当前位置:文档之家› 第8章燃料电池发电

第8章燃料电池发电

燃料电池的原理及发展

燃料电池原理与发展 燃料电池是一种能够持续的通过发生在阳极和阴极的氧化还原反应将化学能转化为电能的能量转换装置。燃料电池与常规电池的区别在于,它工作时需要连续不断地向电池内输入燃料和氧化剂,只要持续供应,燃料电池就会不断提供电能。由于燃料电池能将燃料的化学能直接转换为电能,因此,它没有像普通火力发电厂那样的通过锅炉、汽轮机、发电机的能量形态变化,可避免过程中转换损失,达到市制发电效率。 近20多年来,燃料电池经历了碱式、磷酸、熔融碳酸盐和固体电解质等几种类型的发展阶段。美、日等国已相继建立了一些碳酸燃料电池电厂、熔融碳酸盐燃料电池电厂和质子交换膜燃料电池电厂。燃料电池的结构与普通电池基本相同,有阳极和阴极,通过电解质将这两个电极分开。与普通电池的区别是,燃料电池是开式系统。它要求连续供应化学反应物,以保证连续供电。其工作原理:燃料电池由阳极、阴极和离子导电的电解质构成,其工作原理与普通电化学电池类似,燃料在阳极氧化,氧化剂在阴极还原,电子从阳极通过负载流向阴极构成电回路,产生电流。 介绍一下熔融碳酸盐燃料电池(MCFC)一、MCFC概述 1.1 燃料电池简述燃料电池(FC)是一种将贮存在燃料和氧化剂中的化学能直接转化为电能的发电装置,结构如图1-1所示。它的发电方式与常规的化学电源一样,电极提供电子转移的场所,阳极催化燃料(如氢)的氧化过程,阴极催化氧化剂(如氧)的还原过程,导电离子在将阴阳极分开的电解质内迁移,电子通过外电路作功并构成总的电回路。在电池内这一化学能向电能的转化过程等温进行,即在燃料电池内,可在其操作温度下利用化学反应的自由能。但是,燃料电池的工作方式又与常规的化学电源不同,它的燃料和氧化剂并非贮存在电池内。同汽油发电机相似,它的燃料和氧化剂都贮存在电池之外的贮罐中。当电池工作时,要连续不断地向电池内送入燃料和氧化剂,排出反应产物,同时排出一定的废热,以维持电池温度的恒定。燃料电池本身只决定输出功率的大小,其贮能量则由燃料罐和氧化剂罐的贮量决定。总体上,燃料电池具有以下特点: (l) 不受卡诺循环限制,能量转换效率高。 (2) 燃料电池的输出功率由单电池性能、电极面积和单电池个数决定。

燃料电池的应用及发展状况

简述燃料电池的应用及发展状况 摘要:燃料电池是一种高效、清洁的电化学发电装置,近年来得到国内外普遍重视。目前燃料电池在宇宙飞船、航天飞机及潜艇动力能源方面已得到应用,在汽车、电站及便携式电源等民用领域成功地示范,但低成本、长寿命仍是商业化面临的瓶颈问题。而且我国在燃料电池方面的研究与外国还有一定差距,需要科研工作者更多的努力。 关键字:燃料电池分类应用发展状况 1. 燃料电池的概念 燃料电池(Fuel Cell)是一种电化学设备,它直接、高效地将持续供给的燃料和氧化剂中的化学能连续不断地转化为电能。燃料电池的基本物理结构由一个 电解质层组成,它的一边与一个多孔渗透 的阳极相连,另一边与一个多孔渗透的阴 极相连,气态燃料电池连续不断地输入阳 极(负电极),同时氧化剂连续不断地输 入阴极(正电极),在两个电极上发生电 化学反应,产生电流[1]。其基本结构如图 所示: 2. 燃料电池的分类及其优点 随着现代文明发展,人们逐渐认识到传统的能源利用方式存在两大弊病:一是储存于燃料中的化学能要首先转变成热能后才能被转变成电能或机械能,受卡诺循环及现代材料的限制,转化效率低(33~35%),造成严重的能源浪费;二是传统的能源利用方式造成了大量的废水、废气、废渣、废热和噪声污染,严重威胁着人类的生存环境。现代社会所建立起来的庞大的能源系统已无法适应未来社会对高效、清洁、经济、安全的能源体系的要求,能源发展正面临着巨大的挑战:能源短缺与环境污染,因此探索新能源以及新的能源利用方式,是全球可持续发展迫切需要解决的重大课题。 燃料电池是一种电化学发电装置,等温地按电化学方式将化学能转化为电

(完整版)试简述五大类燃料电池的工作原理和各自的特点

三、试简述五大类燃料电池的工作原理和各自的特点 燃料电池按燃料电解质的类型来分类的,可分为碱性燃料电池(AFC)、磷酸燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)和质子交换膜燃料电池(PENFC)五大类。 3.1 碱性燃料电池(AFC) 碱性燃料电池是该技术发展最快的一种电池,主要为空间任务,包括航天飞机提供动力和饮用水。 3.1.1原理 使用的电解质为水溶液或稳定的氢氧化钾基质,且电化学反应也与羟基(OH)从阴极移动到阳极与氢反应生成水和电子略有不同。这些电子是用来为外部电路提供能量,然后才回到阴极与氧和水反应生成更多的羟基离子。 负极反应:2H2 + 4OH-→ 4H2O + 4e- 正极反应:O2 + 2H2O + 4e- → 4OH- 碱性燃料电池的工作温度大约80℃。因此,它们的启动也很快,但其电力密度却比质子交换膜燃料电池的密度低十来倍,在汽车中使用显得相当笨拙。不过,它们是燃料电池中生产成本最低的一种电池,因此可用于小型的固定发电装置。 如同质子交换膜燃料电池一样,碱性燃料电池对能污染催化剂的一氧化碳和其它杂质也非常敏感。此外,其原料不能含有一氧化碳,因为一氧化碳能与氢氧化钾电解质反应生成碳酸钾,降低电池的性能。 3.1.2 特点 低温性能好,温度范围宽,并且可以在较宽温度范围内选择催化剂,但是才用的碱性电解质易受CO2的毒化作用因此必须要严格出去CO2,成本就偏高。 3.2 磷酸燃料电池(PAFC) 磷酸燃料电池(PAFC)是当前商业化发展得最快的一种燃料电池。正如其名字所示,这种电池使用液体磷酸为电解质,通常位于碳化硅基质中。磷酸燃料电池的工作温度要比质子交换膜燃料电池和碱性燃料电池的工作温度略高,位于

燃料电池客车发展情况与技术发展趋势

燃料电池客车发展情况及技术发展趋势一、燃料电池汽车政策分析 《关于2016-2020年新能源汽车推广应用财政支持政策方的通知》(财建(2015)134号)中明确:“2017-2020年,除燃料电池汽车外,其他车型补助标准适当退坡”,明确了国家对燃料电池汽车产业发展的支持态度。而《“十三五”国家战略性新兴产业发展规划》中提出,要系统推进燃料电池汽车研发与产业化,到2020年,实现燃料电池汽车批量生产和规模化示应用。 在财政补贴层面,国家也给予了大力支持,包括整车补贴、加氢站补贴、免征购置税以及运营补贴等。其中,整车补贴额度从20万到50万每辆不等,一个加氢站则补贴400万元,运营补贴中,燃料电池客车补贴为6万元/辆/年。 二、氢燃料电池产业链概述 氢燃料电池汽车产业链包括制氢、储氢、运氢、加氢、应用(燃料电池汽车/有轨电车)等环节。 氢气制造一般是通过将化石原料、化工原料、工业尾气、可再生能源以及水等经过处理来获取,每种获取途径其成本和环保属性都不同。中国目前主要通过工业尾气处理以及电解水来制氢。长河认为,对于燃料电池来说,现在配套基础设施还有待进一步完善,需要政府以及行业机构以及专家尽快推进立法和相应的技术标准予以规。

长河表示,制氢的方法和方案比较多,而目前燃料电池汽车使用最大瓶颈和最大的障碍是缺乏加氢站。据其统计,截止到2013年底,全球加氢站只有228座,对于我国来说,我国真正投入商业化、用于燃料电池的加氢站只有两座,仅仅限于国比较大的城市,就是和,处于示运营阶段,与国外说的氢高速公路,也就是一条高速公路有多个加氢站相比,差距比较大。 在整个氢燃料电池产业链中,氢燃料电池发动机处于绝对的核心地位,氢燃料经过发动机转化为电能应用到终端。长河表示,目前制约中国燃料电池汽车发展的瓶颈,就是氢燃料电池发动机。虽然国有不少高校和相应科研机构以及企业,在就燃料电池发动机技术展开相应研究和示性运营应用,但是氢燃料电池发动机核心技术,这两年通过评估,能够达到产业化或者达到工业化应用的,核心技术仍然掌握在国外企业手中。

氢燃料电池电堆系统控制方案

AIR OUT AIR IN H2IN DI-WEG IN DI-WEG OUT 图1 1号电堆模块系统图 H2PURGE1 24V H2PURGE2

WEXPT 图2 车用1号电堆系统系统图

表1 模块附件表:

表2 车载系统附件表:

2.1 模块 ●冷却液与压缩空气热交换器 因冷却液的温度适应电堆要求,该热交换器的作用,一是压缩空气温度过高时降温(起中冷器作用),二是压缩空气温度较低时加热。考虑到要适应低温环境,最好采用。 ●氢气入口压力调整器 电堆的氢气入口压力调整,由PT-H3、EPV-H4、PT-H4组成,通过程序采集压力和控制比例阀来实现。为了控制准确和简单管路,将PT-H2、EV-H2、PT-H3、EPV-H4、PT-H4做到一个阀组(manifold)上。 ●阳极压力保护 为防止氢气入口压力调整器失效,而使阳极产生高压毁坏电堆。采用安全阀SRV-H5保护。 ●外增湿器 外增湿器采用膜增湿器,用电堆的出口湿空气来增湿电堆得入口干空气。具体是否采用,要看电堆的需求。 ●氢气循环 氢气循环,一是使阳极的氢气的湿度均匀,二是加热入口的氢气。 ●氢气吹扫(排放)阀 氢气吹扫阀,是用1个还是在电堆氢气出口的2端各用1个。 要看电堆的阳极结构,因氢气回流后,多少会有一些液态水,若

不能及时吹扫掉,会影响水平较低段的节电池性能,也不利于防冻处理。 ●电堆空气出口压力 电堆出口压力,采用电磁比例阀EPV-A6和电堆出口压力表PT-A5形成回路来控制。为防止憋压,比例阀为常开阀。 ●电堆高压输出正负极对结构接地(搭铁)绝缘电阻检测 电堆高压输出正负极对结构接地的绝缘电阻小时,会危害电堆的安全。在模块中需要加入检测单元。绝缘电阻的要求,单节电池为1200欧,150节为180千欧。 ●电机调速器的电源 因空压机的功率一般大于1kW,采用电堆的高压电源,在启动或停止的过程中需要外电源供电。启动和停止时由预充电电源PS-HV6供电。 氢气循环泵,因功率一般小于500W,且只在电堆工作时运行,采用外部24VDC单独供电。 ●节电池电压巡检单元 节电池电压巡检单元,与电堆的结构做到一起,自带MPU,与模块控制器采用通讯联系(CAN和RS485)。这样会使检测电缆最短,提高可靠性和美观。 ●模块控制器 控制器的MCU选用飞思卡尔的MC9S12CE,硬件和壳体,若能采购满足要求的现成控制器,则采购;实验调试完成后,沿用

氢燃料电池系统在通信系统备用电源中的应用

氢燃料电池系统在通信系统备用电源中的应用 一、通信备用电源系统简介 通信基站一般用市电供电,为保证基站正常工作,需要给基站配备备用电源系统如铅酸蓄电池组和移动油机,在断电时,备用电源系统为基站中的负载供电,保证设备的正常运行。 铅酸蓄电池的优点是比较安全且采购成本较低,其缺点是体积大、笨重、造成一次和二次环境污染、备电时间有限且有不确定性、对环境温度要求苛刻。 当铅酸蓄电池因放电时间较长将要退服或出现故障时,移动油机成为现实可用的备用电源,但移动油机后勤保障复杂,需有人值守,有噪声污染及废气污染。 鉴于铅酸蓄电池和移动油机的种种缺点,加之能源危机和人们环保意识的提高,寻求新的备用电源的呼声越来越高,氢燃料电池是最理想的替代者之一。 二、氢燃料电池的原理 氢燃料电池是一种高效电化学能量转换器,把氢气(燃料)和氧气(来自空气)中的化学能直接转化成电能。只要有燃料和空气不断输入,燃料电池就能源源不断地产生电能,因此,燃料电池兼具电池和油机的特点。 燃料在燃料电池的阳极被氧化,生成质子和电子;质子通过电解质迁移到阴极,电子通过外电路迁移到阴极为外界负载提供电能;迁移到阴极的质子、电子和阴极处来自空气中的氧气结合生成水。燃料电池的主要优点包括:高效率(不受“卡诺循环”的限制)、零或超低排放、机械结构简单、扩展容易、安静、安全、可靠、能用可再生能源为燃料、只要有燃料就可连续不断地发电。 三、氢燃料电池与现有备用电源的比较 1、与铅酸电池的比较 和铅酸电池相比,燃料电池的主要优点包括: 适应环境温度范围宽广,基站温度可设定在32℃或更高,这样每年可节约大量空调电费。 只要保证氢气的供应就可持续供电,在发生大的自然灾害时可以保持长时间的通信畅通,为此而保护的生命、财产是难以用金钱来衡量的。 按设定电压稳定输出电能,而不像铅酸电池在剩余电量达到最低值前,放电电压衰减很快且难以预测。 重量轻,不需特殊的承重处理。 占地面积小,安置位置灵活,既可安置在室外也可安置在室内。 寿命设计一般是累计使用时间1500小时、累计开关次数超过600次、储存寿命10年,而铅酸电池几年就要更换。 安全性高,燃料电池系统中有多种传感器,系统可自动采取应对措施,如:当氢气泄漏时,燃料电池控制系统会自动关闭气源,避免泄漏持续;可远程监控,及时发现问题。世界上还没有燃料电池发生氢气燃爆事故。 2、与移动油机的比较 与移动油机比较,氢燃料电池最大优点是: 自动控制,可实现无人值守,通过遥测、遥控手段来监控系统的运行状态及氢气的剩余量,实现远程管理。 低噪音、无废气排放。燃料电池系统机械运动部件较少,所以系统比较安静,其排放物为水,对环境友好。 四、通信备用氢燃料电池系统的应用 1、系统的接入 燃料电池系统可以布置于室内和室外,但作为通信备用电源系统,根据现有通信机房的

燃料电池的基本工作原理及主要用途

简述燃料电池的基本工作原理及主要用途 1.燃料电池的工作原理 燃料电池是一种按电化学原理,即原电池的工作原理,等温地把贮存在燃料和氧化剂中的化学能直接转化为电能的能量转换装置。其单体电池是由电池的正极(即氧化剂发生还原反应的阴极)、负极(即还原剂或燃料发生氧化反应的阳极)和电解质构成,燃料电池与常规电池的不同之处在于,它的燃料和氧化剂不是贮存在电池内,而是贮存在电池外部的贮罐内,不受电池容量的限制,工作时燃料和氧化剂连续不断地输入电池内部,并同时排放出反应产物。 以磷酸型燃料电池为例,其反应式为: 燃料极(阳极) H2→2H++2e- 空气极(阴极) 1/2O2+2H++2e-→H2O 综合反应式H2+1/2O2→H2O 以上反应式表示:燃料电池工作时向负极供给燃料(氢),向正极供给氧化剂(空气),燃料(氢)在阳极被分解成带正电的氢离子(H+)和带负电的电子(e-),氢离子(H+)在电解质中移动与空气极侧提供的O2发生反应,而电子(e-)通过外部的负荷电路返回到空气极侧参与反应,连续的反应促成了电子(e-)连续地流动,形成直流电,这就是燃料电池的发电过程,也是电解反应的逆过程。 2. 燃料电池的应用 2.1能源发电 燃料电池电站的每一套设备都包括了一整套采用天然气发电的电力系统。分为以下几个分单元:①燃料电池组②燃气制备③空气压缩机④水再生利用⑤逆变器⑥测量与控制系统。燃料电池组产生的直流电通过逆变器转换成电力系统所需的交流电。各国工业界人士普遍对于燃料电池在发电站的应用前景看好。 2.2汽车动力 目前,各国的汽车时用量均在不断增加,其排放的尾气已成为城市环境的主要污染源之一,特别是发展中国家,由于环境治理的力度不够,这一问题更加突出。于是人们要求开发新型的清洁、高效的能源来解决这一问题。质子交换膜燃料电池的出现,解决了燃料电池在汽车动力成本和技术方面存在的若干问题,使燃料电池电动车的开发和使用成为可能。这种电池具有室温快速启动、无电解液流失、水易排出、寿命长、比功率与比能量高等特点,适合做汽车动力,是目前世界各国积极开发的运输用燃料电池。 2.3家庭用能源 天然气作为一种洁净的能源已经在家庭中被广泛使用,但其主要被用于炊事和生活热水,以天然气为燃料的燃气电池在家庭中的广泛应用在开辟了天然气在家庭中一种新的用途的同时也将解决目前高峰用电紧张的状况。家庭的一切用电无论是电视机、冰箱、空调等家用电气还是电脑等办公设备都可以通过燃料电池来提供电源,作为家庭使用的分散电源,并可同时提供家庭用热水和采暖,这样可将天然气的能量利用率提高到70%~90%。 2.4其它方面的应用 碱性燃料电池和质子交换膜燃料电池运行时基本没有红外辐射,而且噪音小,用做潜艇动力,可大大提高其隐蔽性;同时由于它们可在常温下启动工作,且能量密度高,还是理想的航天器工作电源。此外,质子交换膜燃料电池还可用作野外便携式电源。 总之,燃料电池的用途将越来越广泛,它将遍布我们身边的每个角落,成为我们生活中不可缺少的能量来源。

新能源大作业 燃料电池的发电技术

题目名称: 姓名: 班级: 学号: 日期: 机电工程学院

燃料电池发电技术 摘要: 介绍了各种类型燃料电池( 碱性燃料电池、熔融碳酸盐燃料电池、固体氧化物燃料电池、磷酸燃料电池及质子交换膜燃料电池) 的技术进展、电池性能及其特点。其中着重介绍了当今国际上应用较广泛、技术较为成熟的磷酸燃料电池。对燃料电池的应用前景进行探讨, 并对我国的燃料电池研究提出了一些建议。 关键词: 燃料电池; 磷酸燃料电池; 燃料电池有多种类型, 按使用的电解质不同来分类, 主要有碱性燃料电池(AFC) 、熔融碳酸盐燃料电池(MCFC) 、固体氧化物燃料电池( SOFC) 、磷酸燃料电池( PAFC)等。 燃料电池的发展过程: 1889:L.Mond和https://www.doczj.com/doc/7918305739.html,nger以多孔非传导材料为隔膜,组装出采用氢气-氧气的燃料电池,接近现代的FC 1923:A.Schmid提出多孔气体扩散电极的概念,在此基础上: 1950:培根(Francis Bacon)研制成功碱性燃料电池,并被NASA确定为其太空计划的动力源. ——成功作为60年代Apollo登月飞船的主电源 1960:美国通用电气研制出采用聚苯乙烯磺酸膜的质子交换膜燃料电池PEMFC,且于1960年10月首次用于双子星座(Gemini)飞船的主电源 ——由于膜的降解,缩短了电池寿命,污染了宇航员的饮用水 1962:杜邦(Du Pond)公司开发成功全氟磺酸膜,并被通用组装成长寿命(57000h)的PEMFC,并在卫星上做了小电池的搭载实验。解决了以上问题 ——因价格原因,未能中标美国航天飞机电源,导致PEMFC研究停滞 ——让位于石棉膜型碱性氢氧燃料电池 1970年代:其它燃料电池陆续面世——磷酸(Phosphoric Acid) PAFC、溶融碳酸盐 (Molten Carbonate) MCFC、固体氧化物(Solid Oxide) SOFC 1983:Ballard在加国防部支持下,研制成功新型全氟磺酸膜,实现“电极-膜-电极”三合一组建(MEA) 各种燃料电池发展状况 1. 1 碱性燃料电池(AFC) 20 世纪50 年代起美国就开始对碱性燃料电池进行研究, 并在60 年代中期

燃料电池控制系统

基于HCS12的实时嵌入式燃料电池控制系统 白日光3,1,萧蕴诗1,孙泽昌3,2 (1.同济大学控制工程与科学系,上海 200092;2.同济大学汽车学院,上海 200092; 3.同济大学摩托罗拉汽车电子联合实验室,上海 20092) 摘要:燃料电池控制器是燃料电池中非常关键的部分,对于燃料电池稳定而安全的工作有积极的作用。针对燃料电池控制中要求较高的实时性与可靠性,利用摩托罗拉16位单片机MC9S12DP256b把实时嵌入式系统UC/OS-II成功移植到控制中。本文结合HCS12单片机和Codewarrior编译器的特点详细介绍了内核的优化实现,并利用实例说明了嵌入式操作系统带来的优点。 关键词:UC/OS-II;燃料电池控制器(FCC);MC9S12DP256b;移植;内核 Real Time Kernel Fuel Cell Control System Based on HCS12 Bai Riguang3,1,Xiao Yunshi1,Sun Zechang3,2 (1. Department of Control Engineering & Science, Tongji University, Shanghai, 200092, China; 2. Automobile College, Tongji University, Shanghai, 200092,China; 3. Tongji University Motorola Automobile Electronic Laboratory, Shanghai, 200092, China) Abstract: The Fuel Cell Controller (FCC) is an important part of Fuel Cell. It affects steady and safe running of Fuel Cell. Considering real time and reliability qualities of FCC, we port real time embedded operation system UC/OS-II to the controller using HCS12. With the characteristic of HCS12 single chip and Codewarrior, the paper introduces the implementation of the kernel in details, and shows the advantage of the embedded operation system by an example. Key words: UC/OS-II; fuel cell controller (FCC); MC9S12DP256b; port; kernel 0 引言 随着汽车工业的发展,人类对传统能源(如原油)的需求日益扩大,从而带来空气污染和资源枯竭两大问题,燃料电池作为一种新型的绿色能源开始受到人类的关注。结合由同济大学承担的国家863电动汽车重大专项——燃料电池轿车项目,需要开发适用于质子交换膜燃料电池稳定而安全工作的燃料电池控制器。考虑到燃料电池控制器硬件资源的需求,研究中利用了摩托罗拉公司的16位单片机MC9S12DP256b。为了进一步满足控制中高可靠性与实时性的要求,把内核公开的UC/OS-II实时嵌入式操作系统移植到此单片机中,从而使开发具有更好的扩展性。本文首次把实时嵌入式操作系统应用到燃料电池控制中,取得了良好的效果。 基金项目:国家863电动汽车重大专项(2003AA501)作者简介:白日光(1980—),男,硕士生,主要从事燃料电池控制器,过程控制与计算机控制方向研究。 萧蕴诗(1946—),男,教授,博士生导师,主要研究方向为智能控制理论与系统。 孙泽昌(1953—),男,教授,博士生导师,主要研究方向为汽车电子。1 系统平台介绍 1.1 硬件MC9S12DP256b]1[ MC9S12DP256b是摩托罗拉16位单片机HCS12家族中的一员,它的处理单元采用了16位的STAR12 CPU。此单片机内嵌了很多资源,包括256K FLASH,4K EEPROM,12K RAM,8通道定时器以及多种通信接口。此单片机可通过单线BDM进行程序的编译,下载和在线调试。 1.2 软件平台Codewarrior Codewarrior是Metrowerks公司开发的一个编程环境。这里使用的Codewarrior4.2是专门针对HCS12系列单片机开发的,他可以用来进行程序编辑,编译,连接和在线调试等多项功能,并支持多种语言功能,可在C中嵌入汇编程序。 1.3 嵌入式操作系统UC/OS-II内核]2[ UC/OS-II(Micro Control Operation System Two)是一种源代码公开的嵌入式操作系统, 程序绝大部分是用C语言写的, 带有少量的汇编程序, 并且有详细的说明和示例, 可移植、易调试, 稳定性与可靠性高, 功能也比较完善。在改进后的2.51版]3[中包括了任务管理,时间管理,任务间通信(消息,邮箱,信号量和标志)和内存管理等多项功能。

燃料电池的应用和发展现状

收稿日期:2005-11-03 作者简介:杨润红(1974-),女,北京交通大学机械与电子控制工程学院工程热物理专业硕士研究生,研究方向为能量转换与工质热物性. 燃料电池的应用和发展现状 杨润红,陈允轩,陈 庚,陈梅倩,李国岫 (北京交通大学,北京100044) 摘 要:能源和环境是全人类面临的重要课题,考虑可持续发展的要求,燃料电池技术正引起能源工作者的极大关注.主要在介绍燃料电池的工作原理、发展简史、分类及特性的基础上,详细分析和论述了燃料电池的应用和研发现状,并对其发展前景作了展望. 关 键 词:燃料电池;工作原理;特性;研发现状 中图分类号:TM911.4 文献标识码:A 文章编号:1673-1670(2006)02-0079-05 1839年,英国的William Grove 首次发现了水解过程逆反应的发电现象[1],燃料电池的概念从此开始.100多年后,英国人Francis T.Bacon 使燃料电池走出实验室,应用于人们的生产活动[2].20世纪60年代,燃料电池成功应用于航天飞行器并逐步发展到地面应用[3].今天,随着社会经济的飞速发展,随之而来的不仅是人类文明的进步,更有能源危机,生态恶化.寻求高效、清洁的替代能源成为摆在全人类面前的重要课题.继火力发电、原子能发电之后,燃料电池发电技术以其效率高、排放少、质量轻、无污染,燃料多样化等优点,正进一步引起世界各国的关注. 1 燃料电池的工作原理 人们常用的普通电池有碱性干电池、铅酸蓄电池、镍氢电池和锂离子电池等.燃料电池和普通电池相比,既有相似,又有很大的差异.它们有着相似的发电原理,在结构上都具有电解质,电极和正负极连接端子.二者的不同之处在于,燃料电池不是一个储存电能的装置,实际上是一种发电装置,它所需的化学燃料也不储存于电池内部,而是从外部供应.在燃料电池中,反应物燃料及氧化剂可以源源不断地供给电极,只要使电极在电解质中处于分隔状态,那么反应产物可同时连续不断地从电池排出,同时相应连续不断地输出电能和热能,这便利了燃料的补充,从而电池可以长时间甚至不间断地工作.人们之所以称它为燃料电池,只是由于在结构形式上与电池有某种类似:外特性像电池,随负荷的增加,它的输出电压下降[4]. 燃料电池实际上是一个化学反应器[5],它把燃料同氧化剂反应的化学能直接转化为电能.它没有传统发电装置上的原动机驱动发电装置,也没有直接的燃烧过程.燃料和氧化剂从外部不断输入,它就能不断地输出电能.它的反应物通常是氢和氧等燃料,它的副产品一般是无害的水和二氧化碳.燃料电池的工作不只靠电池本身,还需要燃料和氧化剂供应及反应产物排放等子系统与电池堆一起构成完整 的燃料电池系统.燃料电池可以使用多种燃料,包括氢气、碳、一氧化碳以及比较轻的碳氢化合物,氧化剂通常使用纯氧或空气.它的基本原理相当于电解反应的逆向反应,即水的合成反应.燃料及氧化剂在电池的阴极和阳极上借助催化剂的作用,电离成离子,由于离子能够通过二电极中间的电解质在电极间迁移,在阴电极、阳电极间形成电压.当电极同外部负载构成回路时,就可向外供电(发电).图1是燃料电池的工作原理图[6]. 2 燃料电池的发展简史、分类及各自特性 1839年,William Grove 提出了氢和氧反应可以发电的 原理,并发明了第一个燃料电池.他把封有铂电极的玻璃管浸入稀硫酸中,电解产生氢和氧,连接外部装置,氢和氧就发生电池反应,产生电流. 1896年,W.W.Jacques 提出了用煤作为燃料电池的燃 料,但由于无法解决环境污染的问题,没有取得满意的效果. 1897年,W.Nernst 用氧化钇和氧化锆的混合物作为电 解质,制作成了固体氧化物燃料电池. 1900年,E.Baur 研究小组发明了熔融碳酸盐型燃料 电池(MCFC ).此后,I.Taitelbaum 等人就此进行了一些拓展性的研究. 1902年,J.H.Reid 等人先后开始研究碱质型燃料电 池(AFC ). 1906年,F.Haber 等人用一个两面覆盖铂或金的玻璃 圆片作为电解质,与供气的管子相连,做出了固体聚合物燃料电池(SPFC )的雏形. 1952年,英国学者F.T.Bacon 在借鉴前人研究经验 的基础上研制出具有实用性的培根电池并获得专利.它的研制思路是避免采用贵金属并设法获得尽可能高的输出功率.采用双层孔径烧结镍做电极,氢氧化钾水溶液做电解质,以纯氢和纯氧为燃料及氧化剂.副产物是纯水.培根电 第21卷第2期2006年4月 平顶山学院学报Journal of Pingdingshan University Vol.21No.2 Apr.2006

燃料电池的工作原理

燃料电池的工作原理 作者:佚名来源:不详录入:Admin更新时间:2008-8-18 10:07:07点击数:8 【字体:】 燃料电池的一般结构为:燃料(负极)|电解质(液态或固态)|氧化剂(正极)。在燃料电池中,负极常称为燃料电极或氢电极,正极常称为氧化剂电极、空气电极或氧电极。燃料有气态如氢气、一氧化碳、二氧化碳和碳氢化合物,液态如液氢、甲醇、高价碳氢化合物和液态金属,还有固态如碳等。按电化学强弱,燃料的活性排列次序为:肼>氢>醇>一氧化碳>烃>煤。燃料的化学结构越简单,建造燃料电池时可能出现的问题越少。氧化剂为纯氧、空气和卤素。电解质是离子导电而非电子导电的材料,液态电解质分为碱性和酸性电解液, 固态电解质有质子交换膜和氧化锆隔膜等。在液体电解质中应用微孔膜,0.2mm~0.5mm厚。固体电解质为无孔膜,薄膜厚度约为20μm。 燃料电池的反应为氧化还原反应,电极的作用一方面是传递电子、形成电流;另一方面是在电极表面发生多相催化反应,反应不涉及电极材料本身,这一点与一般化学电池中电极材料参与化学反应很不相同,电极表面起催化剂表面的作用。 在氢氧燃料电池中,氢和氧在各自的电极反应。氧电极进行氧化反应,放出电子,氢电极进行还原反应,吸收电子,总反应为: O2+2H2→2H2O 反应结果是氢和氧发生电化学燃烧,生成水和产生电能。由热力学变量可得到以下理论电动势和理论热效率公式: Eo=-(ΔG/2F)=1.23V η=ΔG/ΔH=83.0% 式中,ΔG和ΔH分别为自由能变化和热焓变化,F是法第常数。

燃料电池工作的中心问题是燃料和氧化剂在电极过程中的反应活性问题。对于气体电极过程,必需采用多孔气体扩散电极和高效电催化剂,提高比表面,增加反应活性,提高电池比功率。 氢在负极氧化是氢原子离解为氢离子和电子的过程,若用有机化合物燃料,首先需要催化裂化或重整,生成富氢气体,必要时还要除去毒化催化剂的有害杂质。这些反应可在电池内部或外部进行,需附加辅助系统。正极中的氧化反应缓慢,燃料电池的活性主要依赖正极。随着温度升高,氧的还原反应有相当的改善。高温反应有利于提高燃料电池反应活性。 对于燃料电池发电系统,核心部件是燃料电池组,它由燃料电池单体堆集而成,单体电池的串联和并联选择,依据满足负载的输出电压和电流,并使总电阻最低,尽量减小电路短路的可能性。其余部件是燃料预处理装置、热量管理装置、电压变换调整装置和自动控制装置。通过燃料预处理,实现燃料的生成和提纯。燃料电池的运行或起动,有的需要加热,工作时放出相当的热量,由热量管理装置合理地加热或除热。燃料电池工作时,在碱性电解液负极或酸性电解液正极处生成水。为了保证电解液浓度稳定,生成的水要及时排除。高温燃料电池生成水会汽化,容易排除,水量管理装置将实现合理的排水。燃料电池与化学电池一样,输出直流电压,通过电压变换成为交流电送到用户或电网。燃料电池发电系统通过自控装置使各个部件协调工作,进行统一控制和管理。

燃料电池研究现状与未来发展

燃料电池研究现状与未来发展香山科学会议第59次学术讨论会于1996年8月24~27日举行。会议主题是“燃料电池研究现状与未来发展”。会议执行主席路甬祥与王佛松院士主持了会议。42位来自中国科学院、全国高校及公司等25个单位的燃料电池及相关学科的专家学者共同研讨燃料电池的发展现状和未来走向,以及发展我国燃料电池技术大计。 会议综述报告及中心议题讨论内容主要包括3部分:(1)燃料电池的总体评价;(2)目前处于研究开发阶段的3种类型燃料电池的评价;(3)我国发展此技术应采取的战略与策略。 一、燃料电池的技术评价 燃料电池(Fuel cell缩写FC)是将气体燃料的化学能直接转化为电能的电化学连续发电装置。电池电化学基本反应:H2十l/202=H20和CO十1/202=C02。自150余年前被发明以来,现已发展了6种形式。它们分别为碱性(AFC)、磷酸(PAFC)、熔融酸盐(MCFC)、固体氧化物(SOFC)、聚合物离子膜(PEMFC或SPFC)及生物燃料电池(BEFC)。 概括而言,燃料电池具有以下优点:(1)能量转换效率高达45—60%。而火电和核电为30一40%;(2)有害气体SO x、NO x及噪音排放很低;CO2排放因能量转换效率高而大幅度降低;元机械振动;(3)燃料适用范围广,凡能

转化为H2和CO燃料均可使用;(4)积木性强;规模及安装地点灵活;规模小(数十千瓦级)影响能量转换效率不明显。 现PAFC在发达国家已商业化;AFC在60年代末即用于航天器。其它方面的应用不如PEMFC更具优势;BEFC尚处于实验室的探索性基础研究阶段。目前各国的燃料电池的研究开发重点主要集中在MCFC、SOFC和PEMFC上。 1.MCFC运行温度650℃,燃料适用范围广,电催化剂为非贵金属,余热可为燃气轮机所利用,适用于固定式发电电站。在各国对燃料电池的经费投入中,MCFC所占比例最大。现国外(美、日、西欧)已有100kW级发电系统的运行,预计美国2000年实现商业化,日本计划2005年实现商业化。目前MCFC研究需要解决的关键技术问题有:(1)阴极(NiO)溶解,这是影响电池寿命的主要因素;(2)阳极蠕变;(3)熔盐电质对电池双极板的腐蚀;(4)电解液流失。 2.SOFC作为运行温度最高的燃料电池(800—l000℃),功率密度高,采用全固体结构,无腐蚀性液体,燃料适用范围广,天然气可不经重整直接使用。其尾气温度高达900℃,可为燃气轮机和蒸汽轮机所用,发电效率可达70%,如加上余热利用其燃料利用率可达90%,可用于大中小型电站,作为运载工具的驱动电源也有应用前景。目前SOFC研究十分活跃,电池模块的制备规模在美、日、德三国已达20一30kW。2000一2010年间可实现商业化。目

燃料电池发展现状与应用前景

燃料电池发展现状与应用前景 摘要: 介绍了各种类型燃料电池( 碱性燃料电池、熔融碳酸盐燃料电池、固体氧化物燃料电池、磷酸燃料电池及质子交换膜燃料电池) 的技术进展、电池性能及其特点。其中着重介绍了当今国际上应用较广泛、技术较为成熟的磷酸燃料电池和质子交换膜燃料电池。对燃料电池的应用前景进行探讨, 并对我国的燃料电池研究提出了一些建议。 关键词: 燃料电池; 磷酸燃料电池; 质子交换膜燃料电池 燃料电池有多种类型, 按使用的电解质不同来分类, 主要有碱性燃料电池(AFC) 、熔融碳酸盐燃料电池(MCFC) 、固体氧化物燃料电池( SOFC) 、磷酸燃料电池( PAFC) 及质子交换膜燃料电池( PEMFC) 等。 1 各种燃料电池发展状况 1. 1 碱性燃料电池(AFC) 20 世纪50 年代起美国就开始对碱性燃料电池进行研究, 并在60 年代中期成功地用于Apollo 登月飞行。AFC 的优点在于除贵金属外, 银、镍以及一些金属氧化物都可以作电极催化剂, 它的阴极性能也比酸性体系要好, 而且电池的结构材料也较便宜。缺点在于对CO2 和N2 十分敏感, 故不适用于地面。在国外, 将AFC 用于潜艇及汽车的尝试已不再继续, 目前AFC 主要用作短期飞船和航天飞机的电源。 中科院长春应用化学研究所1958 年就开始研究培根型燃料电池。60 年代初开展碱性石棉膜型燃料电池的研究, 1968 年承担航天用碱性石棉膜型燃料电池的研制。中科院大连化学物理研究所在60 年代初也开始研究碱性石棉膜型燃料电池。70年代初承担了航天用碱性石棉膜型燃料电池的研制, 研制成两种类型的电池。80 年代初, 研制了潜艇用20kW的大功率碱性石棉模型燃料电池样机。 1. 2 熔融碳酸盐燃料电池( MCFC) MCFC 的电解质由Li2CO3 和K2CO3 组成, 工作温度在650 e 左右, 阴极、阳极电化学反应快, 无需贵金属催化剂。由于在较高温度工作, 可以对天然气、煤炭气化燃料进行内部重整, 直接加以利用。不需要复杂昂贵的外重整设备。另外, 燃料转换效率高, 余热利用效率也较高。但MCFC 在高温下长期工作时电解质损失造成的电池失效、隔板腐蚀对电池寿命的影响, 以及镍电极缓慢溶解所造成的性能下降都是有待解决的课题。 由美国能源研究公司(ERC) 建造, 使用内部重整的2MWMCFC 装置已经安装在加利福尼亚并入电网运行了720h, 供电1710MWh, 1997 年3 月停运,为建造和运行这类电站提供了宝贵经验。日本熔融碳酸盐研究协会在日本月光计划和新日光计划的支持下, 一个1000kW系统正在组装以评价此技术。 长春应用化学研究所于90 年代初开始研究MCFC, 在LiAlO2 微粉的制备方法和利用金属间化合物作MCFC 的阳极材料等方面取得了很大的进展。大连化学物理所从1993 年起在中科院资助下开始研制, 自制LiAlO2 微粉制造的MCFC 单体电池性能已达国际80 年代初的水平。 1. 3 固体氧化物燃料电池( SOFC) SOFC 工作温度高达1000 e , 反应速度快, 不需要贵重金属做催化剂, 不存在电解质腐蚀金属问题。碳氢化合物燃料可自动在燃料电池内部重整, 并迅速地在电极上被氧化, 燃料中杂质对电池的性能、寿命影响均很小。其燃料转换效率高, 高温余热可很好利用, 从而提高燃料的总利用效率。SOFC 可以与燃气轮机相结合, 即用燃料电池的动力代替燃气轮机的燃烧段, 总效率可望达到60%~ 70% 。SOFC 的主要问题是固体氧化物电解质所用的陶瓷材料脆性大, 目前仍很难制造出大面积的固体电解质膜, 这严重制约了建造大功率SOFC。另外, SOFC 还存在诸如电流密度小、电压降高、制造工艺复杂、成膜设备昂贵等问题。

燃料电池发电系统前端DCDC变换器的研究解析

山东科技大学学士学位论文 摘要 燃料电池是一种将化学能直接转化为电能的装置,是一种高效的绿色能源,具有功率密度大、高效洁净、运行稳定可靠等优点,日益受到人们的青睐,成为最有前景的能源技术之一。 但燃料电池本机输出电压一般不高,输出的直流电压随着负载的变化有很大的变动范围,因此在燃料电池发电系统中,具有升压稳压功能的功率变换是其重要组成部分。燃料电池输出的电压必须经过具有升压稳压功能的功率变换装置,将不稳定的直流电变换成符合要求的直流或交流电。 本文主要研究了燃料电池发电系统中的直流变换器。首先,本论文介绍了燃料电池的原理、特点和选题意义,并对质子交换膜燃料电池的输出特性做了分析。其次,列举并比较了常见的DC/DC变换器的拓扑结构和性能,借鉴国内外在燃料电池系统中直流变换器上的研究和创新成果,根据燃料电池的输出特性及电动汽车的特点,选用Boost 型电路结构作为直流变换电路。再次,本课题的设计目标:将 5 KW质子交换膜燃料电池组85的输出电压,转换成375V左右的电压,为5KW轻型车辆提供主~ 120 V 动力。根据对Boost电路原理的分析,推导并设置电路主要元件的参数,利用Multisim、Matlab/Simulink软件进行建模和仿真,观察并分析输出电压、纹波电压、开关管电压和电流等波形,分析该方案的可行性和不足之处。 关键词: 燃料电池 DC/DC变换器 Boost电路 Multisim Matlab/Simulink

燃料电池发电系统前端DC/DC变换器的研究 ABSTRACT Fuel cell is a device which can transform chemical energy directly into electric energy. It is a green energy of high efficiency .which has various advantages such as high efficiency of power generation and density, environment friendly, stability and reliable operation, so it is regarded seriously by more and more people,becoming one of the most promising energy technology. However, the output voltage of the FC is not always very high and varies largely as the load changes.Therefore, power converter is essential in the Fuel cell generation system.which can boost the voltage of the FC and stabilize the voltage of the output of the power converter, in order to get required DC or AC. This paper mainly studies the DC/DC converter of the fuel cell generation system..This paper first introduces the background of selection of this subject, analyses the working theory and the output performance of PEMFC.Then, the paper introduces different innovation in DC/DC converters used in fuel cell system .What is followed is the key part, according to the characteristics of the electric vehicle and fuel cell system, boost circuit is chosed to topologies of DC/DC converter. Meanwhile, the paper presents the development and accomplish the conversion,and given analysis of the working principle of the circuit .The goal of the design is to boost the output voltage of 5KW PEMFC system varing between 85~120 V, to about 375V so that it can be inverted to 220V AC to supply for the light vehicle.With theoretical studying the design,criterions of key circuit parameters are gained,finally the author simulates the boost circuit for fuel cell with the software Multisim and Matlab/Simulink, in the end analyses the output waves,the advantages and disadvantages of this design. Key words:fuel cell DC/DC converter Boost circuit Multisim Matlab/Simulink

相关主题
文本预览
相关文档 最新文档