SPSS学习笔记非参数检验
- 格式:docx
- 大小:12.96 KB
- 文档页数:1
一、概述
非参数检验对于总体分布没有要求,因而使用范围更广泛。
对于两配对样本的非参数检验,首选Wilcoxon符号秩检验。
它与配对样本t检验相对应。
二、问题
为了研究某放松方法(如听音乐)对于入睡时间的影响,选择了10名志愿者,分别记录未进行放松时的入睡时间及放松后的入睡时间(单位为分钟),数据如下笔。
请问该放松方法对入睡时间有无影响。
本例可以采用配对样本t检验,但由于样本量少,数据可能不符合正太分布,所以考虑用非参数检验。
三、统计操作
数据视图
菜单选择
打开如下的对话框
该对话框有三个选项卡,第一个选项卡会根据第三个选项卡的设置自动设置,故一般不用手动设定。
点击进入“字段”选项卡。
将“放松前”、“放松后”均选入右边“检验字段”框中。
点击进入“设置”对话框,选择检验方法,切换为“自定义检验”,选择“Wilcoxon匹配样本对符号秩(二样本)”复选框。
“检验选项”可以设定显著性水平。
点击“运行”按钮,输出结果
四、结果解读
这就是输出结果。
原假设示放松前好放松后差值的中位数等于0,
P=0.015<0.05,拒绝原假设,认为放松前后有统计学差异。
双击该表格,会弹出如下的“模型浏览器”窗口,可以看到更详细的信息。
如下图。
SPSS的参数检验和非参数检验SPSS是一种非常常用的统计分析软件,可以用于参数检验和非参数检验。
参数检验是假设检验的一种方法,用于判断统计样本是否代表总体。
而非参数检验则是用于检验数据是否满足一些分布假设,或判断两个或多个群体是否具有差异。
参数检验主要有t检验、方差分析和回归分析等。
其中,t检验用于比较两个样本均值是否有显著差异,包括独立样本t检验和相关样本t检验。
方差分析用于比较三个或更多样本均值是否有显著差异,可以进行单因素方差分析或多因素方差分析。
回归分析用于建立预测模型,可以通过线性回归或多项式回归进行。
非参数检验通常适用于数据不满足正态分布或方差齐性的情况,如Wilcoxon符号秩检验、Kruskal-Wallis H检验、Mann-Whitney U检验等。
Wilcoxon符号秩检验用于比较两个配对样本的差异是否有显著差异,Kruskal-Wallis H检验用于比较三个或更多独立样本的差异是否有显著差异,Mann-Whitney U检验用于比较两个独立样本的差异是否有显著差异。
在SPSS中进行参数检验和非参数检验一般需要进行以下步骤:1.导入数据:将数据导入SPSS软件,可以通过选择文件-导入功能进行操作。
2.设定分析变量:定义需要进行分析的变量,并将其添加到分析列表中。
3.选择统计方法:根据实验设计和数据分布情况,选择合适的参数检验或非参数检验方法。
4.执行分析:点击运行按钮进行分析,在分析结果中可以查看得到显著性水平、均数、方差等指标。
5.结果解释:根据分析结果进行假设检验,判断是否存在显著差异,并解释其结果。
无论是参数检验还是非参数检验,在进行分析前需要注意数据的合理性、样本的选择和实验设计的合理性等,以保证分析结果的可靠性。
同时,还应根据不同的研究目的和数据特点选择适当的方法,并合理解释分析结果。
在SPSS软件中,可以通过图表、表格和描述性统计等形式展示和解释结果,并通过结果进行科学判断和相关推断。
SPSS学习笔记---------------------------------------1. SPSS学习笔记之——常用统计方法的选择汇总2. SPSS学习笔记之——多因素方差分析3. SPSS学习笔记之——协方差分析4. SPSS学习笔记之——重复测量的多因素方差分析5.SPSS学习笔记之——二项Logistic回归分析6.SPSS学习笔记之——两配对样本的非参数检验(Wilcoxon符号秩检验)7.SPSS学习笔记之——两独立样本的非参数检验(Mann-Whitney U秩和检验)8.SPSS学习笔记之——多个独立样本的非参数检验(Cruskal-Wallis秩和检验)9.SPSS学习笔记之——生存分析的Cox回归模型(比例风险模型)10.SPSS学习笔记之——相关分析(Pearson、Spearman、卡方检验)11.SPSS学习笔记之——配对logistic回归分析12.SPSS学习笔记之——单样本非参数检验13.SPSS学习笔记之——ROC曲线14.SPSS学习笔记之——Kaplan-Meier生存分析15.SPSS学习笔记之——多相关样本的非参数检验(Friedman检验)16.R×C列联表(分类数据)的统计分析方法选择与SPSS实现17.SPSS学习笔记之——OR值与RR值----------------------------------------价SPSS学习笔记之——多因素方差分析问题:对小白鼠喂以三种不同的营养素,目的是了解不同营养素增重的效果。
采用随机区组设计方法,以窝别作为划分区组的特征,以消除遗传因素对体重增长的影响。
现将同品系同体重的24只小白鼠分为8个区组,每个区组3只小白鼠。
三周后体重增量结果(克)列于下表,问小白鼠经三种不同营养素喂养后所增体重有无差别?区组号营养素1营养素2营养素3150.1058.2064.50247.8048.5062.40353.1053.8058.60463.5064.2072.50571.2068.4079.30641.4045.7038.40761.9053.0051.20842.2039.8046.20SPSS软件版本:18.0中文版。
SPSS⾮参数检验实验⽬的:学会使⽤SPSS的简单操作,掌握⾮参数检验。
实验内容: 1.中位数符号检验,检验总体中位数是否等于某个假定的值。
设⼀个随机样本有n个数据,总体中位数的实际值为M,假设的总体中位数值为。
当样本中的数据⼤于假设的中位数时,⽤“+”号表⽰,⼩于假设的中位数时,⽤“-”表⽰;对于恰好等于假设的中位数的数据予以剔出。
若关⼼实际的M与假设的是否有差别,应建⽴假设:;计算检验统计量S+和S-。
S+表⽰每个样本数据与与差值符号为正的个数;S-表⽰每个样本数据与差值符号为负的个数。
计算P值并作出决策。
若P<,拒绝原假设。
2.Wilcoxon符号秩检验,检验总体参数(如中位数)是否等于某个假定的值。
它是对符号检验的⼀种改进,弥补了符号检验的不⾜,要⽐单纯的符号检验更准确⼀些(对应的参数检验—单样本均值检验)。
检验步骤:①计算各样本观察值与假定的中位数的差值,并取绝对值;②将差值的绝对值排序,并找出它们的秩;③计算检验统计量和P值,并作出决策。
3.独⽴样本的检验,Mann-Whitney检验不需要诸如总体服从正态分布且⽅差相同等之类的假设,但要求是两个独⽴随机样本的数据⾄少是顺序数据;Kruskal-Wallis检验不需要总体服从正态分布且⽅差相等这些假设。
该检验可⽤于顺序数据,也可⽤于数值型数据。
要检验k个总体是否相同,提出如下假设。
:所有总体都相同,:并⾮所有总体都相同或等价于,不全相同。
4.秩相关检验,对两个顺序变量之间相关程度的⼀种度量。
Spearman秩相关系数也称等级相关系数,记为,计算公式为,的取值范围为[-1,1];,两种排序之间完全相关;若,两种排序之间为负相关;若,两种排序之间为正相关;若,两种排序之间不相关;越趋于1,相关程度越⾼;越趋于0,相关程度越低。
实验步骤: 1.中位数符号检验SPSS操作,点击【分析】→【⾮参数检验】→【相关样本】,打开【⾮参数检验、两个或更多相关样本】对话框。
SPSS非参数检验非参数检验 SPSS单样本非参数检验是对单个总体的分布形态等进行推断的方法,其中包括卡方检验、二项分布检验、K-S检验以及变量值随机性检验等方法。
参数检验与非参数检验的区别:参数检验是在总体分布形式已知的情况下,对总体分布的参数如均值、方差等进行推断的方法。
但是,在数据分析过程中,由于种种原因,人们往往无法对总体分布形态作简单假定,此时参数检验的方法就不再适用了。
非参数检验正是一类基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。
由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数检验”。
一、几种常见的非参数检验1、总体分布的卡方检验卡方检验方法可以根据样本数据,推断总体分布与期望分布或某一理论分布是否存在显著差异,是一种吻合性检验,通常适于对有多项分类值的总体分布的分析。
它的原假设是:样本来自的总体分布与期望分布或某一理论分布无差异。
例如,医学家在研究心脏病人猝死人数与日期的关系时发现:一周之中,星期一心脏病人猝死者较多,其他日子则基本相当。
当天的比例近似为2.8:1:1:1:1:1:1。
现收集到心脏病人死亡日期的样本数据,推断其总体分布是否与上述理论分布相吻合。
2、二项分布检验SPSS的二项分布检验正是要通过样本数据检验样本来自的总体是否服从指定的概率为P的二项分布,其原假设是:样本来自的总体与指定的二项分布无显著差异。
在生活中有很多数据的取值是二值的,例如,人群可以分成男性和女性,产品可以分成合格和不合格,学生可以分成三好学生和非三好学生,投掷硬币实验的结果可以分成出现正面和出现反面等。
通常将这样的二值分别用1或0表示。
如果进行n次相同的实验,则出现两类(1或0)的次数可以用离散型随机变量X来描述。
如果随机变量X为1的概率设为P,则随机变量X值为0的概率Q便等于1-P,形成二项分布。
从某产品中随机抽取23个样品进行检测并得到检测结果。
学习必备欢迎下载
总体分布未知,不会涉及有关总体分布的参数
1.单样本非参数检验:卡方分布,二项分布,K-S检验,变量值随机性检验
2.两独立样本非参数检验:两独立样本所来自的总体分布是否存在显著差异
3.两配对样本非参数检验
4.多独立样本非参数检验
5.多配对样本非参数检验
得到样本数据后,判断总体分布:直方图、P-P图、Q-Q图,或非参数检验
1.1 卡方检验:
根据样本数据,推断总体分布于期望分布或某一理论分布是否存在显著性差异,是一种吻合性检验,离散型数据。
原假设:样本来自总体的分布与期望分布或某一理论分布无显著性差异。
Eg:心脏病猝死人数与日期。
1.2二项分布检验:
检验总体是否服从指定概率为P的二项分布,
原假设:样本来自的总体与指定的二项分布无显著差异。
用于:二值型数据,性别,是否合格,是否为三好学生,硬币正反面等,用01表示。
注:检验概率值(检验比例)
1.3单样本K-S检验:
样本来自的总体是否与某一理论分布有显著差异,是一种拟合优度的检验方法。
用于:探索连续性变量的分布。
正态分布(normal)、均匀分布(uniform)、指数分布(ex.)、泊松分布。
原假设:样本来自的总体与指定的理论分布无显著差异。
另外,对于数据量很大的连续型变量,可以用图形直观判断。
P-P图:数据与理论分布一致时,各个数据点应落在对角线上。
Q-Q图:如果数据与理论分布无显著差异,点应分布在0横线附近。
(没找到啊?)
2 Test type:
Mann-Whitney: 秩:变量值排序的名次或位置
K-S检验:
游程检验Wald-wolfwitz Runs
极端反应检验Moses Extreme Reactions:踢出极端值前后P值变化情况,是否踢出。
注:不同分析方法对同批数据的分析,结论可能不相同,要反复进行探索性分析,还要注意方法本身侧重点上的差异性。
4 中位数检验强调位置,Kruskal-Wallis检验侧重分析平均秩,Jonckheere比较同相对数。
~~~~不懂~
5 mean rank 平均秩
P值说明平均秩是否存在显著差异
Kendall检验中,W协同系数接近于1时,说明是一致的。