高三数学二项分布及其应用
- 格式:pdf
- 大小:899.44 KB
- 文档页数:7
二项分布及其应用要求层次重难点条件概率 A 了解条件概率和两个事件相互独立的概念,理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.事件的独立性A n 次独立重复试验与二项分布B(一) 知识内容条件概率对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号“(|)P B A ”来表示.把由事件A 与B 的交(或积),记做D A B =(或D AB =).(二)典例分析:【例1】 在10个球中有6个红球,4个白球(各不相同),不放回的依次摸出2个球,在第1次摸出红球的条件下,第2次也摸出红球的概率是( )A .35B .23C .59D .13知识框架例题精讲高考要求条件概率事件的独立性独立重复实验二项分布二项分布及其应用板块一:条件概率【例2】某地区气象台统计,该地区下雨的概率是415,刮风的概率是215,既刮风又下雨的概率是110,设A=“刮风”,B=“下雨”,求()()P B A P A B,.【例3】设某种动物活到20岁以上的概率为0.7,活到25岁以上的概率为0.4,求现龄为20岁的这种动物能活到25岁以上的概率.【例4】把一枚硬币抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现反面”,则()_____P B A=.【例5】抛掷一颗骰子两次,在第一次掷得向上一面点数是偶数的条件下,则第二次掷得向上一面点数也是偶数的概率为.【例6】设某批产品有4%是废品,而合格品中的75%是一等品,任取一件产品是一等品的概率是_____.【例7】掷两枚均匀的骰子,记A=“点数不同”,B=“至少有一个是6点”,求(|)P A B与(|)P B A.【例8】甲、乙两班共有70名同学,其中女同学40名.设甲班有30名同学,而女生15名,问在碰到甲班同学时,正好碰到一名女同学的概率?【例9】从1~100个整数中,任取一数,已知取出的—数是不大于50的数,求它是2或3的倍数的概率.【例10】 袋中装有21n -个白球,2n 个黑球,一次取出n 个球,发现都是同一种颜色的,问这种颜色是黑色的概率是多少?【例11】 一袋中装有10个球,其中3个黑球,7个白球,先后两次从袋中各取一球(不放回)⑴已知第一次取出的是黑球,求第二次取出的仍是黑球的概率; ⑵已知第二次取出的是黑球,求第一次取出的也是黑球的概率; ⑶已知第一次取出的是黑球,求第二次取出的是白球的概率.【例12】 有两箱同类零件,第一箱内装50件,其中10件是一等品;第二箱内装30件,其中18件是一等品.现从两箱中随意挑出一箱,然后从该箱中先后随机取出两个零件(取出的零件均不放回),试求:⑴先取出的零件是一等品的概率;⑵在先取出的零件是一等品的条件下后取出的仍然是一等品的概率.(保留三位有效数字)【例13】 设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机地取一个地区的报名表,从中先后抽出两份,⑴求先抽到的一份是女生表的概率p .⑵己知后抽到的一份是男生表,求先抽到的是女生的概率q .(一) 知识内容事件的独立性如果事件A 是否发生对事件B 发生的概率没有影响,即(|)()P B A P B =,这时,我们称两个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.如果事件1A ,2A ,…,n A 相互独立,那么这n 个事件都发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A =⨯⨯⨯,并且上式中任意多个事件i A 换成其对立事件后等式仍成立.(二)典例分析:板块二:事件的独立性cba【例14】 判断下列各对事件是否是相互独立事件⑴容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”.⑵一筐内有6个苹果和3个梨,“从中任意取出1个,取出的是苹果”与“把取出的苹果放回筐子,再从筐子中任意取出1个,取出的是梨”.⑶甲组3名男生、2名女生;乙组2名男生、3名女生,今从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”.【例15】 从甲口袋摸出一个红球的概率是13,从乙口袋中摸出一个红球的概率是12,则23是( )A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有一个红球的概率D .2个球中恰好有1个红球的概率【例16】 猎人在距离100m 处射击一只野兔,其命中率为12.如果第一次射击未命中,则猎人进行第二次射击,但距离为150m ;如果第二次又未命中,则猎人进行第三次射击,但在射击瞬间距离野兔为200m .已知猎人命中率与距离的平方成反比,求猎人命中野兔的概率.【例17】 如图,开关电路中,某段时间内,开关a b c 、、开或关的概率均为12,且是相互独立的,求这段时间内灯亮的概率.【例18】 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲、丙两台机床加工的零件都是一等品的概率为29.分别求甲、乙、丙三台机床各自加工的零件是一等品的概率.【例19】椐统计,某食品企业一个月内被消费者投诉的次数为012,,的概率分别为0.4,0.5,0.1⑴求该企业在一个月内被消费者投诉不超过1次的概率;⑵假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.【例20】某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为45、35、2 5、15,且各轮问题能否正确回答互不影响.⑴求该选手进入第四轮才被淘汰的概率;⑵求该选手至多进入第三轮考核的概率.【例21】甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.⑴求再赛2局结束这次比赛的概率;⑵求甲获得这次比赛胜利的概率.【例22】纺织厂某车间内有三台机器,这三台机器在一天内不需工人维护的概率:第一台为0.9,第二台为0.8,第三台为0.85,问一天内:⑴3台机器都要维护的概率是多少?⑵其中恰有一台要维护的概率是多少?⑶至少一台需要维护的概率是多少?【例23】为拉动经济增长,某市决定新建一批重点工程,分为基础设施工程、民生工程和产业建设工程三类.这三类工程所含项目的个数分别占总数的12,13,16.现有3名工人独立地从中任选一个项目参与建设.求:⑴他们选择的项目所属类别互不相同的概率;⑵至少有1人选择的项目属于民生工程的概率.【例24】甲、乙两个人独立地破译一个密码,他们能译出密码的概率分别为13和14,求:⑴两个人都译出密码的概率;⑵两个人都译不出密码的概率;⑶恰有1个人译出密码的概率;⑷至多1个人译出密码的概率;⑸至少1个人译出密码的概率.【例25】从10位同学(其中6女,4男)中,随机选出3位参加测验,每位女同学能通过测验的概率均为45,每位男同学能通过测验的概率均为35,试求:⑴选出的3位同学中至少有一位男同学的概率;⑵10位同学中的女同学甲和乙及男同学丙同时被抽到,且三人中恰有二人通过测验的概率.【例26】甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p,且乙投球2次均未命中的概率为116.⑴求乙投球的命中率p;⑵求甲投球2次,至少命中1次的概率;⑶若甲、乙两人各投球2次,求两人共命中2次的概率.【例27】一汽车沿一街道行驶,需要通过三个设有红绿灯的路口,每个信号灯彼此独立工作,且红绿灯信号显示时间相等.以X表示该汽车首次遇到红灯时已通过的路口个数,求X的分布列以及该汽车首次遇到红灯时至少通过两个路口的概率.【例28】甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:⑴2人都射中的概率?⑵2人中有1人射中的概率?⑶2人至少有1人射中的概率?⑷2人至多有1人射中的概率?【例29】(07福建)甲、乙两名跳高运动员一次试跳2米高度成功的概率分别是0.7,0.6,且每次试跳成功与否相互之间没有影响,求:⑴甲试跳三次,第三次才成功的概率;⑵甲、乙两人在第一次试跳中至少有一人成功的概率;⑶甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.【例30】A、B两篮球队进行比赛,规定若一队胜4场则此队获胜且比赛结束(七局四胜制),A、B两队在每场比赛中获胜的概率均为12,X为比赛需要的场数,求X的分布列及比赛至少要进行6场的概率.【例31】已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲、乙分别所需化验次数的分布列以及方案甲所需化验次数不少于方案乙所需化验次数的概率.【例32】为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施可供采用,单独采用甲、乙、丙、丁预防措施后此突发事件不发生的概率(记为P)和所需费用如下表:预防措施甲乙丙丁P 0.90.80.70.6费用(万元)90 60 30 10预防方案可单独采用一种预防措施或联合采用几种预防措施,在总费用不超过120万元的前提下,请确定一个预防方案,使得此突发事件不发生的概率最大.【例33】某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是a b c,,,且三门课程考试是否及格相互之间没有影响.⑴分别求该应聘者用方案一和方案二时考试通过的概率;⑵试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)板块三:独立重复试验与二项分布(一)知识内容1.独立重复试验如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为()C (1)k k n kn n P k p p -=-(0,1,2,,)k n =.2.二项分布若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是()C k k n kn P X k p q -==,其中0,1,2,,k n =.由于表中的第二行恰好是二项展开式0()C C C C n n n n n n q p p q p q p q p q +=++++各对应项的值,所以称这样的离散型随机变量X 服从参数为n ,p 的二项分布,记作~(,)X B n p .(二)典例分析:【例1】 某人参加一次考试,4道题中解对3道则为及格,已知他的解题正确率为0.4,则他能及格的概率为_________(保留到小数点后两位小数)【例2】 某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率 .(用数值表示)【例3】 接种某疫苗后,出现发热反应的概率为0.80,现有5人接种了该疫苗,至少有3人出现发热反应的概率为 .(精确到0.01)【例4】 甲乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3∶1的比分获胜的概率为( )A .827B .6481C .49D .89【例5】 一台X 型号的自动机床在一小时内不需要人照看的概为0.8000,有四台这种型号的自动机床各自独立工作,则在一小时内至多有2台机床需要工人照看的概率是( ) A .0.1536 B .0.1808 C .0.5632 D .0.9728【例6】 某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元. ⑴ 求3位购买该商品的顾客中至少有1位采用一次性付款的概率;⑵ 求3位位顾客每人购买1件该商品,商场获得利润不超过650元的概率.【例7】某万国家具城进行促销活动,促销方案是:顾客每消费1000元,便可获得奖券一张,每张奖券中奖的概率为15,若中奖,则家具城返还顾客现金200元.某顾客消费了3400元,得到3张奖券.⑴求家具城恰好返还该顾客现金200元的概率;⑵求家具城至少返还该顾客现金200元的概率.【例8】某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为56和45,且各株大树是否成活互不影响.求移栽的4株大树中:⑴至少有1株成活的概率;⑵两种大树各成活1株的概率.【例9】一个口袋中装有n个红球(5n≥且*n∈N)和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.⑴试用n表示一次摸奖中奖的概率p;⑵若5n=,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;⑶记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P.当n取多少时,P最大?【例10】已知随机变量ξ服从二项分布,1~(4)3Bξ,,则(2)Pξ=等于____【例11】已知随机变量ξ服从二项分布,1~(6)3Bξ,,则(2)Pξ=等于()A.316B.4243C.13243D.80243【例12】从一批由9件正品、3件次品组成的产品中,有放回地抽取5次,每次抽一件,求恰好抽到两次次品的概率(结果保留2位有效数字).【例13】袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是13,从B中摸出一个红球的概率为p.⑴从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.①求恰好摸5次停止的概率;②记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布.⑵若A B,两个袋子中的球数之比为1:2,将A B,中的球装在一起后,从中摸出一个红球的概率是25,求p的值.【例14】设在4次独立重复试验中,事件A发生的概率相同,若已知事件A至少发生一次的概率等于6581,求事件A在一次试验中发生的概率.【例15】我舰用鱼雷打击来犯的敌舰,至少有2枚鱼雷击中敌舰时,敌舰才被击沉.如果每枚鱼雷的命中率都是0.6,当我舰上的8个鱼雷发射器同是向敌舰各发射l枚鱼雷后,求敌舰被击沉的概率(结果保留2位有效数字).【例16】某厂生产电子元件,其产品的次品率为5%,现从一批产品中的任意连续取出2件,求次品数ξ的概率分布列及至少有一件次品的概率.【例17】某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是12.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助.求:⑴该公司的资助总额为零的概率;⑵该公司的资助总额超过15万元的概率.【例18】射击运动员李强射击一次击中目标的概率是0.8,他射击3次,恰好2次击中目标的概率是多少?【例19】设飞机A有两个发动机,飞机B有四个发动机,如有半数或半数以上的发动机没有故障,就能够安全飞行,现设各个发动机发生故障的概率p是t的函数1tp eλ-=-,其中t为发动机启动后所经历的时间,λ为正的常数,试讨论飞机A与飞机B哪一个安全?(这里不考虑其它故障).【例20】假设飞机的每一台发动机在飞行中的故障率都是1P-,且各发动机互不影响.如果至少50%的发动机能正常运行,飞机就可以顺利地飞行.问对于多大的P而言,四发动机飞机比二发动机飞机更安全?【例21】一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13.⑴设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列;⑵设η为这名学生在首次停车前经过的路口数,求η的分布列;⑶求这名学生在途中至少遇到一次红灯的概率.【例22】一个质地不均匀的硬币抛掷5次,正面向上恰为1次的可能性不为0,而且与正面向上恰为2次的概率相同.令既约分数ij为硬币在5次抛掷中有3次正面向上的概率,求i j.【例23】某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位)⑴5次预报中恰有2次准确的概率;⑵5次预报中至少有2次准确的概率;⑶5次预报中恰有2次准确,且其中第3次预报准确的概率;【例24】某大厦的一部电梯从底层出发后只能在第181920,,层可以停靠.若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为13,求至少有两位乘客在20层下的概率.【例25】10个球中有一个红球,有放回的抽取,每次取一球,求直到第n次才取得()k k n≤次红球的概率.【例26】某车间为保证设备正常工作,要配备适量的维修工.设各台设备发生的故障是相互独立的,且每台设备发生故障的概率都是0.01.试求:⑴若由一个人负责维修20台,求设备发生故障而不能及时维修的概率;⑵若由3个人共同负责维修80台设备,求设备发生故障而不能及时维修的概率,并进行比较说明哪种效率高.【例27】A B,是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为23,服用B有效的概率为12.观察3个试验组,求至少有1个甲类组的概率.(结果保留四位有效数字)【例28】已知甲投篮的命中率是0.9,乙投篮的命中率是0.8,两人每次投篮都不受影响,求投篮3次甲胜乙的概率.(保留两位有效数字)【变式】若甲、乙投篮的命中率都是0.5p=,求投篮n次甲胜乙的概率.(1n n∈N,≥)【例29】省工商局于某年3月份,对全省流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的x饮料的合格率为80%,现有甲,乙,丙3人聚会,选用6瓶x饮料,并限定每人喝2瓶,求:⑴甲喝2瓶合格的x饮料的概率;⑵甲,乙,丙3人中只有1人喝2瓶不合格的x饮料的概率(精确到0.01).【例30】在一次考试中出了六道是非题,正确的记“√”号,不正确的记“×”号.若某考生随手记上六个符号,试求:⑴全部是正确的概率;⑵正确解答不少于4道的概率;⑶至少答对2道题的概率.【例31】某大学的校乒乓球队与数学系乒乓球队举行对抗赛,校队的实力比系队强,当一个校现在校、系双方商量对抗赛的方式,提出了三种方案:⑴双方各出3人;⑵双方各出5人;⑶双方各出7人.三种方案中场次比赛中得胜人数多的一方为胜利. 问:对系队来说,哪一种方案最有利?(一) 知识内容二项分布的均值与方差:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.(二)典例分析:【例32】 一盒子内装有10个乒乓球,其中3个旧的,7个新的,每次取一球,取后放回,取4次,则取到新球的个数的期望值是______.【例33】 同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ,则ξ的数学期望是( )A .20B .25C .30D .40【例34】 已知~()X B n p ,,()8E X =,() 1.6D X =,则n 与p 的值分别为( )A .10和0.8B .20和0.4C .10和0.2D .100和0.8【例35】 某服务部门有n 个服务对象,每个服务对象是否需要服务是独立的,若每个服务对象一天中需要服务的可能性是p ,则该部门一天中平均需要服务的对象个数是( )A .(1)np p -B .npC .nD .(1)p p -【例36】 已知随机变量X 服从参数为60.4,的二项分布,则它的期望()E X =_______,方差()D X =_____.【例37】 已知随机变量X 服从二项分布,且() 2.4E ξ=,() 1.44D ξ=,则二项分布的参数n ,p的值分别为__________、_________.【例38】 一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,则其中含红球个数的数学期望是_________.(用数字作答)板块四:二项分布的期望与方差【例39】已知(100.8)X B,,求()E X与()D X.【例40】同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ,则ξ的数学期望是()A.20B.25C.30D.40【例41】甲、乙、丙3人投篮,投进的概率分别是121 352,,.⑴现3人各投篮1次,求3人都没有投进的概率;⑵用ξ表示乙投篮3次的进球数,求随机变量ξ的概率分布及数学期望.【例42】抛掷两个骰子,当至少有一个2点或3点出现时,就说这次试验成功.⑴求一次试验中成功的概率;⑵求在4次试验中成功次数X的分布列及X的数学期望与方差.【例43】某寻呼台共有客户3000人,若寻呼台准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问:寻呼台能否向每一位顾客都发出奖邀请?若能使每一位领奖人都得到礼品,寻呼台至少应准备多少礼品?【例44】某批数量较大的商品的次品率是5%,从中任意地连续取出10件,X为所含次品的个数,求()E X.【例45】某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有%60,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.⑴任选1名下岗人员,求该人参加过培训的概率;⑵任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布和期望.【例46】设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布及期望.【例47】某班级有n人,设一年365天中,恰有班上的m(m n≤)个人过生日的天数为X,求X的期望值以及至少有两人过生日的天数的期望值.【例48】购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10000元的赔偿金.假定在一年度内有10000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10000元的概率为410-.10.999⑴求一投保人在一年度内出险的概率p;⑵设保险公司开办该项险种业务除赔偿金外的成本为50000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).【例49】某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须进行整改.若整改后复查仍不合格,则强行关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01).⑴恰好有两家煤矿必须整改的概率;⑵平均有多少家煤矿必须整改;⑶至少关闭一家煤矿的概率.个工作日里均无故障,可获利润10万元;发生一次故障可获利润5万元,只发生两次故障可获利润0万元,发生三次或三次以上故障就要亏损2万元.求一周内期望利润是多少?(精确到0.001)【例51】 在汶川大地震后对唐家山堰塞湖的抢险过程中,武警官兵准备用射击的方法引爆从湖坝上游漂流而下的一个巨大的汽油罐.已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击是相互独立的,且命中的概率都是23.⑴求油罐被引爆的概率;⑵如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ的分布列及E ξ.【例52】 某商场准备在国庆节期间举行促销活动,根据市场调查,该商场决定从2种服装商品,2种家电商品,3种日用商品中,选出3种商品进行促销活动.⑴试求选出的3种商品中至少有一种是日用商品的概率; ⑵商场对选出的某商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高150元,同时,若顾客购买该商品,则允许有3次抽奖的机会,若中奖,则每次中奖都获得数额为m 的奖金.假设顾客每次抽奖时获奖与否的概率都是12,请问:商场应将每次中奖奖金数额m 最高定为多少元,才能使促销方案对商场有利?【例53】 将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12.⑴ 求小球落入A 袋中的概率()P A ;⑵ 在容器入口处依次放入4个小球,记ξ为落入A 袋中的小球个数,试求3ξ=的概率和ξ的数学期望.。
二项分布及其应用知识集结知识元相互独立事件知识讲解1.相互独立事件和相互独立事件的概率乘法公式【知识点的认识】1.相互独立事件:事件A(或B)是否发生,对事件B(或A)发生的概率没有影响,这样两个事件叫做相互独立事件.2.相互独立事件同时发生的概率公式:将事件A和事件B同时发生的事件即为A•B,若两个相互独立事件A、B同时发生,则事件A•B发生的概率为:P(A•B)=P(A)•P(B)推广:一般地,如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率之积,即:P(A1•A2…A n)=P(A1)•P(A2)…P(A n)3.区分互斥事件和相互独立事件是两个不同的概念:(1)互斥事件:两个事件不可能同时发生;(2)相互独立事件:一个事件的发生与否对另一个事件发生的概率没有影响.例题精讲相互独立事件例1.若甲、乙两位同学随机地从6门课程中各选修3门,则两人选修的课程中恰有1门相同的概率为__.例2.甲、乙两人依次从标有数字0,1,2的三张卡片中各抽取一张(不放回),则两人均未抽到标有数字0的卡片的概率为__.例3.'一次数学考试有4道填空题,共20分,每道题完全答对得5分,否则得0分.在试卷命题时,设计第一道题使考生都能完全答对,后三道题能得出正确答案的概率分别为P、、且每题答对与否相互独立(1)当p=时,求考生填空题得满分的概率(2)若考生填空题得10分与得15分的概率相等,求的P值.'n次独立重复试验恰好k次发生的概率知识讲解1.n次独立重复试验中恰好发生k次的概率【概念】一般地,在n次独立重复试验中,用ξ表示事件A发生的次数,如果事件发生的概率是P,则不发生的概率q=1﹣p,N次独立重复试验中发生K次的概率是P(ξ=K)=(K=1,2,3,…n)那么就说ξ服从二项分布.其中P称为成功概率.记作ξ~B(n,p),期望:Eξ=np,方差:Dξ=npq.【实例解析】例:在3次独立重复试验中,随机事件恰好发生1次的概率不大于其恰好发生两次的概率,则随机事件A在一次试验中发生的概率的范围是.解:由题设知C31p(1﹣p)2≤C32p2(1﹣p),解≤p≤1,故答案为:[,1].本题是典型的对本知识点进行考察,要求就是熟练的应用公式,理解公式的含义并准确计算就可以了,这种比较简单的题型一般出现在选择填空题中.【考点点评】这个知识点非常的重要,但相对来说也比较简单,所以大家要多花点时间把它吃透.例题精讲n次独立重复试验恰好k次发生的概率例1.随机变量X~B(6,),则P(X=2)等于()A.B.C.D.例2.如果X~B(20,p),当且P(X=k)取得最大值时,k的值是()A.8B.9C.10D.11例3.一头病猪服用某药品后被治愈的概率是90%,则服用这种药的5头病猪中恰有3头猪被治愈的概率为()A.0.93B.1-(1-0.9)3C.C53×0.93×0.12D.C53×0.13×0.92超几何分布知识讲解1.超几何分布【知识点的知识】一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则称超几何分布列.(1)超几何分布的模型是不放回抽样;(2)超几何分布中的参数是N,M,n上述超几何分布记作X~H(N,M,n).【典型例题分析】典例1:有N件产品,其中有M件次品,从中不放回地抽n件产品,抽到的次品数的数学期望值是()A.n B.C.D.分析:先由超几何分布的意义,确定本题中抽到次品数服从超几何分布,再由超几何分布的性质:若随机变量X~H(n,M,N),则其数学期望为,计算抽到的次品数的数学期望值即可解答:设抽到的次品数为X,则有N件产品,其中有M件次品,从中不放回地抽n件产品,抽到的次品数X服从超几何分布即X~H(n,M,N),∴抽到的次品数的数学期望值EX=故选C.题型一:抽样次品数的分布规律问题典例1:某批产品共10件,已知从该批产品中任取1件,则取到的是次品的概率为P=0.2.若从该批产品中任意抽取3件,(1)求取出的3件产品中恰好有一件次品的概率;(2)求取出的3件产品中次品的件数X的概率分布列与期望.解:设该批产品中次品有x件,由已知,∴x=2…(2分)(1)设取出的3件产品中次品的件数为X,3件产品中恰好有一件次品的概率为…(4分)(2)∵X可能为0,1,2∴…(10分)∴X的分布为:X012P则…(13分)题型二:不放回摸球游戏问题典例2:甲有一个箱子,里面放有x个红球,y个白球(x,y≥0,且x+y=4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子任取2个球,乙从箱子里在取1个球,若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色的个数,才能使自己获胜的概率最大?(2)在(1)的条件下,求取出的3个球中红球个数的数学期望.解:(1)由题意,;∴,当且仅当x=y=2时“=”成立所以当红球与白球各2个时甲获胜的概率最大(2)取出的3个球中红球个数ξ=0,1,2,3,所以【解题方法点拨】超几何分布的求解步骤:(1)辨模型:结合实际情景分析所求概率分布问题是否有冥想的两部分组成,如“男生、女生”“正品、次品”“优、劣”等,或可转化为明显的两部分.(2)算概率:可以直接借助公式,也可利用排列、组合及概率知识求解.(3)列分布表:把求得的概率值通过表格表示出来.例题精讲超几何分布例1.已知超几何分布满足X~H(3,5,8),则P(X=2)=___.例2.在10件产品中有2件次品,任意抽取3件,则抽到次品个数的数学期望的值是___.例3.若X~H(2,3,5),则P(X=1)=___。
专题67二项分布及其应用最新考纲1.了解条件概率和两个事件相互独立的概念.2.理解n 次独立重复试验的模型及二项分布.3.能解决一些简单的实际问题.基础知识融会贯通1.条件概率及其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=P ABP A (P (A )>0).在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n ABn A . (2)条件概率具有的性质 ①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件, 则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件(1)对于事件A ,B ,若事件A 的发生与事件B 的发生互不影响,则称事件A ,B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )P (A )=P (A )P (B ).(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则A 与B 相互独立. 3.独立重复试验与二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ),并称p 为成功概率.重点难点突破【题型一】条件概率【典型例题】某班组织由甲,乙,丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场”的前提下,学生丙第一个出场的概率为()A.B.C.D.【解答】解:设事件A={学生甲不是第一个出场,学生乙不是最后一个出场},事件B={学生丙第一个出场},所以P(AB)P(A),所以P(B|A).故选:A.【再练一题】在由直线x=1,y=x和x轴围成的三角形内任取一点(x,y),记事件A为y>x3,B为y>x2,则P(B|A)=()A.B.C.D.【解答】解:设S(AB)表示A和B同时发生所构成区域的面积,S(A)表示事件A发生构成区域的面积.根据条件概率的概率计算公式P(B|A).故选:D.思维升华 (1)利用定义,分别求P (A )和P (AB ),得P (B |A )=P ABP A ,这是通用的求条件概率的方法. (2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数,即n (AB ),得P (B |A )=n ABn A .【题型二】相互独立事件的概率【典型例题】为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,若他前一球投进则后一球投进的概率为,若他前一球投不进则后一球投进的概率为.若他第1球投进的概率为,则他第2球投进的概率为( ) A .B .C .D .【解答】解:某校篮球运动员进行投篮练习,若他前一球投进则后一球投进的概率为, 若他前一球投不进则后一球投进的概率为.若他第1球投进的概率为, 则他第2球投进的概率为: p.故选:B . 【再练一题】在某段时间内,甲地不下雨的概率为P 1(0<P 1<1),乙地不下雨的概率为P 2(0<P 2<1),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为( ) A .P 1P 2 B .1﹣P 1P 2C .P 1(1﹣P 2)D .(1﹣P 1)(1﹣P 2)【解答】解:在某段时间内,甲地不下雨的概率为P1(0<P1<1),乙地不下雨的概率为P2(0<P2<1),在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为:P=(1﹣P1)(1﹣P2).故选:D.思维升华求相互独立事件同时发生的概率的方法(1)首先判断几个事件的发生是否相互独立.(2)求相互独立事件同时发生的概率的方法①利用相互独立事件的概率乘法公式直接求解;【题型三】独立重复试验与二项分布命题点1根据独立重复试验求概率【典型例题】将一枚质地均匀的硬币抛掷三次,则出现“2次正面朝上,1次反面朝上”的概率为()A.B.C.D.【解答】解:将一枚质地均匀的硬币抛掷三次,则出现“2次正面朝上,1次反面朝上”的概率是P.故选:B.【再练一题】某射手每次射击击中目标的概率是,求这名射手在10次射击中,(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率.【解答】解:(1)∵某射手每次射击击中目标的概率是,则这名射手在10次射击中恰有8次击中目标的概率为••.(2)至少有8次击中目标的概率为••••.命题点2根据独立重复试验求二项分布【典型例题】设有3个投球手,其中一人命中率为q,剩下的两人水平相当且命中率均为p(p,q∈(0,1)),每位投球手均独立投球一次,记投球命中的总次数为随机变量为ξ.(1)当p=q时,求数学期望E(ξ)及方差V(ξ);(2)当p+q=1时,将ξ的数学期望E(ξ)用p表示.【解答】解:(1)∵每位投球手均独立投球一次,当p=q时,每次试验事件发生的概率相等,∴ξ~B(3,),由二项分布的期望和方差公式得到结果∴Eξ=np=3,Dξ=np(1﹣p)=3(2)ξ的可取值为0,1,2,3.P(ξ=0)=(1﹣q)(1﹣p)2=pq2;P(ξ=1)=q(1﹣p)2+(1﹣q)C21p(1﹣p)=q3+2p2q;P(ξ=2)=qC21p(1﹣p)+(1﹣q)p2=2pq2+p3;P(ξ=3)=qp2.ξ的分布列为E【再练一题】一个盒子里有2个黑球和m个白球(m≥2,且m∈N*).现举行摸奖活动:从盒中取球,每次取2个,记录颜色后放回.若取出2球的颜色相同则为中奖,否则不中.(Ⅰ)求每次中奖的概率p(用m表示);(Ⅱ)若m=3,求三次摸奖恰有一次中奖的概率;(Ⅲ)记三次摸奖恰有一次中奖的概率为f(p),当m为何值时,f(p)取得最大值?【解答】解:(Ⅰ)∵取出2球的颜色相同则为中奖,∴每次中奖的概率p;(Ⅱ)若m=3,每次中奖的概率p,∴三次摸奖恰有一次中奖的概率为;(Ⅲ)三次摸奖恰有一次中奖的概率为f (p )3p 3﹣6p 2+3p (0<p <1),∴f ′(p )=3(p ﹣1)(3p ﹣1),∴f (p )在(0,)上单调递增,在(,1)上单调递减, ∴p时,f (p )取得最大值,即p∴m =2,即m =2时,f (p )取得最大值.思维升华 独立重复试验与二项分布问题的常见类型及解题策略(1)在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率.(2)在根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n 和变量的概率,求得概率.基础知识训练1.已知袋子内有7个球,其中4个红球,3个白球,从中不放回地依次抽取2个球,那么在已知第一次抽到红球的条件下,第二次也抽到红球的概率是( ) A .13B .37C .16D .12【答案】D 【解析】记“第一次抽到红球”为事件A ;记“第二次抽到红球”为事件B()141747C P A C ∴==,()1143117627C C P AB C C == ()()()217427P AB P B A P A ∴===本题正确选项:D2.科目二,又称小路考,是机动车驾驶证考核的一部分,是场地驾驶技能考试科目的简称.假设甲每次通过科目二的概率均为34,且每次考试相互独立,则甲第3次考试才通过科目二的概率为( )A.164B.12131344C⎛⎫⎛⎫⨯⎪ ⎪⎝⎭⎝⎭C.21231344C⎛⎫⎛⎫⨯⎪ ⎪⎝⎭⎝⎭D.364【答案】D 【解析】甲每次通过科目二的概率均为34,且每次考试相互独立,则甲第3次考试才通过科目二的概率为:3333 1144464 P⎛⎫⎛⎫=−⨯−⨯=⎪ ⎪⎝⎭⎝⎭.故选:D.3.甲骑自行车从A地到B地,途中要经过4个十字路口,已知甲在每个十字路口遇到红灯的概率都是13,且在每个路口是否遇到红灯相互独立,那么甲在前两个十字路口都没有遇到红灯,直到第三个路口才首次遇到红灯的概率是()A.13B.427C.49D.127【答案】B 【解析】由题可知甲在每个十字路口遇到红灯的概率都是13,在每个十字路口没有遇到红灯的概率都是12133−=,所以甲在前两个十字路口都没有遇到红灯,直到第三个路口才首次遇到红灯的概率是2214 33327⨯⨯=故选B.4.甲、乙同时参加某次法语考试,甲、乙考试达到优秀的概率分别为0.6,0.7,两人考试相互独立,则甲、乙两人都未达到优秀的概率为()A.0.42B.0.28C.0.18D.0.12【答案】D【解析】由于甲、乙考试达到优秀的概率分别为0.6,0.7,则甲、乙考试未达到优秀的概率分别为0.4,0.3,由于两人考试相互独立,所以甲、乙两人都未达到优秀的概率为:0.40.30.12⨯=故答案选D5.设随机变量X服从二项分布,则函数存在零点的概率是() A.B.C.D.【答案】C 【解析】 ∵函数存存在零点,∵随机变量服从二项分布 .故选:C .6.设随机变量ξ~B(2,p),η~B(4,p),若P(ξ≥1)=,则D(η)= ( ) A . B . C . D . 【答案】C 【解析】由随机变量ξ~B (2,p ),且P (ξ≥1)=, 得P (ξ≥1)=1-P (ξ=0)=,解得.则,随机变量η的方差.本题选择C 选项.7.某次考试共有12个选择题,每个选择题的分值为5分,每个选择题四个选项且只有一个选项是正确的,A 学生对12个选择题中每个题的四个选择项都没有把握,最后选择题的得分为X 分,B 学生对12个选择题中每个题的四个选项都能判断其中有一个选项是错误的,对其它三个选项都没有把握,选择题的得分为Y 分,则()()D Y D X −的值为( ) A .12512B .3512C .274D .234【答案】A 【解析】设A 学生答对题的个数为m ,则得分5x m =(分),112,4m B ⎛⎫~ ⎪⎝⎭,()13912444D m =⨯⨯=,所以()92252544D X =⨯=,同理设B 学生答对题的个数为n ,可知112,3n B ⎛⎫~ ⎪⎝⎭,()12812333D n =⨯⨯=,所以()82002533D Y =⨯=,所以()()2002251253412D Y D X −=−=.故选A. 8.若10件产品中包含8件一等品,在其中任取2件,则在已知取出的2件中有1件不是一等品的条件下,另1件是一等品的概率为()A.1213B.1415C.1617D.1819【答案】C【解析】由题意,记事件A为“取出的2件产品中存在1件不是一等品”,事件B为“取出的2件中,1件是一等品,1件不是一等品”,则11211282282210101716 (),()4545C C C C CP A P ABC C+====,所以()16(|)()17P ABP B AP A==,故选C.9.甲、乙、丙、丁4个人进行网球比赛,首先甲、乙一组,丙、丁一组进行比赛,两组的胜者进入决赛,决赛的胜者为冠军、败者为亚军.4个人相互比赛的胜率如右表所示,表中的数字表示所在行选手击败其所在列选手的概率.那么甲得冠军且丙得亚军的概率是( )A.0.15B.0.105C.0.045D.0.21【答案】C【解析】甲、乙比赛甲获胜的概率是0.3,丙、丁比赛丙获胜的概率是0.5, 甲、丙决赛甲获胜的概率是0.3,根据独立事件的概率等于概率之积,所以, 甲得冠军且丙得亚军的概率:0.30.50.30.045⨯⨯=. 故选C.10.在体育选修课排球模块基本功(发球)测试中,计分规则如下(满分为10分):①每人可发球7次,每成功一次记1分;②若连续两次发球成功加0.5分,连续三次发球成功加1分,连续四次发球成功加1.5分,以此类推,⋯,连续七次发球成功加3分.假设某同学每次发球成功的概率为23,且各次发球之间相互独立,则该同学在测试中恰好得5分的概率是( )A .6523B .5523C .6623D .5623【答案】B 【解析】该同学在测试中恰好得5分有两种情况:四次发球成功,有两个连续得分,此时概率5243146212()()333P C ==;四次发球成功,有三个连续得分,分为连续得分在首尾和不在首尾两类,此时概率6111143223326212()()()333P C C C C =+=,所求概率56512665222333P P P =+=+=;故选B. 11.假定某人在规定区域投篮命中的概率为,现他在某个投篮游戏中,共投篮3次. (1)求连续命中2次的概率;(2)设命中的次数为X ,求X 的分布列和数学期望.【答案】(1);(2)见解析. 【解析】 (1)设表示第次投篮命中,表示第次投篮不中;设投篮连续命中2次为事件,则.(2)命中的次数可取0,1,2,3;,,,所以答:的数学期望为2.12.为了调查高中生的数学成绩与学生自主学习时间之间的相关关系,新苗中学数学教师对新入学的45名学生进行了跟踪调查,其中每周自主做数学题的时间不少于15小时的有19人,余下的人中,在高三模拟考试中数学成绩不足120分的占8,统计成绩后,得到如下的22⨯列联表:(1)请完成上面的22⨯列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“高中生的数学成绩与学生自主学习时间有关”.(2)(i)按照分层抽样的方法,在上述样本中,从分数大于等于120分和分数不足120分的两组学生中抽取9名学生,设抽到的不足120分且周做题时间不足15小时的人数为X,求X的分布列(概率用组合数算式表示).(ii)若将频率视为概率,从全校大于等于120分的学生中随机抽取20人,求这些人中周做题时间不少于15小时的人数的期望和方差.附:()()()()()22n ad bc K a b c d a c b d −=++++【答案】(1)见解析;(2) (i )见解析 (ii )见解析 【解析】 (1)∵()224515161047.287 6.63525201926K ⨯−⨯=≈>⨯⨯⨯.∴能在犯错误的概率不超过0.01的前提下认为“高中生的数学成绩与学生自主学习时间有关”.(2)(i )由分层抽样知大于等于120分的有5人,不足120分的有4人,X 的可能取值为0,1,2,3,4.()416420C 0C P X ==, ()33416420C C 1C P X ⋅==, ()22416420C C 2C P X ⋅==, ()31416420C C 3C P X ⋅==, ()44420C 4C P X ==.则分布列为(ii )设从全校大于等于120分的学生中随机抽取20人,这些人中,周做题时间不少于15小时的人数为随机变量Y ,由题意可知()20,0.6Y B ~, 故()12E Y =,() 4.8D Y =.13.生蚝即牡蛎(oyster),是所有食物中含锌最丰富的,在亚热带、热带沿海都适宜蚝的养殖,我国分布很广,北起鸭绿江,南至海南岛,沿海皆可产蚝.蚝乃软体有壳,依附寄生的动物,咸淡水交界所产尤为肥美,因此生蚝成为了一年四季不可或缺的一类美食.某饭店从某水产养殖厂购进一批生蚝,并随机抽取了40只统计质量,得到的结果如下表所示.(1)若购进这批生蚝500kg ,且同一组数据用该组区间的中点值代表,试估计这批生蚝的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的生蚝中随机挑选4个,记质量在[)5,25间的生蚝的个数为X ,求X 的分布列及数学期望.【答案】(I )17544(只);(II )85. 【解析】(Ⅰ)由表中的数据可以估算妹纸生蚝的质量为()16101020123084045028.540g ⨯+⨯+⨯+⨯+⨯=, 所以购进500kg ,生蚝的数列均为50000028.517554÷≈(只); (II)由表中数据知,任意挑选一只,质量在[)5,25间的概率为25P =, X 的可能取值为0,1,2,3,4,则()()41314381232160,1562555625P X P X C ⎛⎫⎛⎫⎛⎫====== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()()2231423442321623962162,3,455625556255625P X C P X C P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫========= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 所以X 的分布列为所以()216961683346256256255E X =⨯+⨯+⨯= 14.某工厂的检验员为了检测生产线上生产零件的情况,从产品中随机抽取了个进行测量,根据所测量的数据画出频率分布直方图如下:注:尺寸数据在内的零件为合格品,频率作为概率. (Ⅰ) 从产品中随机抽取件,合格品的个数为,求的分布列与期望;(Ⅱ) 从产品中随机抽取件,全是合格品的概率不小于,求的最大值;(Ⅲ) 为了提高产品合格率,现提出两种不同的改进方案进行试验.若按方案进行试验后,随机抽取件产品,不合格个数的期望是;若按方案试验后,抽取件产品,不合格个数的期望是,你会选择哪个改进方案?【答案】(Ⅰ)分布列见解析,; (Ⅱ); (Ⅲ)选择方案.【解析】(Ⅰ)由直方图可知,抽出产品为合格品的频率为,即抽出产品为合格品的概率为, 从产品中随机抽取件,合格品的个数的所有可能取值为且,, 所以的分布列为故数学期望(Ⅱ) 随机抽取件,全是合格品的概率为,依题意,故的最大值为.(Ⅲ) 按方案随机抽取产品不合格的概率是,随机抽取件产品,不合格个数;按方案随机抽取产品不合格的概率是,随机抽取件产品,不合格个数,依题意,解得,因为,所以应选择方案.15.为了引导居民合理用水,某市决定全面实施阶梯水价.阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价,具体划分标准如表:从本市随机抽取了10户家庭,统计了同一月份的月用水量,得到如图茎叶图:(Ⅰ)现要在这10户家庭中任意选取3户,求取到第二阶梯水量的户数X的分布列与数学期望;(Ⅱ)用抽到的10户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取10户,若抽到户月用水量为一阶的可能性最大,求的值.【答案】(1)见解析(2)【解析】(Ⅰ)由茎叶图可知抽取的10户中用水量为一阶的有3户,二阶的有5户,三阶的有2户.第二阶段水量的户数的可能取值为0,1,2,3,,,所以的分布列为的数学期望.(Ⅱ)设为从全市抽取的10户中用水量为一阶的家庭户数,依题意得,,由,解得,又,所以当时概率最大.即从全市依次随机抽取10户,抽到3户月用水量为一阶的可能性最大.能力提升训练1.若已知随机变量,则____.【答案】 【解析】 随机变量,则. 故答案为:.2.某工厂生产电子元件,其产品的次品率为5%,现从一批产品中任意地连续取出2件,写出其中次品ξ的概率分布.【答案】0.9025 0.095 0.0025 【解析】 因()2,0.05B ξ,所以()02200.950.9025P C ξ===,()1210.950.050.095P C ξ==⨯=,()22220.050.0025P C ξ===,故分别填:0.9025,0.095,0.0025. 3.设随机变量1~,4X B n ⎛⎫ ⎪⎝⎭,且()34D X =,则事件“2X =”的概率为_____(用数字作答) 【答案】27128【解析】由1~,4X B n ⎛⎫⎪⎝⎭可知:()1133144164n D x n ⎛⎫=⨯⨯−== ⎪⎝⎭ 4n ∴=()222411272144128P X C ⎛⎫⎛⎫∴==⋅⋅−=⎪⎪⎝⎭⎝⎭ 本题正确结果:271284.如图,在小地图中,一机器人从点()0,0A 出发,每秒向上或向右移动1格到达相应点,已知每次向上移动1格的概率是23,向右移动1格的概率是13,则该机器人6秒后到达点()4,2B 的概率为__________.【答案】20243【解析】由题意,可得6秒内向右移动4次,向上移动2次则所求概率为:4246122033243C ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭本题正确结果:202435.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,若X 表示抽到的二等品件数,则()V X =_________. 【答案】1.96 【解析】由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,0.02p =,100n =,则()()1V x np p =−1000.020.98=⨯⨯ 1.96=,故答案为1.966.设随机变量(2,)B p ξ,(4,)B p η,若2()3E ξ=,则(3)P η≥=______.【答案】19【解析】()223E p ξ==13p ∴= 14,3B η⎛⎫∴ ⎪⎝⎭()()()34344412113343339P P P C C ηηη⎛⎫⎛⎫⎛⎫∴≥==+==⨯+= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 本题正确结果:197.为响应绿色出行,某市在推出“共享单车”后,又推出“新能源分时租赁汽车”.其中一款新能源分时租赁汽车,每次租车收费的标准由两部分组成:①根据行驶里程数按1元/公里计费;②行驶时间不超过分时,按元/分计费;超过分时,超出部分按元/分计费.已知王先生家离上班地点15公里,每天租用该款汽车上、下班各一次.由于堵车、红绿灯等因素,每次路上开车花费的时间(分)是一个随机变量.现统计了50次路上开车花费时间,在各时间段内的频数分布情况如下表所示: (分)将各时间段发生的频率视为概率,每次路上开车花费的时间视为用车时间,范围为分.(1)写出王先生一次租车费用(元)与用车时间(分)的函数关系式;(2)若王先生一次开车时间不超过40分为“路段畅通”,设表示3次租用新能源分时租赁汽车中“路段畅通”的次数,求的分布列和期望;(3)若公司每月给1000元的车补,请估计王先生每月(按22天计算)的车补是否足够上、下班租用新能源分时租赁汽车?并说明理由.(同一时段,用该区间的中点值作代表)【答案】(1) (2)见解析(3) 估计王先生每月的车补够上下班租用新能源分时租赁汽车用 【解析】(1)当时,当时,.得:(2)王先生租用一次新能源分时租赁汽车,为“路段畅通”的概率可取.的分布列为或依题意(3)王先生租用一次新能源分时租赁汽车上下班,平均用车时间(分钟),每次上下班租车的费用约为(元)一个月上下班租车费用约为,估计王先生每月的车补够上下班租用新能源分时租赁汽车用.8.甲、乙两支球队进行总决赛,比赛采用五场三胜制,即若有一队先胜三场,则此队为总冠军,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为二分之一.据以往资料统计,第一场比赛可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元.(1)求总决赛中获得门票总收入恰好为150万元且甲获得总冠军的概率;(2)设总决赛中获得的门票总收入为,求的分布列和数学期望.【答案】(1)(2)见解析【解析】(1)已知总决赛中获得门票总收入恰好为150万元且甲获得总冠军即甲连胜3场,则其概率为;(2)随机变量X可取的值为150,220,300.又P(X=150)=2×=,P(X=220)=C××=,P(X=300)=C××=.分布列如下:所以X的数学期望为E(X)=150×+220×+300×=232.5(万元).9.在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,不超过40分的选手将直接被淘汰,成绩在内的选手可以参加复活赛,如果通过,也可以参加第二轮比赛.(1)已知成绩合格的200名参赛选手成绩的频率分布直方图如图,求a的值及估计这200名参赛选手的成绩平均数;(2)根据已有的经验,参加复活赛的选手能够进入第二轮比赛的概率为,假设每名选手能否通过复活赛相互独立,现有3名选手进入复活赛,记这3名选手在复活赛中通过的人数为随机变量X,求X的分布列和数学期望.【答案】(1),82;(2)见解析【解析】由题意:,估计这200名选手的成绩平均数为.由题意知, X B (3,1/3),X可能取值为0,1,2,3,,所以X的分布列为:X的数学期望为.10.为了解市民对某项政策的态度,随机抽取了男性市民25人,女性市民75人进行调查,得到以下的列联表:(1)根据以上数据,能否有97.5%的把握认为市民“支持政策”与“性别”有关?(2)将上述调查所得的频率视为概率,现在从所有市民中,采用随机抽样的方法抽取4位市民进行长期跟踪调查,记被抽取的4位市民中持“支持”态度的人数为,求的分布列及数学期望。
二项分布及其应用【知识要点】一、条件概率及其性质1、条件概率一般地,设A ,B 为两个事件,且0)(>A P ,称)()()(A P AB P A B P =为在事件A 发生的条件下,事件B 发生的条件概率。
2、性质(1)任何事件的条件概率都在0和1之间,即1)(0≤≤A B P .(2)如果B 和C 是两个互斥事件,则)()()(A C P A B P A C B P ==Y 。
【例题1—1】从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则=)(A B P ( B ) A 、81 B 、41 C 、52 D 、21 【例题1—2】在一次考试的5道题中,有3道理科题和2道文科题,如果不放回地依次抽取2道题,则在第一次抽到理科题的条件下,第二次抽到理科题的概率为 21 。
【例题1—3】某地区空气质量监测表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( A )A 、0.8B 、0.75C 、0.6D 、0.45【例题1—4】从混有5张假钞的20张一百元钞票中任意抽取2张,将其中一张在验钞机上检验发现是假钞,则这两张都是假钞的概率为( A )A 、172B 、152C 、51D 、103 【例题1—5】把一枚硬币连续抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则=)(A B P ( A )A 、21B 、41 C 、61 D 、81 【例题1—6】1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则在从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是94 。
二、相互独立事件及n 次独立重复事件1、相互独立事件同时发生的概率(1)相互独立事件的定义:如果事件A (或B )是否发生对事件B (A )发生的概率没有影响,这样的两个事件叫做相互独立事件。