°=,cos30°=,tan30°=,sin45°=,cos45°=,tan45°=1)25. (10分)(2018·肇庆模拟) 如图,两座建筑物AB及CD,其中A,C距离为60米,在AB的顶点B处测得CD的顶部D的仰角β=30°,测得其底部C的俯角α=45°,求两座建筑物AB及CD的高度(保留根号).参考答案一、单选题 (共12题;共36分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共21分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共43分)19-1、20-1、22-1、23-1、24-1、25-1、。
高中三角函数练习题附答案一、填空题1.已知三棱锥P ABC -中,23APB ∠=π,3PA PB ==,5AC =,4BC =,且平面PAB ⊥平面ABC ,则该三棱锥的外接球的表面积为_________.2.已知函数()()4sin 03πf x x ωω⎛⎫=+> ⎪⎝⎭,圆C 的方程为()22525x y -+=,若在圆C 内部恰好包含了函数()f x 的三个极值点,则ω的取值范围是______.3.已知()()()cos sin 3cos 0f x x x x ωωωω=+>,如果存在实数0x ,使得对任意的实数x ,都有()()()002016f x f x f x π≤≤+成立,则ω的最小值为___________.4.在ABC 中,AB BC ≠,O 为ABC 的外心,且有233AB BC AC +=,sin (cos 3)cos sin 0C A A A -+=,若AO x AB y AC =+,,x y R ∈,则2x y -=________.5.△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是________ .6.在ABC 中,设a ,b ,c 分别为角A ,B ,C 对应的边,记ABC 的面积为S ,且sin 2sin 4sin b B c C a A +=,则2Sa 的最大值为________. 7.已知函数()2sin 16f x x πω⎛⎫=-- ⎪⎝⎭,其中0>ω,若()f x 在区间(4π,23π)上恰有2个零点,则ω的取值范围是____________.8.如图,在边长为2的正方形ABCD 中,M ,N 分别为边BC ,CD 上的动点,以MN 为边作等边PMN ,使得点A ,P 位于直线MN 的两侧,则PN PB ⋅的最小值为______.9.已知空间单位向量1e ,2e ,3e ,4e ,1234123421+=+=+++=e e e e e e e e ,则13⋅e e 的最大值是___________.10.函数ππ5sin (1510)55y x x ⎛⎫=+-≤≤ ⎪⎝⎭的图象与函数25(1)22x y x x +=++图象的所有交点的横坐标之和为___________.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1212.已知点P 是曲线4e 3x y -=+上一动点,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .0,6π⎛⎤⎥⎝⎦B .,62ππ⎡⎫⎪⎢⎣⎭C .,63ππ⎡⎤⎢⎥⎣⎦D .0,3π⎛⎤ ⎥⎝⎦13.设函数()211f x x =-,()122x f e x --=,()31sin 23f x x π=,99i ia =,0i =、1、2、、99.记()()()()()()10219998k k k k k k k I f a f a f a f a f a f a =-+-++-,1k =、2、3,则( ) A .123I I I << B .321I I I << C .132I I I <<D .213I I I <<14.如图,设1F ,2F 是双曲线()22210xy a a-=>的左、右焦点,过点2F 作渐近线的平行线交另外一条渐近线于点A ,若12AF F △的面积为54,离心率满足12e <<,则双曲线的方程为( )A .2215x y -=B .2214x y -=C .2213x y -=D .2212x y -=15.已知函数()132,f x x x R =∈,若当02πθ≤≤时,(sin )(1)0f m f m θ+->恒成立,则实数m 的取值范围是( ) A .0,1B .,0C .1,D .(),1-∞16.若对,x y R ∀∈,有()()()4f x y f x f y +=+-,函数2sin ()()cos 1xg x f x x =++在区间[2021,2021]-上存在最大值和最小值,则其最大值与最小值的和为( )A .4B .8C .12D .1617.在ABC ∆中,已知3sin sin ,2A C +=设2sin sin ,t A C =则( )A .1B C D .9818.已知函数()sin sin()f x x x π=+,现给出如下结论:①()f x 是奇函数;②()f x 是周期函数;③()f x 在区间(0,)π上有三个零点;④()f x 的最大值为2.其中所有正确结论的编号为( ) A .①③ B .②③ C .②④ D .①④19.在ABC 中,BAC ∠的平分线交BC 于点,2,6D BD DC BC ==,则ABC ∆的面积的最大值为( )A .6B .C .12D .20.在锐角ABC 中,三内角,,A B C 的对边分别为,,a b c ,且2sin a b C =,则tan tan tan A B C ++的最小值为( )A .2B .4C .6D .8三、解答题21.已知向量()2cos ,1a x =,()3sin cos ,1b x x =+-,函数()f x a b =⋅.(1)若()065f x =,0,42x ππ⎡⎤∈⎢⎥⎣⎦,求0cos2x 的值; (2)若函数()y f x ω=在区间2,33ππ⎛⎫⎪⎝⎭上是单调递增函数,求正数ω的取值范围. 22.已知函数2211()cos sin cos sin 22f x x x x x =+-.(1)求()f x 的单调递增区间;(2)求()f x 在区间,82ππ⎡⎤-⎢⎥⎣⎦的最大值和最小值.23.已知函数()()sin 0,2f x t x t πωϕϕ⎛⎫=+>< ⎪⎝⎭,()f x 的部分图像如图所示,点(N ,,02M π⎛⎫- ⎪⎝⎭,,4P t π⎛⎫⎪⎝⎭都在()f x 的图象上.(1)求()f x 的解析式;(2)当,2x ππ⎡⎤∈-⎢⎥⎣⎦时,()33f x m -≤-≤恒成立,求m 的取值范围.24.已知函数2()6f x x ax =--(a 为常数,a R ∈).给你四个函数:①1()21g x x =+;②2()3xg x =;③32()log g x x =;④4()cos g x x =. (1)当5a =时,求不等式2(())0f g x ≥的解集; (2)求函数4(())y f g x =的最小值;(3)在给你的四个函数中,请选择一个函数(不需写出选择过程和理由),该函数记为()g x ,()g x 满足条件:存在实数a ,使得关于x 的不等式(())0f g x ≤的解集为[,]s t ,其中常数s ,t R ∈,且0s >.对选择的()g x 和任意[2,4]x ∈,不等式(())0f g x ≤恒成立,求实数a 的取值范围.25.如图,长方体1111ABCD A B C D -中,2AB AD ==,14AA =,点P 为面11ADD A 的对角线1AD 上的动点(不包括端点).PM ⊥平面ABCD 交AD 于点M ,MN BD ⊥于点N .(1)设AP x =,将PN 长表示为x 的函数;(2)当PN 最小时,求异面直线PN 与11A C 所成角的大小.(结果用反三角函数值表示) 26.已知向量9(sin ,1),(sin ,cos )8a x b x x ==-, 设函数(),0,2f x a b x π⎡⎤=⋅∈⎢⎥⎣⎦.(Ⅰ)求()f x 的值域(Ⅱ)设函数()f x 的图像向左平移2π个单位长度后得到函数()h x 的图像,若不等式()()sin 20f x h x x m ++-<有解,求实数m 的取值范围.27.已知向量 2(2,22()),(,22a xb ωϕ=+=-,其中0,02πωϕ><<.函数()f x a b =⋅的图象过点()1,2B ,点B 与其相邻的最高点的距离为4.(Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)计算()()()12...2017f f f +++的值;(Ⅲ)设函数()()1g x f x m =--,试讨论函数()g x 在区间 [0,3] 上的零点个数. 28.已知函数()()22sin cos 2sin f x x x x =+- (1)求()f x 的最小正周期; (2)求()f x 的单调增区间; (3)若0,2x π⎡⎤∈⎢⎥⎣⎦求函数的值域.29.已知函数21()sin 24f x x x =+(1)求()f x 的最小正周期T 和[0,]π上的单调增区间:(2)若2()(1)0n f x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立,求实数m 的取值范围.30.已知向量33cos ,sin 22a x x ⎛⎫= ⎪⎝⎭,cos ,sin 22x x b ⎛⎫=- ⎪⎝⎭,且0,2x π⎡⎤∈⎢⎥⎣⎦(1)求a ·b 及||a b +;(2)若3()||2f x a b a b =⋅-+,求()f x 的最小值【参考答案】一、填空题1.28π 2.1925731,,48481248ππππ⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦ 3.140324.4333- 567.742ω<<或91322ω<≤.8.14-9 10.-7二、单选题 11.A 12.A 13.D 14.B 15.D 16.B 17.B 18.A 19.C 20.D 三、解答题21.(12)104ω<≤ 【解析】 【分析】(1)利用数量积公式结合二倍角公式,辅助角公式化简函数解析式,由()065f x =,结合026x π+的范围以及平方关系得出0cos 26x π⎛⎫+ ⎪⎝⎭的值,由002266x x ππ⎛⎫+- ⎪⎝⎭=结合两角差的余弦公式求解即可;(2)由整体法结合正弦函数的单调性得出该函数的单调增区间,则区间2,33ππ⎛⎫⎪⎝⎭应该包含在()y f x ω=的一个增区间内,根据包含关系列出不等式组,求解即可得出正数ω的取值范围. 【详解】(1)())2cos cos 12cos 22sin 26f x a b xx x x x x π⎛⎫=⋅=+-=+=+ ⎪⎝⎭因为()065f x =,所以062sin 265x π⎛⎫+= ⎪⎝⎭,即03sin 265x π⎛⎫+= ⎪⎝⎭.因为0,42x ππ⎡⎤∈⎢⎥⎣⎦,所以0272366x πππ≤+≤所以04cos 265x π⎛⎫+=- ⎪⎝⎭.所以00001cos 2cos 22sin 266626x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦413525⎛⎫=-+⨯=⎪⎝⎭ (2)()2sin 26y f x x πωω⎛⎫==+ ⎪⎝⎭.令222262k x k ππππωπ-≤+≤+,k Z ∈得36k k x ππππωωωω-≤≤+,k Z ∈ 因为函数()y f x ω=在区间2,33ππ⎛⎫⎪⎝⎭上是单调递增函数 所以存在0k Z ∈,使得002,,3336k k ππππππωωωω⎛⎫⎛⎫⊆-+ ⎪ ⎪⎝⎭⎝⎭所以有0033263k k πππωωπππωω⎧-≤⎪⎪⎨⎪+≥⎪⎩,即0031614k k ωω≤+⎧⎨+≥⎩因为0>ω,所以016k >-又因为2123322πππω-≤⨯,所以302ω<≤,则03312k ≤+,所以056k ≤ 从而有01566k -<≤,所以00k =,所以104ω<≤.【点睛】本题主要考查了利用同角三角函数的基本关系,二倍角公式,两角差的余弦公式化简求值以及根据正弦型函数的单调性求参数范围,属于较难题.22.(1)3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈;(2)()max f x =,()min 12f x =- 【解析】 【分析】(1)直接利用三角函数的恒等变换,把三角函数变形成正弦型函数.进一步求出函数的单调区间.(2)直接利用三角函数的定义域求出函数的最值. 【详解】解:(1)2211()cos sin cos sin 22f x x x x x =+-11()cos 2sin 222f x x x ∴=+()24f x x π⎛⎫∴=+ ⎪⎝⎭ 令222242k x k πππππ-+≤+≤+,()k Z ∈解得388k x k ππππ-+≤≤+,()k Z ∈ 即函数的单调递增区间为3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈(2)由(1)知n ()24f x x π⎛⎫=+ ⎪⎝⎭ ,82x ππ⎡⎤∈-⎢⎥⎣⎦ 520,44x ππ⎡⎤∴+∈⎢⎥⎣⎦所以当242x ππ+=,即8x π=时,()max f x =当5244x ππ+=,即2x π=时,()min 12f x =- 【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的单调性的应用,利用函数的定义域求三角函数的值域.属于基础型.23.(1)()22sin 33x f x π⎛⎫=+ ⎪⎝⎭;(2)[]1,0-【解析】 【分析】(1)由三角函数图像,求出,,t ωϕ即可; (2)求出函数()f x m -的值域,再列不等式组32m m +≥⎧⎪⎨≤⎪⎩.【详解】解:(1)由()f x 的图象可知34424T πππ⎛⎫=--= ⎪⎝⎭,则3T π=, 因为23T ππω==,0>ω,所以23ω=,故()2sin 3t x f x ϕ⎛⎫=+ ⎪⎝⎭.因为,02M π⎛⎫- ⎪⎝⎭在函数()f x 的图象上,所以sin 023f t ππϕ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭,所以()3k k Z πϕπ-+=∈,即()3k k Z πϕπ=+∈,因为2πϕ<,所以3πϕ=.因为点(N 在函数()f x 的图象上,所以()0sin 3f t π==解得2t =,故()22sin 33x f x π⎛⎫=+ ⎪⎝⎭.(2)因为,2x ππ⎡⎤∈-⎢⎥⎣⎦,所以22,3333x πππ⎡⎤+∈-⎢⎥⎣⎦,所以2sin 33x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,则()2f x ≤. 因为()33f x m -≤-≤,所以()3m f x m ≤+,所以32m m +≥⎧⎪⎨⎪⎩10m -≤≤.故m 的取值范围为[]1,0-. 【点睛】本题考查了利用三角函数图像求解析式,重点考查了三角函数值域的求法,属中档题.24.(1)[31log 2,)++∞;(2)2min–5,26,2245,2a a ay a a a -≥⎧⎪⎪=---<<⎨⎪-≤-⎪⎩;(3)1a ≥-. 【解析】(1)令()2u g x =,则()0f u ≥的解为1u ≤-或6u ≥,由后者可得2(())0f g x ≥的解. (2)令()4t g x =,则[1,1]t ∈-,分类讨论后可求26y t at =--,[1,1]t ∈-的最小值,该最小值即为原来函数的最小值.(3)取()32()log g x g x x ==,可以证明()g x 满足条件,再利用换元法考虑任意[2,4]x ∈,不等式(())0f g x ≤恒成立可得实数a 的取值范围. 【详解】(1)当5a =时,()256f x x x =--.令()2u g x =,因为2560u u --≥的解为1u ≤-或6u ≥, 所以31x ≤-(舍)或36x ≥,故31log 2x ≥+, 所以2(())0f g x ≥的解集为[31log 2,)++∞. (2)令()4cos ,t g x x x R ==∈,则[1,1]t ∈-,函数4(())y f g x =的最小值即为()26h t t at =--,[1,1]t ∈-的最小值.当()1,12a ∈-即22a -<<时, ()2min 64a h t =--. 当12a≤-即2a ≤-时,()min 5h t a =-; 当12a>即2a >时, ()min –5h t a =-.故2min–5,26,2245,2a a ay a a a -≥⎧⎪⎪=---<<⎨⎪-≤-⎪⎩. (3)取()32()log g x g x x ==,令2log u x =,设260u au --≤的解集为闭区间[]12,u u ,由12u u u ≤≤得1222u u x ≤≤,故(())0f g x ≤的解集为122,2u u ⎡⎤⎣⎦,取12u s =,则0s >,故()g x 满足条件.当[2,4]x ∈时,2[]1,u ∈,故()0f u ≤在[1,2]上恒成立,故2211602260a a ⎧-⨯-≤⎨--≤⎩,解得1a ≥-, 所以实数a 的取值范围是1a ≥-.【点睛】本题考查复合函数的性质及复合函数对应的不等式的解与恒成立问题,此类问题可通过换元法把复合函数问题转化为二次函数的最值问题或恒成立问题,本题有一定综合性,是难题. 25.(1) PN,(0,x ∈;(2) arctan 4. 【解析】 【分析】(1)求出PM ,AM ,运用余弦定理,求得PN ;(2)求出PN 的最小值,由于//MN AC ,又11//A C AC ,PNM ∠为异面直线PN 与11A C 所成角的平面角,通过解直角三角形PMN ,即可得到. 【详解】(1)在APM ∆中,PM =AM =;其中0x << 在MND ∆中,2MN x ⎫=⎪⎪⎝⎭, 在PMN ∆中,PN =(0,x ∈; (2)当(0,x 时,PN 最小,此时43PN =.因为在底面ABCD 中,MN BD ⊥,AC BD ⊥,所以//MN AC ,又11//A C AC ,PNM ∠为异面直线PN 与11A C 所成角的平面角,在PMN ∆中,PMN ∠为直角,tan PNM ∠=所以PNM ∠=异面直线PN 与11A C 所成角的大小arctan4. 【点睛】本题主要考查了异面直线及其所成的角;函数解析式的求解及常用方法等.属于难题.26.(Ⅰ)11,88⎡⎤-⎢⎥⎣⎦(Ⅱ)9,4⎛⎫-+∞ ⎪⎝⎭【解析】(Ⅰ)根据向量的数量积的坐标运算可得函数()f x 的解析式,化成二次函数型函数,求得值域;(Ⅱ)首先根据三角函数的变换规则求得()h x 的解析式,要使()()sin 20f x h x x m ++-<在0,2x π⎡⎤∈⎢⎥⎣⎦有解,即不等式()()sin2m f x h x x >++在0,2x π⎡⎤∈⎢⎥⎣⎦有解,令()()sin2y f x h x x =++求出函数的最小值,即可得实数m 的取值范围.【详解】解:(1)()222991sin cos 1cos cos cos cos 888f x x x x x x x =+-=-+-=-+- ()211cos 28f x x ⎛⎫∴=--+ ⎪⎝⎭, 0,2x π⎡⎤∈⎢⎥⎣⎦ 0cos 1x ∴≤≤()1188f x ∴-≤≤ ()f x ∴的值域为11,88⎡⎤-⎢⎥⎣⎦(2)函数()21cos cos 8f x x x =-+-的图像向左平移2π个单位长度后得到函数()h x 的图像,()2211cos cos sin sin 2288h x x x x x ππ⎛⎫⎛⎫∴=-+++-=--- ⎪ ⎪⎝⎭⎝⎭, 依题意,不等式()()sin2m f x h x x >++在0,2x π⎡⎤∈⎢⎥⎣⎦有解, 设()()5sin2cos sin sin24y f x h x x x x x =++=--+ 52sin cos cos sin ,0,42y x x x x x π⎡⎤=+--∈⎢⎥⎣⎦,令[]cos sin ,0,1,142t x x x x t ππ⎛⎫⎡⎤=-=+∈∴∈- ⎪⎢⎥⎝⎭⎣⎦,则[]2211,1,142y t t t t ⎛⎫=-+-=--∈- ⎪⎝⎭ ∴函数()()sin2y f x h x x =++的值域为9,04⎡⎤-⎢⎥⎣⎦. ∴ min 94m y >=- 故实数m 的取值范围为9,4⎛⎫-+∞ ⎪⎝⎭. 【点睛】本题考查正弦函数的性质,二次函数的性质以及辅助角公式,属于中档题.27.(Ⅰ)[41,43]k k ++,k Z ∈;(Ⅱ)2018;(Ⅲ)详见解析.【解析】【分析】(Ⅰ)由数量积的坐标运算可得f (x ),由题意求得ω4π=,再由函数f (x )的图象过点B (1,2)列式求得φ.则函数解析式可求,由复合函数的单调性求得f (x )的单调递增区间;(Ⅱ)由(Ⅰ)知,f (x )=1+sin 2x π,可得f (x )是周期为4的周期函数,且f (1)=2,f (2)=1,f (3)=0,f (4)=1.得到f (1)+f (2)+f (3)+f (4)=4. 进一步可得结论;(Ⅲ)g (x )=f (x )﹣m ﹣12sinx m π=-,函数g (x )在[0,3]上的零点个数,即为函数y =sin 2x π的图象与直线y =m 在[0,3]上的交点个数.数形结合得答案.【详解】(Ⅰ)∵a =cos2(ωx +φ)),b =∴f (x )222a b =⋅=⨯(ωx +φ)=1﹣cos2(ωx +φ)), ∴f (x )max =2,则点B (1,2)为函数f (x )的图象的一个最高点. ∵点B 与其相邻的最高点的距离为4,∴242πω=,得ω4π=. ∵函数f (x )的图象过点B (1,2),∴1222cos πϕ⎛⎫-+= ⎪⎝⎭,即sin2φ=1. ∵0<φ2π<,∴φ4π=.∴f (x )=1﹣cos2(44x ππ+)=1+sin 2x π, 由322222k x k πππππ+≤≤+,得4143k x k +≤≤+,k Z ∈. ()f x ∴的单调递减区间是[41,43]k k ++,k Z ∈.(Ⅱ)由(Ⅰ)知,f (x )=1+sin 2x π,∴f (x )是周期为4的周期函数,且f (1)=2,f (2)=1,f (3)=0,f (4)=1. ∴f (1)+f (2)+f (3)+f (4)=4.而2017=4×504+1,∴f (1)+f (2)+…+f (2017)=4×504+2=2018;(Ⅲ)g (x )=f (x )﹣m ﹣12sinx m π=-,函数g (x )在[0,3]上的零点个数, 即为函数y =sin 2x π的图象与直线y =m 在[0,3]上的交点个数.在同一直角坐标系内作出两个函数的图象如图:①当m >1或m <﹣1时,两函数的图象在[0,3]内无公共点;②当﹣1≤m <0或m =1时,两函数的图象在[0,3]内有一个共点;③当0≤m <1时,两函数的图象在[0,3]内有两个共点.综上,当m >1或m <﹣1时,函数g (x )在[0,3]上无零点;②当﹣1≤m <0或m =1时,函数g (x )在[0,3]内有1个零点;③当0≤m <1时,函数g (x )在[0,3]内有2个零点.【点睛】本题考查三角函数中的恒等变换应用,考查数量积的坐标运算,体现了数形结合的解题思想方法,是中档题.28.(1)π;(2)3[],88k k k Z ππππ-+∈,;(3)[2]-. 【解析】【分析】(1)先化简函数f(x)的解析式,再求函数的最小正周期;(2)解不等式222,242k x k k Z πππππ-≤+≤+∈,即得函数的增区间;(3)根据三角函数的性质求函数的值域.【详解】(1)由题得1cos2()1sin 22sin 2cos22)24x f x x x x x π-=+-⋅=++, 所以函数的最小正周期为2=2ππ.(2)令222,242k x k k Z πππππ-≤+≤+∈, 所以3,88k x k k Z ππππ-≤≤+∈, 所以函数的单调增区间为3[],88k k k Z ππππ-+∈,. (3)50,02,2,2444x x x πππππ≤≤∴≤≤∴≤+≤sin(2)1,1)44x x ππ≤+≤∴-≤+≤所以函数的值域为[-.【点睛】本题主要考查三角恒等变换,考查三角函数的图像和性质,考查三角函数的值域,意在考查学生对这些知识的理解掌握水平,属于基础题.29.(1) T=π,单调增区间为50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦(2) ∅ 【解析】【分析】(1)化简函数得到1()sin 223f x x π⎛⎫=- ⎪⎝⎭,再计算周期和单调区间. (2)分情况n 的不同奇偶性讨论,根据函数的最值得到答案.【详解】解:(1)函数21()sin 24f x x x =11cos 2sin 242x x +=11sin 22sin 2423x x x π⎛⎫==- ⎪⎝⎭故()f x 的最小正周期22T ππ==. 由题意可知:222232k x k πππππ-+≤-≤+,k Z ∈ 解得:51212k x k ππππ-+≤≤+,k Z ∈ 因为[0,]x π∈,所以()g x 的单调增区间为50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦(2)由(1)得1()sin 223f x x π⎛⎫=- ⎪⎝⎭∵,34x ππ⎡⎤∈-⎢⎥⎣⎦∴2,36x πππ⎡⎤-∈-⎢⎥⎣⎦,∴1sin 21,32x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,12()1,2f x ⎡⎤∈-⎢⎥⎣⎦若2()(1)0n f x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立, 则2()(1)n f x m +-⋅的最小值大于零.当n 为偶数时,10m -+>,所以,1m当n 为奇数时,10m -->,所以,1m <-综上所述,m 的范围为∅.【点睛】本题考查了三角函数化简,周期,单调性,恒成立问题,综合性强,意在考查学生的计算能力和综合应用能力.30.(1)见解析;(2)178-. 【解析】【分析】(1)运用向量数量积的坐标表示,求出a ·b ;运用平面向量的坐标运算公式求出a b +,然后求出模.(2)根据上(1)求出函数()f x 的解析式,配方,利用二次函数的性质求出最小值.【详解】(1)33cos cos sin sin cos22222x x a b x x x ⋅=⋅-⋅=cos a b ⎛+= ⎝=∵0,2x π⎡⎤∈⎢⎥⎣⎦∴cos 0x ∴2cos a b x += (2)()cos23cos f x x x =- 223172cos 13cos 2cos 48x x x ⎛⎫=--=-- ⎪⎝⎭ ∵0,2x π⎡⎤∈⎢⎥⎣⎦∴0cos 1x ∴()min 317cos 48x f x ==- 【点睛】本题考查了平面向量数量积的坐标表示,以及平面向量的坐标加法运算公式.重点是二次函数求最小值问题.。
21.(2012泰安)如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF 的长是()A.4B.3C.2D.1考点:三角形中位线定理;全等三角形的判定与性质。
解答:解:连接DE并延长交AB于H,∵CD∥AB,∴∠C=∠A,∠CDE=∠AHE,∵E是AC中点,∴DE=EH,∴△DCE≌△HAE,∴DE=HE,DC=AH,∵F是BD中点,∴EF是三角形DHB的中位线,∴EF=12 BH,∴BH=AB﹣AH=AB﹣DC=2,∴EF=1.故选D.37.(2012•丽水)如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB 的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是50°.考点:翻折变换(折叠问题);线段垂直平分线的性质;等腰三角形的性质。
分析:利用全等三角形的判定以及垂直平分线的性质得出∠OBC=40°,以及∠OBC=∠OCB=40°,再利用翻折变换的性质得出EO=EC,∠CEF=∠FEO,进而求出即可.解答:解:连接BO,∵∠BAC=50°,∠BAC的平分线与AB的中垂线交于点O,∴∠OAB=∠ABO=25°,∵等腰△ABC中,AB=AC,∠BAC=50°,∴∠ABC=∠ACB=65°,∴∠OBC=65°-25°=40°,∵,∴△ABO≌△ACO,∴BO=CO,∴∠OBC=∠OCB=40°,∵点C沿EF折叠后与点O重合,∴EO=EC,∠CEF=∠FEO,∴∠CEF=∠FEO==50°,故答案为:50°.2. (2012四川乐山3分)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①△DFE是等腰直角三角形;②四边形CEDF不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生变化;④点C到线段EF的最大距离为.其中正确结论的个数是【】A.1个B.2个C.3个D.4个【答案】B。
高中三角函数专题练习题附答案一、填空题1.平面向量i a 满足:1(0,1,2,3)i a i ==,且310i i a ==∑.则012013023a a a a a a a a a ++++++++的取值范围为________.2.已知三棱锥P ABC -中,23APB ∠=π,3PA PB ==,5AC =,4BC =,且平面PAB ⊥平面ABC ,则该三棱锥的外接球的表面积为_________.3.已知三棱锥S ABC -中,SA SB SC ==,ABC 是边长为4的正三角形,点E ,F 分别是SC ,BC 的中点,D 是AC 上的一点,且EF SD ⊥,若3FD =,则DE =___________. 4.已知()()()cos sin 30f x x x x ωωωω=>,如果存在实数0x ,使得对任意的实数x ,都有()()()002016f x f x f x π≤≤+成立,则ω的最小值为___________.5.给出下列命题:①若函数()f x 的定义域为[]0,2,则函数(2)f x 的定义域为[]0,4; ②函数()tan f x x =在定义域内单调递增;③若定义在R 上的函数()f x 满足(1)()f x f x +=-,则()f x 是以2为周期的函数;④设常数a ∈R ,函数2log ,04()10,41x x f x x x ⎧<≤⎪=⎨>⎪-⎩若方程()f x a =有三个不相等的实数根1x ,2x ,3x ,且123x x x <<,则312(1)x x x +的值域为[64,)+∞.其中正确命题的序号为_____. 6.在ABC 中,记角,,A B C 所对的边分别是,,a b c ,面积为S ,则24Sb ac+的最大值为___________.7.意大利著名画家、数学家、物理学家达芬奇在他创作《抱银貂的女子》时思考过这样一个问题:固定项链的两端,使其在重力的作用下自然下垂,那么项链所形成的曲线是什么?这就是著名的悬链线问题,连接重庆和湖南的世界第一悬索桥——矮寨大桥就采用了这种方式设计.经过计算,悬链线的函数方程为()e e cos 2x xh x -+=,并称其为双曲余弦函数.若()()cos sin cos cos sin cos h h m θθθθ+≥-对0,2πθ⎡⎤∀∈⎢⎥⎣⎦恒成立,则实数m 的取值范围为______.8.1643年法国数学家费马曾提出了一个著名的几何问题:已知一个三角形,求作一点,使其到这个三角形的三个顶点的距离之和为最小.它的答案是:当三角形的三个角均小于120°时,所求的点为三角形的正等角中心(即该点与三角形的三个顶点的连线段两两成角120°),该点称为费马点.已知ABC 中,其中60A ∠=︒,1BC =,P 为费马点,则PB PC PA +-的取值范围是__________.9.已知直线y m =与函数3()sin (0)42f x x πωω⎛⎫=++> ⎪⎝⎭的图象相交,若自左至右的三个相.邻交点...A ,B ,C 满足2AB BC =,则实数m =______. 10.已知||||||1,0,||1OA OB OC OA OB OP ===⋅=≤,则AP BP BP CP CP AP ⋅+⋅+⋅的最大值为__________.二、单选题11.在三棱锥P ABC -中,顶点P 在底面的射影为ABC 的垂心O (O 在ABC 内部),且PO 中点为M ,过AM 作平行于BC 的截面α,过BM 作平行于AC 的截面β,记α,β与底面ABC 所成的锐二面角分别为1θ,2θ,若PAM PBM θ∠=∠=,则下列说法错误的是( )A .若12θθ=,则AC BC =B .若12θθ≠,则121tan tan 2θθ⋅= C .θ可能值为6πD .当θ取值最大时,12θθ=12.如图所示,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 翻折成△ACD ',所成二面角A CD B '--的平面角为α,则( )A .A DB α'∠≤ B .A DB α'∠≥C .A CB α∠'≤D .A CB α'∠≥13.已知函数()()3log 911x f x x+=-,下列说法正确的是( )A .()f x 既不是奇函数也不是偶函数B .()f x 的图象与sin y x =有无数个交点C .()f x 的图象与2y =只有一个交点D .()()21f f -<-14.在三棱锥S ABC -中,侧棱SA ,SB ,SC 两两垂直,且2SA SB SC +==.设SA x =,该三棱锥的表面积为函数()y f x =,以下判断正确的是( ) A .()f x 为常数 B .()f x 有极小值 C .()f x 有极大值D .()f x 是单调函数15.设点()11,P x y 在椭圆22182x y +=上,点()22,Q x y 在直线280x y +-=上,则2121x x y y -+-的最小值是( )A .212+B .3C .312+D .216.如图是某市夏季某一天从6时到14时的温度变化曲线,若该曲线近似地满足函数()sin y A x B ωϕ=++,则该市这一天中午12时天气的温度大约是( )A .25C ︒B .26C ︒ C .27C ︒D .28C ︒17.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>≤ ⎪⎝⎭,已知,06π⎛⎫- ⎪⎝⎭为()f x 图象的一个对称中心,直线1312x π=为() f x 图象的一条对称轴,且() f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减.记满足条件的所有ω的值的和为S ,则S 的值为( ) A .125 B .85C .165D .18518.设函数242,0()sin ,60x x x f x x x ⎧-+≥=⎨-≤<⎩,对于非负实数t ,函数()y f x t =-有四个零点1x ,2x ,3x ,4x .若1234x x x x <<<,则1234x x x x ++的取值范围中的整数个数为( )A .0B .1C .2D .319.函数()sin()(0)6f x x πωω=+>在区间52[,]63ππ-上单调递增,且存在唯一05[0,]6x π∈,使得0()1f x =,则ω的取值范围为( ) A .11[,]52B .21[,]52C .14[,]55D .24[,]5520.已知1sin ,sin ,sin ,222a x x b x ωωω⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,其中0>ω,若函数1()2f x a b =⋅-在区间(,2)ππ内有零点,则实数ω的取值可能是( )A .18B .14C .12D .34三、解答题21.如图所示,在平面四边形ABCD 中,1,2,AB BC ACD ==∆为正三角形.(1)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若sin(2)3sin A C C +=,求角B 的大小; (2)求BCD ∆面积的最大值.22.已知函数()()sin 0,2f x t x t πωϕϕ⎛⎫=+>< ⎪⎝⎭,()f x 的部分图像如图所示,点()0,3N ,,02M π⎛⎫- ⎪⎝⎭,,4P t π⎛⎫⎪⎝⎭都在()f x 的图象上.(1)求()f x 的解析式;(2)当,2x ππ⎡⎤∈-⎢⎥⎣⎦时,()33f x m --≤恒成立,求m 的取值范围.23.已知函数1()1xf x x-=+. (1)证明函数()f x 在(1,)-+∞上为减函数;(2)求函数ln (tan )y f x =的定义域,并求其奇偶性;(3)若存在(,)42ππ,使得不等式(tan )tan 0f x a x +≤能成立,试求实数a 的取值范围.24.已知函数()sin 24a a x x b f π⎛⎫=+++ ⎪⎝⎭,当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 的值域是2,2⎡⎤-⎣⎦. (1)求常数a ,b 的值;(2)当0a <时,设()2g x f x π⎛⎫=+ ⎪⎝⎭,判断函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调性.25.如图,半圆的直径2AB =,O 为圆心,C ,D 为半圆上的点.(Ⅰ)请你为C 点确定位置,使ABC ∆的周长最大,并说明理由; (Ⅱ)已知AD DC =,设ABD θ∠=,当θ为何值时, (ⅰ)四边形ABCD 的周长最大,最大值是多少 (ⅱ)四边形ABCD 的面积最大,最大值是多少?26.已知函数()sin()0,04,||2f x A x b A πωϕωϕ⎛⎫=++><<< ⎪⎝⎭图象的一个最高点和最低点的坐标分别为5,2312π⎛+ ⎝和11,2312π⎛-⎝. (1)求()f x 的解析式;(2)若存在0,2x π⎡⎤∈⎢⎥⎣⎦3()2f x m ≤-,求m 的取值范围.27.已知1a ≥,函数()πsin 4f x x ⎛⎫=+ ⎪⎝⎭,()()sin cos 12g x x x af x =--.(1)若()f x 在[],b b -上单调递增,求正数b 的最大值; (2)若函数()g x 在3π0,4⎡⎤⎢⎥⎣⎦内恰有一个零点,求a 的取值范围.28.已知ABC ∆的三个内角A ,B ,C 的对边分别为a ,b ,c ,函数()()2sin cos sin f x x A x A =-+,且当512x π=时,()f x 取最大值. (1)若关于x 的方程()f x t =,0,2x π⎛⎫∈ ⎪⎝⎭有解,求实数t 的取值范围;(2)若5a =,且43sin sin B C +=,求ABC ∆的面积. 29.已知向量()cos sin ,sin a m x m x x ωωω=-,()cos sin ,2cos b x x n x ωωω=--,设函数()()2n f x a b x R =⋅+∈的图象关于点,112π⎛⎫⎪⎝⎭对称,且()1,2ω∈ (I )若1m =,求函数()f x 的最小值;(II )若()4f x f π⎛⎫≤ ⎪⎝⎭对一切实数恒成立,求()y f x =的单调递增区间.30.在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且32sin a c A = (Ⅰ)确定角C 的大小: (Ⅱ)若c =,且△ABC 的面积为,求a +b 的值.【参考答案】一、填空题1.23,4⎡⎤⎣⎦2.28π 37 4.140325.③④627.12,1⎡⎤⎣⎦8.3⎡⎫⎪⎢⎪⎣⎭9.1或2##2或110.5+32二、单选题11.C 12.B 13.C 14.A 15.D 16.C 17.A 18.B 19.B20.D 三、解答题21.(1)23B π=;(21. 【解析】 【分析】(1)由正弦和角公式,化简三角函数表达式,结合正弦定理即可求得角B 的大小;(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理及正弦定理用,αβ表示出CD .再根据三角形面积公式表示出∆BCD S ,即可结合正弦函数的图像与性质求得最大值. 【详解】 (1)由题意可得:sin2cos cos2sin 3sin A C A C C +=∴()22sin cos cos 12sin sin 3sin A A C A C C +-=整理得sin (cos cos sin sin )sin A A C A C C -= ∴sin cos()sin A A C C += ∴sin cos sin A B C -= ∴sin 1cos sin 2C c B A a =-=-=- 又(0,)B π∈ ∴23B π=(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理得:22212212cos 54cos AC αα=+-⨯⨯=-, ∵ACD ∆为正三角形, ∴2254cos CD C A α=-=, 在ABC ∆中,由正弦定理得:1sin sin ACβα=, ∴sin sin AC βα=, ∴sin sin CD βα=,∵()222222(cos )1sin sin 54cos sin CD CD CD ββααα=-=-=--2(2cos )α=-,∵BAC β<∠,∴β为锐角,cos 2cos CD βα=-, 12sin sin 233BCD S CD CD ππββ∆⎛⎫⎛⎫=⨯⨯⨯+=+ ⎪ ⎪⎝⎭⎝⎭1cos sin 2CD ββ=+,1cos )sin sin 23πααα⎛⎫=-+=- ⎪⎝⎭, ∵(0,)απ∈∴当56πα=时,()max 1BCD S ∆=. 【点睛】本题考查了三角函数式的化简变形,正弦定理与余弦定理在解三角形中的应用,三角形面积的表示方法,正弦函数的图像与性质的综合应用,属于中档题.22.(1)()22sin 33x f x π⎛⎫=+ ⎪⎝⎭;(2)[]1,0-【解析】 【分析】(1)由三角函数图像,求出,,t ωϕ即可;(2)求出函数()f x m -的值域,再列不等式组32m m +≥⎧⎪⎨≤⎪⎩.【详解】解:(1)由()f x 的图象可知34424T πππ⎛⎫=--= ⎪⎝⎭,则3T π=, 因为23T ππω==,0>ω,所以23ω=,故()2sin 3t x f x ϕ⎛⎫=+ ⎪⎝⎭.因为,02M π⎛⎫- ⎪⎝⎭在函数()f x 的图象上,所以sin 023f t ππϕ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭, 所以()3k k Z πϕπ-+=∈,即()3k k Z πϕπ=+∈,因为2πϕ<,所以3πϕ=.因为点(N 在函数()f x 的图象上,所以()0sin 3f t π==解得2t =,故()22sin 33x f x π⎛⎫=+ ⎪⎝⎭.(2)因为,2x ππ⎡⎤∈-⎢⎥⎣⎦,所以22,3333x πππ⎡⎤+∈-⎢⎥⎣⎦,所以2sin 33x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,则()2f x ≤.因为()33f x m -≤-≤,所以()3m f x m ≤+, 所以32m m +≥⎧⎪⎨⎪⎩10m -≤≤.故m 的取值范围为[]1,0-. 【点睛】本题考查了利用三角函数图像求解析式,重点考查了三角函数值域的求法,属中档题.23.(1)证明见解析;(2),,44k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭,奇函数;(3)(,3-∞-. 【解析】(1)利用单调性定义证明即可.(2)根据条件可得tan 1tan 1x x <⎧⎨>-⎩,其解集即为函数的定义域,可判断定义域关于原点对称,再根据奇偶性定义可判断函数的奇偶性. (3)令tan t x =,考虑101tat t-+<+在()1,+∞上有解即可,参变分离后利用基本不等式可求实数a 的取值范围. 【详解】(1)11x ∀>-,21x ∀>-,12x x <, 又()()()122212121211()()11112x x x x f x f x x x x x ----=-+-=+++, 因为11x >-,21x >-,12x x <,故110x +>,210x +>,120x x -<, 故12())0(f x f x ->即12()()f x f x >,所以函数()f x 在(1,)-+∞上为减函数. (2)((ln t )n )a y f x =的x 满足的不等关系有:1tan 01tan xx->+即()()1tan tan 10x x +-<,故tan 1tan 1x x <⎧⎨>-⎩,解得,44k x k k Z ππππ-+<<+∈,故函数的定义域为,44k k ππππ⎛⎫-++ ⎪⎝⎭,k Z ∈,该定义域关于原点对称.令()((ln ta )n )F x f x = 又()()()tan tan tan()tan tan 11ln lnln 11x xx x xF x f -+--===--+()()()tan ln x f F x =-=-,故ln (tan )y f x =为奇函数.(3)令tan t x =,因为(,)42x ππ∈,故1u >.故在(,)42ππ上不等式(tan )tan 0f x a x +≤能成立即为存在1t >,使得101tat t-+≤+,所以()11t a t t -≤+在()1,+∞上能成立, 令1s t =-,则0s >且()21121323t s t t s s s s-==+++++,由基本不等式有2s s+≥s 时等号成立, 所以()131t t t -≤=-+,当且仅当1t 时等号成立,故()11t y t t -=+的最大值为3-,所以a的取值范围为(,3-∞-. 【点睛】本题考查与正切函数、对数函数有关的复合函数的性质的讨论,此类问题常用换元法把复合函数性质的讨论归结为常见函数性质的讨论,本题较综合,为难题.24.(1)2a =,2b =-或2a =-,4b =函数()g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递增.函数()g x 在,82ππ⎡⎤⎢⎥⎣⎦上单调递减. 【解析】 【分析】(1)先求得sin 24x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,再讨论0a >和0a <的情况,进而求解即可; (2)由(1)()2sin 224f x x π⎛⎫=-++ ⎪⎝⎭则()2sin 224g x x π⎛⎫=++ ⎪⎝⎭进而判断单调性即可 【详解】解:(1)当0,2x π⎡⎤∈⎢⎥⎣⎦时,52,444x πππ⎡⎤+∈⎢⎥⎣⎦,所以sin 242x π⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦, ①当0a >时,由题意可得12a ab a a b ⎧⎛⨯++=⎪ ⎨⎝⎭⎪⨯++=⎩即22a b a b ⎧++=⎪⎨⎪+=⎩解得2a =,2b =-; ②当0a <时,由题意可得221a a b a a b ⎧⎛⨯-++=⎪ ⎨⎝⎭⎪⨯++=⎩,即22a b a b ⎧++=⎪⎨⎪+=⎩,解得2a =-,4b =(2)由(1)当0a <时,2a =-,4b =所以()2sin 224f x x π⎛⎫=-++ ⎪⎝⎭所以()2sin 22224f x x g x πππ⎡⎤⎛⎫⎛⎫=+=-+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2sin 224x π⎛⎫=++ ⎪⎝⎭令222242k x k πππππ-+≤+≤+,k Z ∈,解得388k x k ππππ-+≤≤+,k Z ∈,当0k =时,388x ππ-≤≤,则3,0,0,8828ππππ⎡⎤⎡⎤⎡⎤-⋂=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以函数()g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递增,同理,函数()g x 在,82ππ⎡⎤⎢⎥⎣⎦上单调递减【点睛】本题考查由三角函数性质求解析式,考查正弦型函数的单调区间,考查运算能力 25.(Ⅰ)点C 是半圆的中点,理由见解析; (Ⅱ)(ⅰ)6πθ=时,最大值5(ⅱ)6πθ=时,最大面积是334【解析】(Ⅰ)设BC a =,AC b =,AB c =,法一:依题意有222+=a b c ,再利用基本不等式求得2a b c +,从而得出结论;法二:由点C 在半圆上,AB 是直径,利用三角函数求出cos a c α=⋅,sin b c α=⋅,再利用三角函数的性质求出结论;(Ⅱ)(ⅰ)利用三角函数值表示四边形ABCD 的周长p ,再求p 的最大值;(ⅱ)利用三角函数值表示出四边形ABCD 的面积s ,再结合基本不等式求s 的最大值. 【详解】(Ⅰ)点C 在半圆中点位置时,ABC ∆周长最大.理由如下: 法一:因为点C 在半圆上,且AB 是圆的直径, 所以2ACB π∠=,即ABC ∆是直角三角形,设BC a =,AC b =,AB c =,显然a ,b ,c 均为正数,则222+=a b c , 因为222a b ab +≥,当且仅当a b =时等号成立,所以()()2222222a b a b ab a b +≥++=+,所以()2222a b a b c +≤+, 所以ABC ∆的周长为)21222a b c c ++≤=,当且仅当a b =时等号成立,即ABC ∆为等腰直角三角形时,周长取得最大值,此时点C 是半圆的中点. 法二:因为点C 在半圆上,且AB 是圆的直径, 所以2ACB π∠=,即ABC ∆是直角三角形,设BC a =,AC b =,AB c =,02ABC παα⎛⎫∠=<< ⎪⎝⎭,则cos a c α=⋅,sin b c α=⋅,a b c ++cos sin c c c αα=⋅+⋅+()2cos sin 2αα=++22sin 24πα⎛⎫=++ ⎪⎝⎭, 因为02πα<<,所以3444πππα<+<, 所以当42ππα+=,即4πα=时, ABC ∆周长取得最大值222+,此时点C 是半圆的中点.(Ⅱ)(ⅰ)因为AD DC =,所以ABD DBC θ∠=∠=, 所以sin AD DC AB θ==⋅,cos2CB AB θ=⋅, 设四边形ABCD 的周长为p , 则p AD DC CB AB =+++2sin cos22AB AB θθ=++()2214sin 212sin 254sin 2θθθ⎛⎫=+-+=-- ⎪⎝⎭,显然0,4πθ⎛⎫∈ ⎪⎝⎭,所以当6πθ=时,p 取得最大值5;(ⅱ)过O 作OE BC ⊥于E ,设四边形ABCD 的面积为s ,四边形AOCD 的面积为1s ,BOC ∆的面积为2s ,则 121122s s s AC OD BC OE =+=⋅+⋅ 11sin 21cos 2sin 222AB AB θθθ=⋅+⋅ sin 2cos2sin 2θθθ=+⋅()sin 21cos2θθ=+, 所以()222sin 21cos2s θθ=+()()221cos 21cos 2θθ=-+()()31cos21cos2θθ=-+()()331cos 21cos 23θθ=-+()()()2231cos 21cos 211cos 232θθθ-++⎡⎤≤+⎢⎥⎣⎦()()()231cos 21cos 211cos 232θθθ-++⎡⎤=+⎢⎥⎣⎦()()()2231cos 21cos 21cos 21232θθθ⨯-++⎡⎤++⎢⎥≤⎢⎥⎢⎥⎢⎥⎣⎦()()()431cos 21cos 221cos 2134θθθ-++++⎡⎤=⎢⎥⎣⎦ 413273216⎛⎫==⎪⎝⎭; 当且仅当()31cos21cos2θθ-=+,即1cos 22θ=时,等号成立, 显然04πθ⎛⎫∈ ⎪⎝⎭,,所以202πθ⎛⎫∈ ⎪⎝⎭,,所以此时6πθ=,所以当6πθ=时,s =,即四边形ABCD【点睛】本题考查解三角形的应用问题,考查三角函数与基本不等式的应用,需要学生具备一定的计算分析能力,属于中档题.26.(1) ()2sin(2)3f x x π=-[22]-,【解析】 【分析】(1)根据题意得到()21T k Z k π=∈+,42k ω=+所以2ω=,再代入数据计算得到,2A=b =3πϕ=-得到答案.(2)因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以22,333x πππ⎡⎤-∈-⎢⎥⎣⎦得到0()2f x ≤≤+202m m +≥⎧⎪⎨+⎪⎩. 【详解】 (1)由题意得1151()12122k T ππ-=+,则()21T k Z k π=∈+. 又2T πω=,则42k ω=+,因为04ω<<,所以2ω=.2A ==,b ==因为()f x的图象经过点5(,212π,所以52sin(2)212πϕ⨯+=+所以23k πϕπ=-+,k Z ∈,因为||2ϕπ<,所以3πϕ=-.故()2sin(2)3f x x π=-+(2)因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以22,333x πππ⎡⎤-∈-⎢⎥⎣⎦从而,0()2f x ≤≤+()2f x m ≤-≤,所以()2m f x m +≤≤+. 要使得存在0,2x π⎡⎤∈⎢⎥⎣⎦()2f x m -≤,则202m m +≥⎧⎪⎨≤⎪⎩解得22m -≤≤.故m 的取值范围为[22]-,. 【点睛】本题考查了三角函数的解析式,存在问题,计算函数的值域是解题的关键. 27.(1)4π(2)⎫+∞⎪⎪⎝⎭【解析】 【分析】(1)求出()πsin 4f x x ⎛⎫=+ ⎪⎝⎭的单调递增区间,令0k =,得3ππ44x -≤≤,可知区间[],b b -3ππ,44⎡⎤⊂-⎢⎥⎣⎦,即可求出正数b 的最大值;(2)令πsin cos 4t x x x ⎛⎫=+=+ ⎪⎝⎭,当3π0,4x ⎡⎤∈⎢⎥⎣⎦时,t ⎡∈⎣,可将问题转化为()21122h t t at =-+-在⎡⎣的零点问题,分类讨论即可求出答案. 【详解】 解:(1)由πππ2π2π242k x k -≤+≤+,k ∈Z 得3ππ2π2π44k x k -≤≤+,k ∈Z . 因为()f x 在[],b b -上单调递增, 令0k =,得3ππ44x -≤≤时()f x 单调递增, 所以π43π4b b ⎧≤⎪⎪⎨⎪-≥-⎪⎩解得π4b ≤,可得正数b 的最大值为4π.(2)()()sin cos 1g x x x x =--()sin cos sin cos 1x x a x x =-++-,设πsin cos 4t x x x ⎛⎫=+=+ ⎪⎝⎭,当3π0,4x ⎡⎤∈⎢⎥⎣⎦时,t ⎡∈⎣.它的图形如图所示.又()()2211sin cos sin cos 1122x x x x t ⎡⎤=+-=-⎣⎦,则()sin cos sin cos 1x x a x x -++-21122t at =-+-,2t ⎡∈⎣,令()21122h t t at =-+-, 则函数()g x 在3π0,4⎡⎤⎢⎥⎣⎦内恰有一个零点,可知()21122h t t at =-+-在2⎡⎣内最多一个零点.①当0为()h t 的零点时,102-=显然不成立; ②2()h t 3202a -=,得324a =324a =211022t at -+-=中,得21321022t --=,解得12t =,22t =,不符合题意. ③当零点在区间(2时,若210a ∆=-=,得1a =,此时零点为1,即1t =,由24t x π⎛⎫=+ ⎪⎝⎭的图象可知不符合题意;若210a ∆=->,即1a >,设211022t at -+-=的两根分别为1t ,2t ,由121t t =,且抛物线的对称轴为1t a =>,则两根同时为正,要使()21122h t t at =-+-在2⎡⎣内恰有一个零点,则一个根在()0,1内,另一个根在()2,+∞内,所以()()102000h h h ⎧>⎪⎪>⎨⎪<⎪⎩解得32a > 综上,a 的取值范围为32⎫+∞⎪⎪⎝⎭. 【点睛】本题考查了三角函数的单调性的应用,考查了函数的零点,考查了分类讨论的数学思想,考查了学生的推理能力与计算求解能力,属于难题. 28.(1)3(;(21334 【解析】【分析】(1)利用两角和差的正弦公式整理()f x 可得:()sin(2)A f x x =-,再利用已知可得:522122A k πππ⨯-=+(k Z ∈),结合已知可得:3A π=,求得:(0,)2x π∈时,sin(2)13x π<-≤,问题得解.(2)利用正弦定理可得:sin sin )+=+B C b c ,结合sin sin B C +=可得:8+=b c ,对a 边利用余弦定理可得:2222cos a b c bc A =+-,结合已知整理得:13=bc ,再利用三角形面积公式计算得解. 【详解】解:(1)()2sin()cos sin f x x A x A =-+2sin()cos sin[()]x A x x x A =-+--2sin()cos sin cos()cos sin()x A x x x A x x A =-+---sin cos()cos sin()x x A x x A =-+- sin(2)x A =-.因为()f x 在512x π=处取得最大值, 所以522122A k πππ⨯-=+,k Z ∈, 即2,3A k k Z ππ=-+∈. 因为(0,)A π∈,所以3A π=,所以()sin(2)3f x x π=-.因为(0,)2x π∈,所以22(,)333x πππ-∈-所以sin(2)13x π<-≤,因为关于x 的方程()f x t =有解,所以t 的取值范围为(.(2)因为5a =,3A π=,由正弦定理sin sin sin b c a B C A ==于是sin sin )+=+B C b c .又sin sin B C +=,所以8+=b c . 由余弦定理得:2222cos a b c bc A =+-,整理得:2225=+-b c bc ,即225()3643=+-=-b c bc bc , 所以13=bc ,所以1sin 2ABC S bc A ∆==【点睛】本题主要考查了两角和、差的正弦公式应用,还考查了三角函数的性质及方程与函数的关系,还考查了正弦定理、余弦定理的应用及三角形面积公式,考查计算能力及转化能力,属于中档题.29.(Ⅰ)1()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【解析】 【分析】化简()f x 解析式可得()()22n f x x ωϕ=-+;根据图象关于,112π⎛⎫ ⎪⎝⎭可求得n ;(Ⅰ)若1m =,则()()21f x x ωϕ=-+,从而可得函数最小值;(Ⅱ)利用4x π=为对称轴,,112π⎛⎫ ⎪⎝⎭为对称中心可得()*642T T k k N π=+⋅∈,根据周期和ω的范围可求得ω;将,112π⎛⎫ ⎪⎝⎭代入解析式可求得()314f x x π⎛⎫=-+ ⎪⎝⎭,将34x π-整体放入正弦函数的单调递增区间中,解出x 的范围即可. 【详解】由题意得:()()22cos sin 2sin cos 2n f x m x x n x x ωωωω=--++()sin 2cos 2222n n n x m x x ωωωϕ=-+=-+ 其中cos ϕ=sin ϕ=图象关于点,112π⎛⎫⎪⎝⎭对称 12n ∴=,解得:2n =()()21f x x ωϕ∴=-+(Ⅰ)若1m =,则()()21f x x ωϕ=-+()min 1f x ∴=(Ⅱ)()4f x f π⎛⎪≤⎫ ⎝⎭对一切实数恒成立 ()max 4f x f π⎛⎫∴= ⎪⎝⎭()*412642T T k k N πππ∴-==+⋅∈,即:()()*223212T k N k ππω==∈+ ()3212k ω∴=+,又()1,2ω∈ 32ω∴=()2sin3cos31f x x m x ∴=-+,又图象关于点,112π⎛⎫⎪⎝⎭对称2sin cos 111244f m πππ⎛⎫∴=-+= ⎪⎝⎭,解得:2m =()2sin 32cos31314f x x x x π⎛⎫∴=-+=-+ ⎪⎝⎭令232242k x k πππππ-+≤-≤+,k Z ∈,解得:2212343k k x ππππ-+≤≤+,k Z ∈ ()f x ∴的单调递增区间为:()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【点睛】本题考查三角函数图象与性质的综合应用问题,涉及到根据三角函数的性质求解函数解析式的求解、三角函数最值的求解、单调区间的求解问题. 30.(Ⅰ)3π(Ⅱ)5 【解析】 【详解】试题分析:(12sin sin A C A =即可得sin C =60C =︒(2)∵1sin 2S ab C ==a b + 试题解析: 解:(12sin sin A C A =,∵,A C 是锐角,∴sin C =60C =︒.(2)∵1sin 2S ab C ==6ab = 由余弦定理得222222cos ()3()187c a b ab C a b ab a b =+-=+-=+-= ∴5a b +=点睛:在解三角形问题时多注意正余弦定理的结合运用,正弦定理主要用在角化边和边化角上,而余弦定理通常用来求解边长。
一、选择题1.由世界知名建筑大师摩西·萨夫迪设计的重庆新地标“来福士广场”,广场上八幢塔楼临水北向,错落有致,宛若巨轮扬帆起航,成为我市新的地标性建筑—“朝天扬帆”.来福士广场T3N 塔楼核芯简于2017年12月11日完成结构封顶,高度刷新了重庆的天际线.小李为了测量T3N 塔楼的高度,他从塔楼底部B 出发,沿广场前进185米至点C .继而沿坡度为1:2.4i =的斜坡向下走65米到达码头D ,然后在浮桥上继续前行110米至趸船E ,在E 处小李操作一架无人勘测机,当无人勘测机飞行至点E 的正上方点F 时,测得码头D 的俯角为58°,楼项A 的仰角为30°,点A 、B 、C 、D 、E 、F 、O 在同一平面内.则T3N 塔楼AB 的高度约为( )(结果精确到1米,参考数据:sin580.85︒≈,cos580.53︒≈,tan58 1.60︒≈,3 1.73≈)A .319米B .335米C .342米D .356米 2.国家电网近来实施了新一轮农村电网改造升级工程,解决了农村供电“最后1公里”问题,电力公司在 改造时把某一输电线铁塔建在了一个坡度为1:0.75的山坡CD 的平台BC 上(如图),测得52.5,5AED BC ︒∠==米,35CD =米,19DE =米,则铁塔AB的高度约为( )(参考数据:52.50.79,52.50.61,52.5 1.30sin cos tan ︒︒︒≈≈≈)A .7.6 米B .27.5 米C .30.5 米D .58.5 米 3.小明在学完《解直角三角形》一章后,利用测角仪和校园旗杆的拉绳测量校园旗杆的高度,如图,旗杆PA 的高度与拉绳PB 的长度相等,小明先将PB 拉到'PB 的位置,测得(''PB C a B C ∠=为水平线),测角仪/B D 的高度为1米,则旗杆PA 的高度为( )A .11sin a +米B .11cos a-米 C .11sin a -米 D .11cos a +米 4.下列计算中错误的是( ) A .sin60sin30sin30︒-︒=︒B .22sin 45 cos 451︒+︒=C .sin 60tan 60sin 30︒︒=︒D .cos30tan 60cos60︒︒=︒5.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E . F 分别在BC 和CD 上,下列结论:①CE=CF ;②∠AEB=75︒;③BE+DF=EF ;④正方形对角线AC=1+3,其中正确的序号是( )A .①②④B .①②C .②③④D .①③④ 6.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2B 25C 5D .127.已知二次函数y =ax 2+6ax +c (a <0),设抛物线与x 轴的交点为A (﹣7,0)和B ,与y 轴的交点为C ,若∠ACO =∠CBO ,则tan ∠CAB 的值为( )A 14B 2C 7D 7 8.如图,为了测量某建筑物MN 的高度,在平地上A 处测得建筑物顶端M 的仰角为30°,向N 点方向前进16m 到达B 处,在B 处测得建筑物顶端M 的仰角为45°,则建筑物MN 的高度等于( )A .8(31)+mB .8(31)-mC .16(31)+mD .16(31)-m9.如图,在矩形ABCD 中,AB =3,做BD 的垂直平分线E ,F ,分别与AD 、BC 交于点E 、F ,连接BE ,DF ,若EF =AE +FC ,则边BC 的长为( )A .23B .33C .63D .93210.在ABC 中,(2sinA-1)2+1cos 2B -=0,则ABC 是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .无法确定 11.如图,在平面直角坐标系中,Rt OAB 的斜边OA 在第一象限,并与x 轴的正半轴夹角为30度,C 为OA 的中点,BC=1,则A 点的坐标为( )A .3,3B .()3,1C .()2,1D .(3 12.如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60°,然后在坡顶D 测得树顶B 的仰角为30°,已知斜坡CD 的长度为10m ,DE的长为5m ,则树AB 的高度是( )m .A .10B .15C .153D .153﹣5二、填空题13.计算:22303060sin cos tan ︒︒︒+-=__________.14.已知AD 是△ABC 的高,CD =1,AD =BD =3,则∠BAC =_______.15.如图,已知在Rt ABC 中,C 90,AC BC 2∠=︒==,点D 在边BC 上,将ABC 沿直线AD 翻折,使点C 落在点C '处,联结AC ',直线AC '与边CB 的廷长线相交于点F ,如果DAB BAF ∠∠=,那么BF =_________.16.三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB ∥CF ,∠F =∠ACB =90°,∠E =45°,∠A =60°,AC =10,则CD 的长度是_____.17.如图,在四边形ABCD 中,AD =CD ,∠D=60°,∠A =105°,∠B =120°,则AD BC的值为__________.18.如图,把n 个边长为1的正方形拼接成一排,求得1tan 1BA C ∠=,21tan 3BA C ∠=,31tan 7BA C ∠=,计算4tan BA C ∠=__________,……按此规律,写出tan n BA C ∠=__________(用含n 的代数式表示).19.如图,△ABC 是等边三角形,AB =3,点E 在AC 上,AE 23=AC ,D 是BC 延长线上一点,将线段DE 绕点E 逆时针旋转90°得到线段FE ,当AF ∥BD 时,线段AF 的长为____.20.如图,在矩形ABCD 中,连接AC ,以点B 为圆心,BA 为半径画弧,交BC 于点E ,已知3BE =,33BC =,则图中阴影部分的面积为_______.(结果保留π)三、解答题21.已知ABC 为等边三角形,6,AB P =是AB 上的一个动点,(与A B 、不重合),过点P 作AB 的垂线与BC 相交于点D ,以点D 为正方形的一个顶点,在ABC 内作正方形DEFG ,其中D E 、在BC 上,F 在AC 上,(1)设BP 的长为x ,正方形DEFG 的边长为y ,写出y 关于x 的函数解析式及定义域;(2)当2BP =时,求CF 的长;(3)GDP △是否可能成为直角三角形?若能,求出BP 的长;若不能,请说明理由.22.如图,AB 是圆O 的一条弦,OD ⊥AB ,垂足为C ,交圆O 于点D ,点E 在圆O 上. (1)若∠AOD =50°,求∠DEB 的度数;(2)若OC =3,∠A =30°,求AB 的长.23.理解写作如下图1,在探究锐角A ∠的对边与直角三角形斜边之比的数学实验中包含两个环节,一是通过在A ∠的边AB 上取不同的点B ', B '',分别作高B C '',B C ''''利用三角形相似,可以说明 B C B C A ABB ''''''=''',即A ∠的对边与斜边的比值固定,与点B '的位置无关. 二是说明A ∠的度数发生变化时,A ∠的对边与斜边的比值也会发生变化.请根据下图2简要说明做法并证明第二个环节的结论,并在图3中再构造一种思路证明此结论.24.因东坡文化远近闻名的遗爱湖公园,“国庆黄金周”期间,游人络绎不绝,现有一艘游船载着游客在遗爱湖中游览.当船在A 处时,船上游客发现岸上M 处的临皋亭和N 处的遗爱亭都在东北方向;当游船向正东方向行驶600m 到达B 处时,游客发现遗爱亭在北偏西15°方向;当游船继续向正东方向行驶400m 到达C 处时,游客发现临皋亭在北偏西60°方向.求临皋亭M 处与遗爱亭N 处之间的距离(计算结果保留根号).25.如图,在平面直角坐标系中,矩形ABCO 的边6,12AB BC ==,直线32y x m =-+与y 轴交于点P ,与边BC 交于点E ,与边OA 交于点D .(1)已知矩形ABCO 为中心对称图形,对称中心(点F )为对角线AC OB ,的交点,若直线32y x m =-+恰好经过点F ,求点F 的坐标和m 的值﹒ (2)在(1)的条件下,过点P 的一条直线绕点P 顺时针旋转时,与直线BC 和x 轴分别交于点,N M 、试问是否存在ON 平分CNM ∠的情况.若存在,求线段AM 的长,若不存在,说明理由﹒(3)将矩形ABCO 落在(1)条件下的直线32y x m =-+折叠,若点О落在边CB 上,求出该点坐标,若不在边CB 上,请你说明将(1)中的直线32y x m =-+沿y 轴进行怎样的平移,使矩形ABCO 沿平移后的直线折叠,点O 恰好落在边CB 上.26.如图,在正方形ABCD 中,点E 是BC 边上的一动点,点F 是CD 上一点,,,CE DF AF DE =且相交于点G .(1)求证:ADF DCE ∆≅∆;(2)若BG BC =,求tan DAG ∠的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据题意可知CD 的垂直高度和水平宽度,即知道了BO 和OD 的长,从而得出OE 的长度,再根据正切函数和DE 长度可求出EF 长度, 正切函数和OE 长度可求出A 到F 的垂直高度,即可求出AB 的长度,即:tan30AB EF OE BO =+⨯︒-.【详解】由题意得:185BC m =,65CD m =,110DE m =,根据斜坡CD 的坡度1:2.4i =得CD 的垂直高度为25m ,水平宽度为60m , ∴25BO m =,11060185355OE m =++=.根据tan tan58110 1.6110176EF EDF ED m =∠⨯=︒⨯=⨯=,所以176tan30176355 1.73325356AB OE BO m =+⨯︒-=+⨯÷-≈故选D【点睛】本题考查解直角三角形,根据题意结合正切函数是解答本题的关键.2.C解析:C【分析】延长AB 交ED 于G ,过C 作CF ⊥DE 于F ,得到GF=BC=5,设DF=3k ,CF=4k ,解直角三角形得到结论.【详解】解:延长AB 交ED 于G ,过C 作CF ⊥DE 于F ,则四边形BGFC 是矩形∴GF=BC=5,∵山坡CD 的坡度为1:0.75,∴设DF=3k ,CF=4k ,∴CD=5k=35,∴k=7,∴DF=21,BG=CF=28,∴EG=GF+DF+DE=5+21+19=45,∵∠AED=52.5°,∴AG=EG•tan52.5°=45×1.30=58.5,∴AB=AG-BG=30.5米,答:铁塔AB 的高度约为30.5米.故选:C .【点睛】本题考查了解直角三角形的应用-坡度坡角问题和解直角三角形的应用-坡度坡角问题,难度适中,通过作辅助线,构造直角三角形,利用三角函数求解是解题的关键.3.C解析:C【分析】设PA=PB=PB′=x ,在RT △PCB′中,根据sin αPC PB =',列出方程即可解决问题. 【详解】解:设PA=PB=PB′=x ,在RT △PCB′中,sin αPC PB ='∴1sin αx x-=∴x 1xsin α-=, ∴(1-sin α)x=1,∴x=11sin α-. 故选C .【点睛】 本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.4.A解析:A【分析】根据特殊角的三角函数值、二次根式的运算即可得.【详解】A、111sin 60sin 30,sin 302222︒-︒=-=︒=,此项错误; B、222211sin 45 cos 4512222⎛⎫⎛︒+︒=+=+= ⎪ ⎪ ⎝⎭⎝⎭,此项正确; C、sin 602tan 601sin 302︒︒===︒sin 60tan 60sin 30︒︒=︒,此项正确; D、cos302tan 601cos 602︒︒===︒cos30tan 60cos60︒︒=︒,此项正确; 故选:A .【点睛】本题考查了特殊角的三角函数值、二次根式的运算,熟记特殊角的三角函数值是解题关键.5.A解析:A【分析】根据三角形的全等的判定和性质可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,根据三线合一的性质,可判定AC ⊥EF ,然后分别求得AG 与CG 的长,继而求得答案.【详解】∵四边形ABCD 是正方形,∴AB=AD= BC=DC ,∵△AEF 是等边三角形,∴AE=AF ,在Rt △ABE 和Rt △ADF 中,AB AD AE AF =⎧⎨=⎩, ∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF ,AE=AF ,∵BC=DC ,∴BC-BE=CD-DF ,∴CE=CF ,故①正确;∵CE=CF ,∴△ECF 是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=180°-60°-45°=75°,故②正确;如图,连接AC ,交EF 于G 点,∵AE=AF ,CE=CF ,∴AC ⊥EF ,且AC 平分EF ,∵∠CAF≠∠DAF ,∴DF≠FG ,∴BE+DF≠EF ,故③错误;∵△AEF 是边长为2的等边三角形,∠ACB=∠ACD=45°,AC ⊥EF ,∴EG=FG=1,∴AG=AE•sin60°3232=⨯=CG=112EF =, ∴31;故④正确.综上,①②④正确故选:A .【点睛】本题考查了正方形的性质,等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,线段垂直平分线的判定和性质以及解直角三角形.注意准确作出辅助线是解此题的关键.6.D解析:D【分析】连接AC ,根据网格图不难得出=90CAB ∠︒,求出AC 、BC 的长度即可求出ABC ∠的正切值.【详解】连接AC ,由网格图可得:=90CAB ∠︒,由勾股定理可得:AC =2,AB =22,∴tan ABC ∠=21222AC AB ==. 故选:D .【点睛】本题主要考查网格图中锐角三角函数值的求解,根据网格图构造直角三角形是解题关键. 7.D解析:D【分析】根据根和系数的关系,求出点B (1,0),利用tan ∠ACO =tan ∠CBO ,求出OC =7±,进而求解.【详解】 解:如图所示,∵A (﹣7,0),则OA =7,设点B 的横坐标为b ,根据根和系数的关系,则﹣7+b =﹣6a a =﹣6, 解得b =1,∴ 点B (1,0),则OB =1,∵∠ACO =∠CBO ,∴tan ∠ACO =tan ∠CBO ,∴AO OC OC OB =,即71OC OC =,解得OC =7 tan ∠CAB =OC OA 7,故选:D.【点睛】本题考查的是抛物线与x轴的交点、三角函数公式,利用根和系数的关系求出点B的坐标,是解题的关键.8.A解析:A【解析】设MN=xm,在Rt△BMN中,∵∠MBN=45∘,∴BN=MN=x,在Rt△AMN中,tan∠MAN=MN AN,∴tan30∘=16xx+=3√3,解得:,则建筑物MN的高度等于 +1)m;故选A.点睛:本题是解直角三角形的应用,考查了仰角和俯角的问题,要明确哪个角是仰角,哪个角是俯角,知道仰角是向上看的视线与水平线的夹角,俯角是向下看的视线与水平线的夹角,并与三角函数相结合求边的长.9.B解析:B【分析】根据矩形的性质和菱形的性质得∠ABE=∠EBD=∠DBC=30°,AB=BO=3,因为四边形BEDF是菱形,所以可求出BE,AE,进而可求出BC的长.【详解】解:∵四边形ABCD是矩形,//,DE BF∴,,DEO BFO EDO FBO∴∠=∠∠=∠EF垂直平分BD,OB OD∴=,BOF DOE∴∆∆≌,,OE OF∴=∴四边形BEDF是菱形,∵四边形ABCD是矩形,四边形BEDF是菱形,∴∠A=90°,AD=BC,DE=BF,OE=OF,EF⊥BD,∠EBO=FBO,∴AE=FC.又EF=AE+FC,∴EF=2AE=2CF,又EF=2OE=2OF ,AE=OE ,∴△ABE ≌OBE , ∴∠ABE=∠OBE ,∴∠ABE=∠EBD=∠DBC=30°,∴BE= cos30BO ︒= ∴BF=BE=∴∴BC=BF+CF=故选B .【点睛】本题考查了矩形的性质、菱形的性质以及在直角三角形中30°角所对的直角边时斜边的一半,解题的关键是求出∠ABE=∠EBD=∠DBC=30°. 10.C解析:C【分析】根据非负数的性质可得sinA 和cosB 的值,进而可得∠A 和∠B 的度数,即可知△ABC 的形状.【详解】解:∵(2sinA-1)2=0, ∴2sinA-1=0,cosB-12=0, ∴sinA=12,cosB=12, ∴∠A=30°,∠B=60°,∴∠C=180°-∠A-∠B=90°,故△ABC 为直角三角形.故选C .【点睛】本题主要考查了非负数的性质和特殊角的三角函数值,根据两个非负数的和为零,则这两个数都为零求出sinA 和cosB 的值是解决此题的关键.11.B解析:B【分析】根据题画出图形,再根据直角三角形斜边上的中线等于斜边的一半可得AB 的值,再根据勾股定理可得OB 的值,进而可得点A 的坐标.【详解】解:如图,过A 点作AD x ⊥轴于D 点,Rt OAB ∆的斜边OA 在第一象限,并与x 轴的正半轴夹角为30.30AOD ∴∠=︒,12AD OA ∴=, C 为OA 的中点,1AD AC OC BC ∴====,2OA ∴=,3OD ∴=,则点A 的坐标为:(31).故选:B .【点睛】本题考查了解直角三角形、坐标与图形性质、直角三角形斜边上的中线,解决本题的关键是综合运用以上知识.12.B解析:B【分析】先根据CD =10m ,DE =5m 得出∠DCE =30°,故可得出∠DCB =90°,再由∠BDF =30°可知∠DBE =60°,由DF ∥AE 可得出∠BGF =∠BCA =60°,故∠GBF =30°,所以∠DBC =30°,再由锐角三角函数的定义即可得出结论.【详解】解:在Rt △CDE 中,∵CD =10m ,DE =5m ,∴sin ∠DCE =51102DE CD ==, ∴∠DCE =30°.∵∠ACB =60°,DF ∥AE ,∴∠BGF =60°∴∠ABC =30°,∠DCB =90°.∵∠BDF =30°,∴∠DBF =60°,∴∠DBC =30°,∴BC=tan30CD ==︒m ), ∴AB =BC •sin60°==15(m ). 故选:B .【点睛】 本题考查的是解直角三角形的应用-仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.二、填空题13.【分析】先根据特殊角的三角函数值化简然后再计算即可【详解】解:===故答案为【点睛】本题考查了特殊角的三角函数值和实数的运算牢记特殊角的三角函数值是解答本题的关键解析:1【分析】先根据特殊角的三角函数值化简,然后再计算即可.【详解】解:22303060sin cos tan ︒︒︒+-=2212⎛⎫+- ⎪⎝⎭⎝⎭=1344+-=1故答案为1【点睛】本题考查了特殊角的三角函数值和实数的运算,牢记特殊角的三角函数值是解答本题的关键.14.75°或15°【分析】分两种情形求高的位置然后再根据三角函数的定义求出∠BAD ∠CAD 的度数最后再相加或相减即可求出∠BAC 的度数【详解】解:如图所示:①tan ∠BAD ==1∴∠BAD =45°tan解析:75°或15°【分析】分两种情形求高的位置,然后再根据三角函数的定义求出∠BAD 、∠CAD 的度数,最后再相加或相减即可求出∠BAC 的度数.【详解】解:如图所示:①tan ∠BAD =BD AD =1, ∴∠BAD =45°, tan ∠CAD =CD AD =33, ∴∠BAD =30°,∴∠BAC =45°+30°=75°; ②tan ∠BAD =BD AD=1, ∴∠BAD =45°, tan ∠CAD =CD AD =3, ∴∠BAD =30°,∴∠BAC =45°﹣30°=15°.故∠BAC =75°或15°.【点睛】本题考查了三角函数的应用,灵活应用三角函数求角和分类讨论思想是解答本题的关键. 15.【分析】首先根据题意画出图形再根据折叠的性质和可求出各角的度数再利用解直角三角形的知识分别求出CDDFBD 的长度最后根据线段之间的和差关系即可求出结果【详解】解:如图所示:∵△ADC 是由△ACD 翻折解析:32【分析】首先根据题意画出图形,再根据折叠的性质和DAB BAF ∠∠=,可求出各角的度数,再利用解直角三角形的知识分别求出CD ,DF ,BD 的长度,最后根据线段之间的和差关系即可求出结果.【详解】解:如图所示:∵△ADC’是由△ACD 翻折得到,∴DAC 'DAC ∠∠=, ∵DAB BAF ∠∠=, ∴DAC 2DAB ∠∠=. ∵AC 45B ∠=︒, ∴DAB BAF=15∠∠=︒.∴30CAD ∠=︒.在Rt △ACD 中,AC=2 ∴23tan 30CD AC =⋅︒= ,43cos30AC AD ==︒ . ∵'ADC F DAC ∠=∠+∠∴'30F DAC ∠=∠=︒ . ∴433DF AD ==. 23432232BF CD DF BC∴=+-=-= 故答案为32.【点睛】本题考查了翻折的性质和解 直角三角形的知识,根据题意画出图形是解题的关键. 16.15﹣5【分析】过点B 作BM ⊥FD 于点M 根据题意可求出BC 的长度然后在△EFD 中可求出∠EDF =45°进而可得出答案【详解】过点B 作BM ⊥FD 于点M在△ACB中∠ACB=90°∠A=60°AC=10解析:15﹣53.【分析】过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=45°,进而可得出答案.【详解】过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=3∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC×sin30°=1103=32CM=BC×cos30°=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=3∴CD=CM﹣MD=15﹣3故答案是:15﹣3【点睛】本题考查了解直角三角形,正确添加辅助线,构建直角三角形是解题的关键.17.【分析】沿AB作垂线与C的延长线相交于M点可得到等边直角三角形和锐角为30°的直角三角形根据三角函数求解即可【详解】解:如图连接AC并过B点作BM⊥CM设BM=k∵AD=CD∠D=60°∴△ACD是6【分析】沿AB作垂线与C的延长线相交于M点,可得到等边直角三角形和锐角为30°的直角三角形,根据三角函数求解即可.【详解】解:如图连接AC 并过B 点作BM ⊥CM ,设BM=k ,∵AD =CD ,∠D=60°,∴△ACD 是等边三角形,AD=AC ,∵∠A =105°,∠B =120°,∠DAC=60°,∴∠MBC=60°,∠BCM=30°,∠BAC=45°,∵BM=k ,∴BC=2k ,MC=BM tan 30=3, ∵∠BAC=45°,∠MCA=45°, ∴AD=AC=MC 3k sin 4522=6k , ∴6k 6==AD BC . 【点睛】本题考查了特殊角的三角函数值和公式的应用,正确应用公式和作出辅助线是解题的关键.3tan 30=,sin45=22. 18.【分析】作CH ⊥BA4于H 根据正方形的性质勾股定理以及三角形的面积公式求出CHA4H 根据正切的概念求出tan ∠BA4C 总结规律解答【详解】试题解析:113, 211n n -+. 【分析】 作CH ⊥BA 4于H ,根据正方形的性质、勾股定理以及三角形的面积公式求出CH 、A 4H ,根据正切的概念求出tan ∠BA 4C ,总结规律解答.【详解】试题作CH ⊥BA 4于H ,由勾股定理得,BA 42241=17+A 410,△BA 4C 的面积=4-2-32=12, ∴121712, 解得,17, 则A 4223A C CH -1717, ∴tan ∠BA 4C=4CH A H =113, 1tan 1,BAC ∠= 1=12-1+1, 21tan 3BA C ∠=,3=22-2+1, 31tan 7BA C ∠=,7=32-3+1, ∴tan ∠BA n C=211n n -+. 故答案为: 113, 211n n -+. 【点睛】本题考查的是正方形的性质、勾股定理的应用以及正切的概念,掌握正方形的性质、熟记锐角三角函数的概念是解题的关键.19.1【分析】过点E 作EM ⊥AF 于M 交BD 于N 根据30°直角三角形的性质求出AM=1再根据∠60°的三角函数值求出EN 的长再依据△EMF ≌△DNE (AAS )得出MF=EN 据此可得当AF ∥BD 时线段AF 的解析:132+. 【分析】过点E 作EM ⊥AF 于M ,交BD 于N ,根据30°直角三角形的性质求出AM =1,再根据∠60°的三角函数值求出EN 的长,再依据△EMF ≌△DNE (AAS )得出MF =EN 3=得,当AF∥BD时,线段AF的长为132 +.【详解】如图过点E作EM⊥AF于M,交BD于N.∵△ABC是等边三角形,∴AB=BC=AC=3,∠ACB=60°.∵AE23=AC,∴AE=2,EC=1.∵AF∥BD,∴∠EAM=∠ACB=60°.∵EM⊥AF,∴∠AME=90°,∴∠AEM=30°,∴AM12=AE=1.∵AF∥BD,EM⊥AF,∴EN⊥BC,∴EN=EC•sin60°32=,∵∠EMF=∠END=∠FED=90°,∴∠MEF+∠MFE=90°,∠MEF+∠DEN=90°,∴∠EFM=∠DEN.∵ED=EF,∴△EMF≌△DNE(AAS),∴MF=EN32=,∴AF=AM+MF=13.故答案为:13.【点评】本题主要考查了直角三角形的性质、特殊角的三角函数值和全等三角形的判定的综合运用,解题的关键是作辅助线构造直角三角形和全等三角形,熟记特殊角的三角函数值.20.【分析】设圆弧与AC 交于F 连接BF 过F 作FH ⊥BC 于H 解直角三角形得到∠BAC =60°求得△ABF 是等边三角形得到∠ABF =60°推出∠FBE =30°然后根据S 阴影=S 扇形BAF +S △BCF−S △A 解析:34π 【分析】 设圆弧与AC 交于F ,连接BF ,过F 作FH ⊥BC 于H ,解直角三角形得到∠BAC =60°,求得△ABF 是等边三角形,得到∠ABF =60°,推出∠FBE =30°,然后根据S 阴影=S 扇形BAF +S △BCF −S △ABF −S 扇形BFE =S 扇形BAF −S 扇形BFE 计算即可.2【详解】解:设圆弧与AC 交于F ,连接BF ,过F 作FH ⊥BC 于H ,在矩形ABCD 中,∵∠ABC =90°,AB =BE =3,BC =33 ∴tan ∠BAC 333= ∴∠BAC =60°, ∵BA =BF =3,∴△ABF 是等边三角形,∴∠ABF =60°,∴∠FBH =30°,∴FH =12BF =32, ∴S 阴影=S 扇形BAF +S △BCF −S △ABF −S 扇形BFE =S 扇形BAF −S 扇形BFE22603303333360360244, 故答案为:34π. 【点睛】 本题考查扇形面积的计算,锐角三角函数,等边三角形的判定和性质,扇形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题21.(1)))3393303y x x =+-<≤;(2)33322;(3)BP=3011- 【分析】 (1)设BP 的长为 x ,正方形 DEFG 的边长为 y ,则由题意可得BD=2x ,DE=y ,EC y =,然后根据BC=6可以得到y 关于 x 的函数解析式; (2)若BP=2,即x=2,由(1)可得正方形 DEFG 的边长EF 的长度,解直角三角形CEF 可得CF 的长度;(3)设△GDP 是直角三角形,则PG ⊥GD ,然后可得关于x 的方程,解方程可得x 的值,即BP 的长度.【详解】解:(1)设BP 的长为 x ,正方形 DEFG 的边长为 y ,由∠B=60°,PD 垂直AB ,则BD=2x ,DE=y ,EC=tan 303EF y ⨯︒=,∴有26x y y ++=,整理得: ))3903y x x =+-<≤;(2)若BP=2,即x=2,可得3y =,∴(3sin 6032CF EF =⨯︒==; (3)若△GDP 是直角三角形,则PG ⊥GD ,∴∠DPG=30°,即PD=2GD ,)(22329y x ==+-,解之得: 3011x -= ,此即BP 的长度. 【点睛】本题考查解直角三角形与一次函数的综合应用,根据直角三角形边和角的关系求解是解题关键.22.(1)25°;(2)【分析】(1)由垂径定理可证AD =BD ,再利用圆周角与圆心角的关系求解.(2)由垂径定理可证AC=BC ,△AOC 为直角三角形,由30°的角可求得直角边AC 的长度,从而求得AB 的长度.【详解】(1)∵OD ⊥AB ,∴AD =BD ,∵∠AOD =50°, ∴∠DEB=12∠AOD =25°; (2)∵OD ⊥AB ,∴AC=BC ,△AOC 为直角三角形,∵OC=3,∠A=30°, ∴tan 30OC AC ︒=,即33OC AC =, ∴AC=33,∴AB=2AC=63.【点睛】本题考查了圆周角定理,垂径定理,锐角三角函数.注意:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.23.答案见解析.【分析】环节一,我们用相似论证了当A ∠不变时,A ∠的对边与斜边的比值固定不变;环节二,再次为我们论证了当A ∠改变时,A ∠的对边与斜边的比值也随之变化,不再固定不变;进而从斜边相等,或直角边相等,两个方面论证即可.【详解】解:环节二证明过程如下:(1)如下图所示:过点A 在BAC ∠内部做射线AB ',截取AB AB '=,过点 B '作BC AC ''⊥,此时构造出了B AC ''∠,显然 BAC B AC ''∠≠∠此时sin BC BAC AB ∠=;sin B C B AC AB ''''∠=', 因为AB AB '=,而BC B C ''≠,所以 sin sin BAC B AC ''∠≠∠ 所以当A ∠的度数发生变化时,A ∠的对边与斜边的比值也会发生改变.(2)图3中构造另外一种思路证明:由上题我们自然想到控制变量法.环节二我们使斜边相等,现在我们使直角边BC 与B C ''与相等,如图所示:此时sin BC BAC AB ∠=;sin B C B AC AB ''''∠=';因为 BC B C ''=,而AB AB '≠,所以 sin sin BAC B AC ''∠≠∠.【点睛】本题考查了对边与斜边的比,即正弦值,会随着角度的变化而变化,熟悉相关性质是解题的关键.24.临皋亭M 处与遗爱亭N 处之间的距离为(米.【分析】过M 作MD ⊥AC 于D ,设MD =x ,在直角三角形中,利用三角函数即可x 表示出AD 与CD ,根据AC =AD +CD 即可列方程,从而求得MD 的长,进一步求得AM 的长;过B 作BE ⊥AN 于E ,在直角三角形中,利用三角函数即可求出AE 与NE ,再求出ME ,从而求得MN .【详解】过M 作MD ⊥AC 于D ,设MD =x ,在Rt △MAD 中,∵∠MAB =45°,∴△ADM 是等腰直角三角形,∴AD =MD =x ,在Rt △MCD 中,∠MCA =90°−60°=30°,∴DC =MD÷tan30°,∵AC =600+400=1000,∴x=1000,解得:x =5001),∴MD =5001)m ,∴AMMD =500)(m ),过B 作BE ⊥AN 于E ,∵∠MAB =45°,∠BA =75°,∴∠ANB =60°,在Rt △ABE 中,∵∠MAB =45°,AB =600,∴BE =AE =2AB =, ∴ME =AM−AE =500)−=−在Rt △NBE 中,∵∠ANB =60°,∴NE =3BE =3, ∴MN =−(−−)m ,即临摹亭M 处与遗爱亭N 处之间的距离是((−)m .【点睛】本题考查了直角三角形的应用−方向角问题,熟练掌握方向角的概念,正确作出辅助线是解题的关键.25.(1)F (6,3),m=12;(2)存在,1243+或1243-;(3)不在,需将直线3122y x =-+沿y 轴向下平移94个单位长度. 【分析】(1)由题意得矩形的中心F 坐标为(6,3),代入32y x m =-+,得m=12; (2)分,M N 在y 轴左、右两侧两种情况,证明MON ∆是等边三角形即可得到结论; (3)假设沿直线3122y x =-+将矩形ABCO 折叠,点O 落在边AB 上O′处.连接PO′,OO′.则有PO′=OP ,由(1)得AB 垂直平分OP ,所以PO′=OO′,则△OPO′为等边三角形.则∠OPE=30°,则(2)知∠OPE >30°所以沿直线3122y x =-+将矩形ABCO 折叠,点O 不可能落在边AB 上.设沿直线32y x a =-+将矩形ABCO 折叠,点O 恰好落在边AB 上O′处.连接P′O′,OO′.则有P′O′=OP′=a ,则由题意得:AP′=a -6,∠OPE=∠AO′O ,Rt △OPE 中,OE OA OP AO '=,即8612AO =所以AO′=9,在Rt △AP′O′中,由勾股定理得:(a-6)2+92=a 2解得:394a =,所以将直线3122y x =-+沿y 轴向下平移94单位得直线,将矩形ABCO 沿直线折叠,点O 恰好落在边AB 上. 【详解】()1四边形ABCO 是矩形,6,12,AB BC ==()()()12,012,6,,0,6A B C ∴,F 是,AC OB 的交点,FO ∴是OB 的中点,()6,3P ,将()6,3F 代入32y m =-+,得:363,2m -⨯+= 解得12,m = ∴点F 的坐标为()6,3,m 的值为12.(2)存在,①当,M N 在y 轴左侧时,如图1,直线3122y x =-+与y 轴交于点P , (),0,1212,P OP ∴=,PC OC MG ∴==过M 点作MG BC ⊥交BC 的延长线于点,G,,MNG PNC PCN MGN PC GM ∠=∠∠=∠=,()MGN PCN AAS ∴∆≅∆,,PN MN ∴=点N 是PM 的中点,1,2ON PM MN ∴== ON 平分,//,CNM BC AM ∠,MNO CNO NOM ∴∠=∠=∠MON ∴∆是等边三角形,60,NMO ∴∠=︒4333MO ∴===4312AM MO OA ∴=+=.②当,M N 在y 轴右侧时,如图2,同理可得3,OM =1243,AM AO OM ∴=-=-综上所述,线段AM 的长为123+1243-()3不在,理由如下:假设沿直线y=-32x+12将矩形ABCO 折叠,点O 落在边AB 上O′处. 连接PO′,OO′,则有PO′=OP ,由(1)得AB 垂直平分OP ,所以PO′=OO′,则△OPO′为等边三角形.则∠OPE=30°,则(2)知∠OPE >30°, 所以沿直线y=-32x+12将矩形ABCO 折叠,点O 不可能落在边AB 上. 设沿直线y=-32x+a 将矩形ABCO 折叠,点O 恰好落在边AB 上O′处. 连接P′O′,OO′.则有P′O′=OP′=a ,则由题意得:AP′=a -6,∠OPE=∠AO′O ,在Rt △OPE 中,tan OE OPE OP ∠=,在Rt △OAO′中,tan OA AO O AO '∠=', 所以OE OA OP AO '=,即8612AO =', 所以AO′=9,在Rt △AP′O′中,由勾股定理得:(a-6)2+92=a 2解得:a=394, 所以将直线y=-32x+12沿y 轴向下平移94单位得直线y=-32x+394, 将矩形ABCO 沿直线y=-32x+394折叠,点O 恰好落在边AB 上.【点睛】主要考查了函数和几何图形的综合运用.解题的关键是会灵活的运用函数图象上点的意义和相似三角形的性质来表示相应的线段之间的关系,再结合具体图形的性质求解.试题中贯穿了方程思想和数形结合的思想,请注意体会.26.(1)见解析;(2)12【分析】(1)根据正方形的性质得到AD=DC ,90ADF DCE ∠=∠=︒,可以证明()ADF DCE SAS ≅;(2)过点B 作BM AG ⊥于点M ,先根据(1)证明90AGD ∠=︒,再证明()ABM DAG AAS ≅,可以求出1tan 2ABM ∠=,根据ABM DAG ∠=∠,则可以得到DAG ∠的正切值.【详解】解:(1)∵ABCD 是正方形,∴AD=DC ,90ADF DCE ∠=∠=︒在ADF 和DCE 中,AD DC ADF DCE DF CE =⎧⎪∠=∠⎨⎪=⎩,∴()ADF DCE SAS ≅;(2)如图,过点B 作BM AG ⊥于点M ,∵ABCD 是正方形,∴AB=BC ,∵BC=BG ,∴AB=BG ,∵BM AG ⊥, ∴12AM AG =,∵ADF DCE ≅,∴DAF CDE ∠=∠,∵90ADG CDE ADC ∠+∠=∠=︒,∴90ADG DAF ∠+∠=︒,∴90AGD ∠=︒,∵BM AG ⊥,∴90BMA ∠=︒,∴90BAM ABM ∠+∠=︒,∵90BAM DAG ∠+∠=︒,∴ABM DAG ∠=∠,在ABM 和DAG △中, ABM DAG AMB DGA AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABM DAG AAS ≅,∴BM AG =, ∴112tan 2AG AM ABM BM AG ∠===, ∵ABM DAG ∠=∠,∴1tan 2DAG ∠=.【点睛】本题考查全等三角形的性质和判定,等腰三角形的性质,正方形的性质,锐角三角函数的求解,解题的关键是掌握这些性质定理并结合题目条件进行证明求解.。
包四十三中学三角函数试题(拔高题型)
刘军汇编 2012.11
1.(2009•庆阳)如图,菱形ABCD的边长为10cm,DE⊥AB,
则这个菱形的面积=cm2.
2.(2009•青海)如图,一根电线杆的接线柱部分AB在阳光下的投影CD的长为1
米,太阳光线与地面的夹角∠ACD=60°,则AB的长为()
3.(2009•浙江丽水)将一副三角板按如图1位置摆放,使得两块三角板的直角边AC
和MD重合.已知AB=AC=8 cm,将△MED绕点A(M)逆时针旋转60°后(图2),两个三
角形重叠(阴影)部分的面积约是cm2(结果精确到0.1
,)
4.(2010•鄂州/09•安徽芜湖)如图,一艘核潜艇在海面下500米A点处测得俯角为
30°正前方的海底有黑匣子信号发出,继续在同一深度直线航行4000米后再次在B
点处测得俯角为60°正前方的海底有黑匣子信号发出,求海底黑匣子C点处距离海面
的深度?(精确到米,参考数据:)
5.(2009•黄石)三楚第一山--东方山是黄石地区的佛教圣地,也是国家AAA级游览
景区.它的主峰海拔约为600米,主峰AB上建有一座电信信号发射架BC,现在山
脚P处测得峰顶的仰角为α,发射架顶端的仰角为β,求发射
架高BC.
6.(2009•铁岭)某旅游区有一个景观奇异的望天洞,D点是洞的入口,游人从入口
进洞游览后,可经山洞到达山顶的出口凉亭A处观看旅游区风景,最后坐缆车沿索道
AB返回山脚下的B处.在同一平面内,若测得斜坡BD的长为100米,坡角∠
DBC=10°,在B处测得A的仰角∠ABC=40°,在D处测得A的仰角∠ADF=85°,过
D点作地面BE的垂线,垂足为C.
(1)求∠ADB的度数;
(2)求索道AB的长.(结果保留根号)
7.(2008•云南)如图,在某海域内有三个港口A、D、C.港口C在港口A北偏东
60°方向上,港口D在港口A北偏西60°方向上.一艘船以每小时25海里的速度沿北
偏东30°的方向驶离A港口3小时后到达B点位置处,此时发现船舱漏水,海水以每
5分钟4吨的速度渗入船内.当船舱渗入的海水总量超过75吨时,船将沉入海中.同
时在B处测得港口C在B处的南偏东75°方向上.若船上的抽水机每小时可将8吨
的海水排出船外,问此船在B处至少应以怎样的航行速度驶向最近的港口停靠,才能
保证船在抵达港口前不会沉没(要求计算结果保留根号)?并指出此时船的航行方向.
8.(
2008•资阳)如图,小唐同学正在操场上放风筝,风筝从
A处起飞,几分钟后便
飞达C处,此时,在AQ延长线上B处的小宋同学,发现自己的位置与风筝和旗杆PQ的顶点P在同一直线上.
(1)已知旗杆高为10米,若在B处测得旗杆顶点P的仰角为30°,A处测得点P
的仰角为45°,试求A,B之间的距离;
(2)此时,在A处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC约为多少?(结果可保留根号)
9.(2008•荆州)载着“点燃激情,传递梦想”的使用,6月2日奥运圣火在古城荆州传递,途经A、B、C、D四地、如图,其中A、B、C三地在同一直线上,D地在A地北偏东45°方向,在B地正北方向,在C地北偏西60°方向、C地在A地北偏东75°方向、B、D两地相距2km.问奥运圣火从A地传到D地的路程大约是多少?(最后结果保留整数,参考数据:
10.(2008河北),为W 台风在某海岛(设为点O )南偏东45°方向B 点生成,测得
台风中心从点B 以40km/h 速度向正北方向移动,经5h 后到达海面上点
C 处.因受气旋影响,台风中心从点C 开始以30km/h 速度向北偏西60°方向继续移
动.以O 为原点建立如图所示直角坐标系.
(1)台风中心生成点B 坐标为 ,台风中心转折点C 坐标
为 ;(结果保留根号) (2)已知距台风中心20km 范围内均会受到台风侵袭.如果某城市(设为点A )位
于点O 正北方向且处于台风中心移动路线上,那么台风从生成到最初侵袭该城要经过
多长时间?
11.为W 台风在某海岛(设为点P )南偏东45°方向B 点生成,测得台风
中心从点B 以40km/h 速度向正北方向移动,经5h 后到达海面上点C .因受气旋影
响,台风中心从点C 开始以30km/h 速度向北偏西60°方向继续移动.某城市(设为
点A )位于海岛P 正北方向且处于台风中心移动路线上.
(1)求台风中心大约经过多长时间移动到海岛P
正东方向?
(2)求台风中心从生成到A 城市所经过路线长是多少km ?
(3)如果距台风中心20km 范围内均会受到台风侵袭,
那么台风从生成到最初侵袭该城要经过多长时间?
12.某台风在海岛A 北偏西60°方向上点B 处生成,某城市(设为点C )在海岛A 北偏东45°方向上,以O 为原点建立如图所示直角坐标系,点A 位于y 轴上,台风生成处B 和城市所在处C 都在x 轴上,其中点A 坐标为(0,-100). (1)请在图中表示北偏东45°方向射线AC ,并标出点C 位置; (2)点B 坐标为 ,点C 坐标为 ;(结果保留根号) (3)若此台风中心从点B 以30km/h 速度向正东方向移动,已知据台风中心30km 范围内均会受到台风侵袭,那么台风从生成到最初侵袭C 城要经过多长时间?
取1.7)。