车身铝合金冷成型结构工艺参数
- 格式:pdf
- 大小:1.99 MB
- 文档页数:14
铝合金冷挤压工艺
铝合金冷挤压工艺是一种在室温下进行的塑性加工方法,通过对铝合金进行挤压变形以获得所需形状的零件。
这个过程中,铝合金材料被置于一个模具腔内,随后通过一个冲头施加压力,使铝合金流动并填充模具腔内的空间。
最终,铝合金会被挤压成预期的形状。
铝合金冷挤压工艺具有以下特点和优势:
1.提高材料的力学性能:冷挤压过程中,材料晶粒
会被拉伸和细化,有利于提高材料的强度和硬度。
2.节省材料:与传统的加工方法相比,冷挤压工艺
具有较高的材料利用率,减少了材料的浪费。
3.精度高:冷挤压成型的零件具有较高的尺寸精度
和良好的表面质量,通常无需进行后续的加工。
4.生产效率高:冷挤压工艺适用于大规模生产,具
有较高的生产效率。
5.环保:冷挤压工艺减少了材料浪费,且过程中无
需加热,降低了能耗,有利于环境保护。
需要注意的是,铝合金冷挤压工艺对模具和设备的要求较高,同时,铝合金的塑性较差,对冷挤压工艺的参数选择和工艺控制要求较高。
铝合金挤压成型工艺铝合金挤压成型工艺是一种常见的金属加工方法,通过将铝合金材料加热至一定温度,然后通过挤压机将其挤压成所需形状的工件。
该工艺具有高效、精准、重复性好等优点,在许多工业领域得到广泛应用。
本文将对铝合金挤压成型工艺进行详细介绍。
一、工艺流程铝合金挤压成型工艺的一般流程包括材料准备、加热、模具设计、挤压加工、冷却和后续处理等环节。
1.材料准备铝合金挤压成型的首要工作是选取合适的铝合金材料。
通常选择具有良好塑性和可挤压性的铝合金,如6063、6061等。
在选取材料时,还需要考虑工件的用途、强度要求和耐腐蚀性等因素。
2.加热选取好的铝合金材料后,需要将其加热至一定温度。
加热的目的是使铝合金材料变软和可塑性增加,便于进行挤压加工。
加热温度一般控制在材料的连续搬运温区。
3.模具设计模具设计是铝合金挤压成型工艺中非常关键的一环。
模具的设计需要考虑工件的形状、尺寸、挤压比和冷却方式等因素。
合理的模具设计可以确保工件的质量和尺寸精度。
4.挤压加工在加热和模具设计完成后,将铝合金材料放入挤压机中进行挤压加工。
挤压机通过给定的冲程和行程将铝合金材料挤压入模具中,并形成所需形状的工件。
挤压过程需要控制好挤压速度和压力,以保证工件的质量和形状。
5.冷却挤压完成后,将工件进行冷却以增加其强度和硬度。
冷却可以通过自然冷却或水冷方式进行。
6.后续处理部分工件需要进行后续处理,如修整、打磨、抛光等工序,以进一步提高工件的表面质量和光洁度。
二、工艺参数及影响因素铝合金挤压成型工艺中的一些关键参数包括挤压温度、挤压速度、挤压比和模具温度等。
1.挤压温度挤压温度是指将铝合金材料加热至一定温度后进行挤压加工的温度。
挤压温度的选择需要考虑材料的可塑性和粘度,一般在材料的连续搬运温区进行挤压。
2.挤压速度挤压速度是指铝合金材料在挤压机中的运动速度。
挤压速度的选择需要平衡生产效率和工件质量的要求,过快的挤压速度可能导致工件表面粗糙,过慢的挤压速度可能影响生产效率。
铝合金冷轧及薄板生产技术一、熔炼与铸锭1.1铝合金熔炼铝合金熔炼是生产过程中的重要环节,主要通过将铝合金材料加热至熔点后进行熔炼、精炼、除气、除渣等操作,以获得高质量的熔体。
1.2铸锭铸锭是将熔炼后的铝合金熔体倒入模具中,冷却凝固后形成一定形状和尺寸的铝合金锭。
铸锭的质量对后续的加工和制品质量有重要影响。
二、热轧与冷轧2.1热轧热轧是一种将铝合金铸锭加热至一定温度后进行轧制的工艺,主要目的是通过施加压力使铝合金材料产生塑性变形,获得一定形状和尺寸的板材或带材。
2.2冷轧冷轧是在室温下对铝合金材料进行轧制的过程,主要通过机械外力使铝合金材料产生塑性变形,获得更薄的板材或带材。
三、薄板成型3.1拉伸成型拉伸成型是一种将铝合金板材或带材通过模具进行拉伸变形的过程,主要应用于生产各种形状的铝合金制品。
3.2弯曲成型弯曲成型是一种将铝合金板材或带材通过模具进行弯曲变形的过程,主要应用于生产各种弯曲形状的铝合金制品。
四、表面处理4.1抛光抛光是通过机械或化学方法对铝合金表面进行加工,以获得光滑、亮泽的表面效果。
常用的抛光方法包括机械抛光、化学抛光和电化学抛光等。
4.2喷涂与电镀喷涂和电镀是在铝合金表面涂覆或镀覆其他金属或非金属材料,以提高铝合金制品的耐腐蚀性、美观度和功能性。
常用的喷涂和电镀材料包括油漆、塑胶、金属等。
五、质量检测5.1外观检测外观检测是对铝合金制品的表面质量进行检测的过程,主要通过目视、触觉等方法对制品的外观缺陷进行检查。
5.2尺寸检测尺寸检测是对铝合金制品的尺寸精度进行检测的过程,主要通过测量工具对制品的尺寸进行精确测量。
5.3力学性能检测力学性能检测是对铝合金制品的力学性能进行检测的过程,主要包括硬度、抗拉强度、屈服强度、延伸率等指标的检测。
六、环保与安全6.1有害物质控制铝合金冷轧及薄板生产过程中会产生一些有害物质,如废气、废水、废渣等,需要进行有效的控制和处理,以减少对环境和人体的危害。
铝合金技术参数理论上是2.7,要看成型方法i: 压铸的2.6-2.63 左右,挤压的2.68-2.7,锻造的 2.69-2.72 铝合金的典型机械性能(Typical Mechanical Properties)铝合金牌号及状态拉伸强度(25°C MPa)屈服强度(25°C MPa)硬度500kg力10mm球延伸率1.6mm(1/16in)厚度5052-H1121751956012 5083-H1121802116514 6061-T6513102769512 7050-T745151045513510 7075-T65157250315011 2024-T35147032512020铝合金的典型物理性能(Typical Physical Properties)铝合金牌号及状态热膨胀系数(20-100℃)μm/m·k熔点范围(℃)电导率20℃(68℉)(%IACS)电阻率20℃(68℉)Ωmm2/m密度(20℃)(g/cm3)2024-T35123.2500-635300.058 2.82 5052-H11223.8607-650350.050 2.72 5083-H11223.4570-640290.059 2.72 6061-T65123.6580-650430.040 2.73 7050-T745123.5490-630410.0415 2.82 7075-T65123.6475-635330.0515 2.82铝合金的化学成份(Chemical Composition Limit Of Aluminum ) 合金牌号硅Si铁Fe铜Cu锰Mn镁Mg铬Cr锌Zn钛Ti其它铝每个合计最小值202 423.20.5 3.8-4.90.3-0.91.2-1.80.10.250.1550.15余量505 2250.40.10.1 2.2-2.80.15-0.350.1--0.050.15余量508 323.80.40.10.3-1.4.0-4.90.05-0.250.250.150.050.1余量606 123. 60.70.15-0.40.150.8-1.20.04-0.3 50.250.150.050.15余量705 023. 50.1520.-2.60.11.9-2.60.045.7-70.060.050.15余量707 523.60.5 1.2-2.00.32.1-2.90.18-0.285.1-6.10.20.050.15余量1050 食品、化学和酿造工业用挤压盘管,各种软管,烟花粉1060 要求抗蚀性与成形性均高的场合,但对强度要求不高,化工设备是其典型用途1100 用于加工需要有良好的成形性和高的抗蚀性但不要求有高强度的零件部件,例如化工产品、食品工业装置与贮存容器、薄板加工件、深拉或旋压凹形器皿、焊接零部件、热交换器、印刷板、铭牌、反光器具1145 包装及绝热铝箔,热交换器1199 电解电容器箔,光学反光沉积膜1350电线、导电绞线、汇流排、变压器带材2011 螺钉及要求有良好切削性能的机械加工产品2014 应用于要求高强度与硬度(包括高温)的场合。
标准铝压铸工艺参数表1. 压铸温度。
铝合金的压铸温度是影响产品质量的重要参数之一。
通常情况下,铝合金的压铸温度在650°C至750°C之间。
过高的温度会导致产品熔融不均匀,而过低的温度则会造成产品表面粗糙。
因此,在实际生产中,需要根据具体的铝合金材料选择合适的压铸温度。
2. 压射速度。
压射速度是指铝合金液态金属进入模腔的速度。
适当的压射速度可以确保产品充填充分,避免气孔和夹杂物的产生。
一般来说,压射速度应根据产品的形状和尺寸进行调整,以保证产品的成型质量。
3. 模具温度。
模具温度对铝合金压铸产品的表面质量和尺寸精度有着重要影响。
过高或过低的模具温度都会导致产品的缺陷,因此需要根据具体的铝合金材料和产品要求来确定合适的模具温度。
4. 注射压力。
注射压力是指压铸机对铝合金液态金属施加的压力。
适当的注射压力可以确保产品充填充分,避免产品内部产生气孔和夹杂物。
在实际生产中,需要根据产品的形状和尺寸来确定合适的注射压力。
5. 冷却时间。
冷却时间是指产品在模具中冷却的时间。
适当的冷却时间可以确保产品的尺寸精度和表面质量。
通常情况下,冷却时间需要根据产品的厚度和材料来确定,以确保产品达到理想的硬度和强度。
6. 顶杆力。
顶杆力是指顶出铝合金产品的力量。
适当的顶杆力可以确保产品顺利脱模,避免产品变形和损坏。
在实际生产中,需要根据产品的形状和尺寸来确定合适的顶杆力。
7. 模具开合力。
模具开合力是指模具在开合过程中所受的力量。
适当的模具开合力可以确保模具的正常运行,避免模具损坏和产品缺陷。
在实际生产中,需要根据模具的结构和尺寸来确定合适的模具开合力。
总结:以上是标准铝压铸工艺参数表的相关内容,希望能对大家在铝合金压铸加工过程中有所帮助。
在实际生产中,需要根据具体的产品要求和铝合金材料来确定合适的工艺参数,以确保产品质量和生产效率。
同时,也需要不断优化和调整工艺参数,以适应市场和客户需求的变化。
希望大家能够加强学习和实践,不断提升铝合金压铸加工的技术水平和质量管理水平。
2a12冷压参数2a12冷压参数是指在冷压工艺中使用的一种特定参数,用于加工2a12铝合金材料。
冷压是一种常见的金属成形工艺,通过对材料施加压力和温度控制,使其在可塑变形区域内进行变形,从而获得所需的形状和性能。
在2a12冷压加工中,参数的设置对最终产品的质量和性能有着重要影响。
下面将对2a12冷压参数进行详细描述。
1. 温度参数:冷压工艺中的温度参数是指加工过程中控制的温度范围。
对于2a12铝合金材料,适宜的冷压温度范围是在480℃至520℃之间。
在这个温度范围内,2a12铝合金具有较好的塑性变形能力,能够满足产品的成形要求。
2. 压力参数:冷压工艺中的压力参数是指施加在2a12铝合金材料上的压力大小。
压力的大小直接影响材料的变形和成形效果。
在2a12冷压加工中,适宜的压力范围是在100MPa至200MPa之间。
过大的压力可能导致材料的变形过度,而过小的压力则可能无法满足产品的成形要求。
3. 保持时间参数:冷压工艺中的保持时间参数是指在施加压力后,保持压力作用时间的长短。
保持时间的长短影响着材料的塑性变形和形状稳定性。
在2a12冷压加工中,适宜的保持时间范围是在5s至20s之间。
过长的保持时间可能导致材料的变形不稳定,而过短的保持时间则可能无法使材料达到所需的成形效果。
4. 模具参数:冷压工艺中的模具参数是指用于加工2a12铝合金材料的模具形状和尺寸。
模具的形状和尺寸直接决定了最终产品的形状和尺寸精度。
在2a12冷压加工中,适宜的模具参数应根据产品的形状和尺寸要求进行选择,以保证产品的成形精度和质量。
通过合理设置2a12冷压参数,可以获得满足要求的2a12铝合金制品。
同时,冷压工艺具有高效、节能的特点,能够降低废料率和能耗,提高生产效率和产品质量。
因此,合理应用2a12冷压参数对于促进2a12铝合金材料的加工和应用具有重要意义。
高分子材料成型加工中的冷成型工艺高分子材料是指分子量较大的聚合物材料,具有良好的力学性能和耐磨性,广泛应用于汽车、航空航天、建筑等领域。
高分子材料在成型加工过程中,冷成型工艺是其中一种重要的加工方式。
本文将就高分子材料成型加工中的冷成型工艺进行探讨。
1. 冷成型工艺概述冷成型是指在常温下对高分子材料进行成型处理的工艺。
相比于热成型,冷成型具有温度低、成型时间短、能耗低等优点。
常见的冷成型工艺包括挤出、注塑、压延等方式。
2. 冷挤出成型冷挤出是将高分子材料通过挤出机挤压成型,得到所需的截面形状。
冷挤出成型速度快,生产效率高,适用于生产轴材、板材等产品。
此外,冷挤出成型还可以利用挤出模具实现复杂截面形状的生产。
3. 冷注塑成型冷注塑是将高分子材料加热熔融后,通过注射机注入模具中,经冷却凝固成型的工艺。
冷注塑成型适用于生产各种形状的零部件,具有生产周期短、成型精度高等优势。
在冷注塑过程中,需要控制好注塑温度、压力和速度等参数,以确保产品质量。
4. 冷压延成型冷压延是将高分子材料放在热压机中,在一定的温度和压力下进行拉伸成型的工艺。
冷压延成型可以生产出具有高强度、高韧性的板材或薄膜,适用于制作薄膜包装材料、建筑隔热材料等产品。
5. 冷成型工艺的优势冷成型工艺相比于热成型具有以下优势:①成型温度低,可减少材料老化和能耗;②成型周期短,提高生产效率;③成型精度高,产品表面光洁度好;④适用于各种形状产品的生产。
综上所述,高分子材料成型加工中的冷成型工艺是一种重要的加工方式,具有广泛的应用前景。
通过合理控制冷成型工艺参数,可以获得高质量、高性能的高分子材料制品,满足不同领域的需求。
希望本文能为高分子材料冷成型工艺的研究和生产提供一定的参考和借鉴。
全铝车身的冲压成型工艺冲压加工是借助于常规或专用冲压设备的动力,使板料在模具里直接受到变形力并进行变形,从而获得一定形状,尺寸和性能的产品零件的生产技术。
板料,模具和设备是冲压加工的三要素。
按冲压加工温度分为热冲压和冷冲压。
前者适合变形抗力高,塑性较差的板料加工;后者则在室温下进行,是薄板常用的冲压方法。
它是金属塑性加工(或压力加工)的主要方法之一,也隶属于材料成型工程技术。
冲压所使用的模具称为冲压模具,简称冲模。
冲模是将材料(金属或非金属)批量加工成所需冲件的专用工具。
冲模在冲压中至关重要,没有符合要求的冲模,批量冲压生产就难以进行;没有先进的冲模,先进的冲压工艺就无法实现。
冲压工艺与模具、冲压设备和冲压材料构成冲压加工的三要素,只有它们相互结合才能得出冲压件。
当前全铝车身越来越吃香,会不会最终取代钢铁呢?答案是肯定的,但短时间内无法做到。
据美国市场研究机构Ducker的一份报告称,目前仅有1%的汽车为全铝车身,预计到2025年,这一数字将达到18%。
奥迪R8采用全铝车身设计,R8车身的高性能复合材料被称为Audi Space Frame(AFS),其总重量只有 210 公斤,不到钢铁车架的一半重,但是强度和抗冲击性能都十分出色。
整个车体成分里,70%是铝合金、13%是增强碳纤维(CFRP)。
用奥迪自己的话来说就是:「把正确的材料以正确的数量放在正确的位置」。
视频1:AUDI R8的冲压(铝材)成型车间▼视频2:液压成型工艺的结构原理和应用(3D动画)▼TESLA特斯拉Model S 97%车身为轻质铝合金打造,一卷铝材的费用是3万美元,打造全车需要50-60种不同的铝卷材,全铝合金车身的重量仅为190kg。
TESLA使用的串联式液压冲压生产线(SchulerSMG hydraulic tandem stamping press lines)是全北美最大,世界第六大的冲压生产线,总吨位达到11,000吨,每6秒出一件铝材冲压件,每天可生产出5,000件。