SPWM的谐波特征
- 格式:pdf
- 大小:898.36 KB
- 文档页数:13
・02・No 12 Vol 120过 SPWM 三相变频调速电路的谐波分析摘 要 :在理论分析和电路仿真实验数据的基础上 ,总结出 SPWM 三相变频器谐波的分布特点 ,为变频 器输出滤波器设计提供了理论依据 ,并通过电路仿真实验予以验证 。
关键词 :变频器 ;正弦脉宽调制 ;谐波分析 ;滤波器交流电动机变频调速以其高效节能 ,调速性能好 ,易实现数字化控制等显著优点 ,在现代电力拖动系统中已得到广泛应用 。
由于系统能量变换的主要形式为 AC —DC —AC ( 交 —直 —交) 变换 。
而实现 DC —AC 环节变换的变频器 ,以脉宽调制 ( PWM) 技术为主流 。
因 PWM 技术所固有的脉冲性质 ,使输 出电压中谐波含量高 ,由此引起的负面效应 :使电机过热 、 压导致绝缘提前老化甚至击穿 ,产生机械振 动和噪声以及电磁干扰现象等 。
特别是在中压 、高压 、大容量变频调速系统中尤其严重 。
为消除其影 响 ,最简便有效的措施就是在变频器输出端装设低通滤波器 。
本文对目前应用最多的基于 PWM 下的 正弦脉宽调制 ( SPWM) 变频电路进行谐波分析 ,为变频器输出滤波器的设计提供理论依据 。
1 SPWM 三相变频器的电路结构及调制特性SPWM 三相变频调速电路主回路拓扑结构如图 1 (a) 所示,功率开关 P —MOSFET 管 T1 T6 组成三 相桥式逆变电路 ,其控制端 G1 G6 受 SPWM 波控制 ; 变频器输入直流 电 压 为 VD ( 由 三 相 整 流 装 置 提供) ,输出端经 RL C 滤波器与交流电动机相连接 。
控制电路采用 SPWM 调制方式 ,如图 1 ( b) 所示 。
利 用三角载波 u c 和三相正弦调制信号 u r 进行比较 ,在交点处产生驱动信号 V G1V G6 ,即 SPWM 波 。
当 变频器三相桥臂功率开关 T1 T6 在驱动信号控制下 ,工作于适时 、适式的通断状态时 ,输入直流电压被 转换成等幅而脉冲宽度按正弦函数关系变化的三相脉冲序列电压输出 ,其相电压为双极性脉冲 ,线电压 为单极性脉冲 。
SPWM与SVPWM之比较首先,先分别了解SPWM和SVPWM的原理SPWM原理:正弦PWM的信号波为正弦波,就是正弦波等效成一系列等幅不等宽的矩形脉冲波形,其脉冲宽度是由正弦波和三角波自然相交生成的.正弦波波形产生的方法有很多种,但较典型的主要有:对称规则采样法、不对称规则采样法和平均对称规则采样法三种.第一种方法由于生成的PWM脉宽偏小,所以变频器的输出电压达不到直流侧电压的倍;第二种方法在一个载波周期里要采样两次正弦波,显然输出电压高于前者,但对于微处理器来说,增加了数据处理量当载波频率较高时,对微机的要求较高;第三种方法应用最为广泛的,它兼顾了前两种方法的优点. SPWM虽然可以得到三相正弦电压,但直流侧的电压利用率较低, 最大是直流侧电压的倍,这是此方法的最大的缺点.SVPWM原理:电压空间矢量PWM(SVPWM)的出发点与SPWM不同,SPWM调制是从三相交流电源出发,其着眼点是如何生成一个可以调压调频的三相对称正弦电源.而SVPWM是将逆变器和电动机看成一个整体,用八个基本电压矢量合成期望的电压矢量,建立逆变器功率器件的开关状态,并依据电机磁链和电压的关系,从而实现对电动机恒磁通变压变频调速.若忽略定子电阻压降,当定子绕组施加理想的正弦电压时,由于电压空间矢量为等幅的旋转矢量,故气隙磁通以恒定的角速度旋转,轨迹为圆形. SVPWM比SPWM的电压利用率高15%,这是两者最大的区别,但两者并不是孤立的调制方式,典型的SVPWM是一种在SPWM的相调制波中加入了零序分量后进行规则采样得到的结果,因此SVPWM有对应SPWM的形式.反之,一些性能优越的SPWM方式也可以找到对应的SVPWM算法,所以两者在谐波的大致方向上是一致的,只不过SPWM易于硬件电路实现,而SVPWM更适合于数字化控制系统.接下来对SPWM和SVPWM进行具体的对比。
按照波形面积相等的原则,每一个矩形波的面积与相应位置的正弦波面积相等,因而这个序列的矩形波与期望的正弦波等效。
PE 电力电子2010年第6期 47SPWM 的谐波及抑制程宝平(山西长治市应用技术研究院,山西 长治 046011)摘要 本文对SPWM 的谐波及其分布规律进行了分析,讨论了SPWM 逆变器的主要参数对谐波频谱变化的影响,归纳了工程实际中采用的几种谐波抑制方法。
关键词:SPWM ;载波频率;谐波注入法;指定谐波抑制法;趋近采样法;低通滤波器Harmonic Analysis and Harmonic Suppression of SPWMCheng BaoPing(Changzhi Applied Science And Technology Institute of Shanxi, Changzhi, Shanxi 046011)Abstract In this paper a detailed analysis on harmonics in output voltage is analysed and a rule of harmonic spectrum distribution is given. Main parameters of inverter which influence harmonic spectrum variation are discussed. The relevant measures for harmonic suppression are presented.Key words :SPWM(sinusoidal pulse width modulation );frequency of carrier wave ;harmonic injection ;special harmonic suppression ;sample used to harmonic suppression at LVLF ;low-pass filter1 引言SPWM 的谐波不仅会增加电动机的铁损和铜损,使电机温度上升、效率下降、产生机械震动和噪声,甚至造成电机损坏,而且还会对计算机、通信以及电子设备产生严重电磁干扰,导致仪表的测量误差增加,影响功率处理器的正常运行,严重时甚至会影响整个系统的控制性能。
电力电子学—S P W M的谐波特征第4章直流/交流变换器01逆变器的类型和性能指标目录02电压型单相方波逆变电路工作原理03单相逆变器的单脉波脉冲宽度调制(PWM)04正弦脉冲宽度调制技术(SPWM)05三相逆变电路工作原理SP WM 的谐波特征01自然采样SPWM的谐波特征目录02规则采样SPWM的谐波特征03异步调制与次谐波01自然采样S P W M的谐波特征t b t at 3t 2oT bT a T s 2T s 2ot 1v cv rtωtωT 3T 4D 3D 4Zai aV DT 1D 1T 2D 2bi d自然采样过程图☐采用载波和调制波交点得到开关时刻的方式称为自然采样。
☐实际中,交点时刻不便于通过实时计算获得。
☐自然采样适用于理论分析计算。
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)谐波特征:1.基波的频率、相位均与调制波或参考波相同,基波幅值为MV D ;2.输出波形不含载波偶次倍频谐波;3.谐波间隔为两倍基波频率,奇次载波频率两侧为偶次边带谐波,偶次载波频率两侧为奇次边带谐波。
()()011(0)()cos() 41 ()sin cos () 2241 ()sin ()cos ()() 22ab D r r D c c m Dn c c r r m n n v t V M t V J m M m m t m V J m M m n m t n t m ωθππωθπππωθωθπ∞=∞∞==-∞≠=+←++←⎛⎫+++++← ⎪⎝⎭∑∑∑基波分量载波倍频谐波边带谐波015304560700.250.50.751.0双极性SPWM 频谱图M =0.75N =15自然采样S P W M 的谐波特征-单极性倍频S P W M()()211()cos 41()cos (1)cos 2(21) 2ab D r Dn c r m n v t V M t V J m M m n m t n t mωππωωπ∞∞-==-∞=←++-+-←∑∑基波分量边带谐波谐波特征:1.基波的频率、相位均与调制波或参考波相同,基波幅值为MV D 。
收稿日期:2000-07-10 修订日期:2000-08-18]电器电工技术]SPWM 电压型逆变电路谐波仿真分析万健如,林志强,杨 帆,禹华军(天津大学,天津 300072)摘 要:根据SPW M 基本原理,应用M AT LAB 软件及其电气模块库,建立逆变电路及其负载感应电机模型,针对影响逆变电路输出电压频谱分布的主要因素进行仿真分析,对仿真结果进行比较,得出其频谱分布的规律性结论。
根据结论,通过设计加装滤波器来抑制逆变电路输出谐波,并加以仿真比较,得到了较好的滤波效果。
关 键 词:SPW M;谐波分析;逆变电路中图分类号:T M921.51 文献标识码:A 文章编号:1001-4551(2000)06-0050-04H armonic Simulation and Analysis of V oltage -sourced SPWM I nverterW AN Jian 2ru ,LI N Zhi 2qiang ,Y ANGfan ,Y U Hua 2jun(Tianjin Univer sity ,Tianjin 300072)Abstract :By the principle of SPW M ,the inverter and m ortor m odel based on the P ower System Blockette in M AT LAB s oftware is established.The rule of harm onic spectrum distribution and the trends toward which harm onics vary with inverter parameters have been given after the quantitative harm onic analysis of inverter output wave.At last ,a sim ple practical and effective filter is de 2signed to eliminate the ham ornics and verified by the simulating results.K ey w ords :SPW M;harm onic analysis ;inverter1 引 言随着PW M 技术的发展,调速性能得到很大提高,变频器应用越来越广泛,但逆变电路输出侧产生的高次谐波对其负载和周围电气装置会产生很大负面影响。
目录摘要 (I)Abstract (II)第一章绪论 (1)1.1.课题背景及研究意义 (1)1.1.1 课题背景 (1)1.1.2 课题的意义 (3)1.2 国内外PWM逆变器谐波抑制技术的研究现状 (4)1.2.1正弦PWM 技术 (4)1.2.2 随机PWM 技术 (5)1.2.3 优化PWM 技术 (6)1.3 课题的来源及主要研究内容 (6)第二章单相SPWM逆变器输出电压谐波分析 (7)2.1谐波分析的必要性 (7)2.2单极性SPWM逆变器输出电压谐波分析 (8)2.2.1 MATLAB/simulink建模仿真 (8)2.2.2输出电压的谐波分析 (11)2.3双极性SPWM逆变器输出电压谐波分析 (14)2.3.1 MATLAB/simulink建模仿真 (14)2.3.2输出电压的谐波分析 (17)2.4单极性倍频SPWM逆变器输出电压谐波分析 (20)2.4.1 MATLAB/simulink建模仿真 (20)2.4.2输出电压的谐波分析 (23)2.5本章小结 (25)第三章SPWM逆变器谐波抑制方法研究 (26)3.1 改变载波比法 (27)3.1.1 理论基础 (27)3.1.2 仿真结果 (28)3.2 注入适当的谐波法 (30)3.2.1 理论基础 (30)3.2.2 仿真结果 (31)3.3 低通滤波器法 (36)3.3.1 巴特沃思型滤波器参数设计 (37)3.3.2设计实例 (38)3.3.3 仿真结果 (39)3.4 其他抑制谐波的方法 (41)3.5本章总结 (42)第四章总结 (43)致谢 (45)参考文献 (46)文献综述 (39)摘要随着电力电子器件的迅速发展,PWM 逆变器越来越广泛的应用在交流变频调速系统、中频电源及其他各种电力电子装置中得到了,它所产生的谐波对外界的危害亦日益严重。
本文主要研究单相SPWM逆变器输出电压谐波及抑制谐波的方法并为单相单极性倍频SPWM逆变器设计合适的滤波器。
单相SPWM逆变桥输出电压的谐波分析引言:单相SPWM逆变桥是一种常见的交流电源变换器,广泛应用于工业控制中。
在SPWM(Sinusoidal Pulse Width Modulation)逆变桥中,通过调整PWM信号的占空比,控制输出电压的大小和频率,以实现对交流电源的变换。
本文将对单相SPWM逆变桥输出电压的谐波进行分析。
一、单相SPWM逆变桥的工作原理逆变桥的工作原理如下:1.当M1和M2导通时,上管形成导通通道,电流从正极流向负极,输出电压为正向。
2.当M3和M4导通时,下管形成导通通道,电流从负极流向正极,输出电压为反向。
3.M1和M4、M2和M3也可以同时导通,此时两个导通通道是时序互补的,可以形成全桥逆变,输出电压的极性可以根据控制信号决定。
由于PWM的调制方式是基于三角波的频率调制,所以输出电压将会产生谐波。
具体的谐波分析如下:1.基波分量:基波是输出电压中频率最低的正弦波分量,其频率由所选择的PWM三角波频率决定,一般为50Hz或60Hz。
2.谐波分量:谐波分量是输出电压中频率高于基波的正弦波分量。
根据上述逆变桥的工作原理,谐波的频率为输入直流电压频率的奇次谐波。
具体的谐波分量数值与具体的控制策略有关,下面分析两种常见的输出电压控制策略。
(1)三角波PWM在三角波PWM控制下,PWM信号的占空比根据三角波的振幅决定。
当PWM信号的占空比为0.5时,输出电压为基波分量的峰值。
当PWM信号的占空比为0或1时,输出电压为0。
所以,在三角波PWM控制下,逆变桥输出电压只包含基波分量。
(2)正弦PWM在正弦PWM控制下,PWM信号的占空比与正弦波的幅值成正比,所以逆变桥输出电压中包含基波分量和谐波分量。
根据正弦PWM的控制方法不同,谐波分量的大小也会有所变化。
三、单相SPWM逆变桥输出电压的谐波抑制措施为了减小逆变桥输出电压中的谐波分量,常采用以下措施进行抑制:1.增加PWM的频率:增加PWM的频率有助于减小谐波分量的幅值,提高输出电压的质量。
阿弥陀佛常思己过断恶积善;明因果知敬畏;阿弥陀佛阅读如下ppt阿弥陀佛常思己过断恶积善;明因果知敬畏;阿弥陀佛阿弥陀佛常思己过断恶积善;明因果知敬畏;阿弥陀佛阿弥陀佛常思己过断恶积善;明因果知敬畏;阿弥陀佛阿弥陀佛常思己过断恶积善;明因果知敬畏;阿弥陀佛阿弥陀佛常思己过断恶积善;明因果知敬畏;阿弥陀佛下面的推导不一定对,仅供参考。
按照这个思路详细写以下:阿弥陀佛常思己过断恶积善;明因果知敬畏;阿弥陀佛设调制波是()sin r m t ωϕ+,载波幅值是1,载波是偶函数。
在载波任意一个周期:,22c c c c T T t kT kT ⎛⎤∈-+ ⎥⎝⎦,k=0, ±1,±2,··· 对于均匀采样法,那么:阿弥陀佛常思己过断恶积善;明因果知敬畏;阿弥陀佛()()()()()sin 414sin 44sin 414sin 44c c k r c c c ck r c c c c k r c c c c k c r c T kT t m kT T T T t m kT kT T kT t m kT T T T t kT m kT ωϕωϕωϕωϕ--++--+=⇒=++-⎛⎫+- ⎪+⎝⎭=⇒=+-+ 所以:因为脉冲函数为:()()k f t f t =,,22c c c c T T t kT kT ⎛⎤∈-+ ⎥⎝⎦,k=0, ±1,±2,··· 其中: ()(]1,21,1,2c c k k k k c k c T t kT t f t t t t T t t kT --+-⎧⎛⎤∈- ⎪⎥⎝⎦⎪⎪=-∈⎨⎪⎛⎤⎪∈+ ⎥⎪⎝⎦⎩注意函数()k f t 定义域为,22c c c c T T t kT kT ⎛⎤∈-+ ⎥⎝⎦,在,22c c c c T T t kT kT ⎛⎤∉-+ ⎥⎝⎦没有定义,即()k f t 仅仅是定义在,22c c c c T T t kT kT ⎛⎤∈-+ ⎥⎝⎦区间内的函数,阿弥陀佛常思己过断恶积善;明因果知敬畏;阿弥陀佛定义域全时域R 函数()(),220,22c c k c c k c c c c T T f t t kT kT f t T T t kT kT ⎧⎛⎤∈-+ ⎪⎥⎪⎝⎦=⎨⎛⎤⎪∉-+ ⎥⎪⎝⎦⎩显然脉冲函数()f t 满足:()()k k f t f t t R +∞=-∞=∈∑ 对第,22c c c c T T t kT kT ⎛⎤∈-+ ⎥⎝⎦区间脉冲函数()k f t 进行傅里叶分解(注意,这里显然f(t)不是以Tc 为周期的的,但是我们对某个区间进行傅里叶分解,在这个区间上让f (t )进行傅里叶级数分解是没有问题的,只有对某个函数在全时域R 上进行傅里叶分解才要求f (t )在R 上是周期函数): 设:()()01cos sin k n c n c n f t a an t b n t ωω∞==++∑我们如果要求a7,()k f t 同时乘以cos7c t ω,然后在区间,22c c c c T T t kT kT ⎛⎤∈-+ ⎥⎝⎦进行积分得: ()2222201222cos 7cos 7cos cos 7sin cos 7cc c c cc c c c c c c c c c c T kT T k c kT T TT kT kT kT T T T c n c c n c c kT kT kT n f t tdt a tdt a n t tdt b n t tdt ωωωωωω+-∞+++---=⎛⎫=++ ⎪⎝⎭⎰∑⎰⎰⎰根据函数三角函数正交性可知:阿弥陀佛常思己过断恶积善;明因果知敬畏;阿弥陀佛()22222012227cos 7cos 7cos cos 7sin cos 72cc c c c c c c c c c c c c c c T kT T k c kT T TT kT kT kT T T T c n c c n c c kT kT kT n cf t tdt a tdt a n t tdt b n t tdt a T ωωωωωω+-∞+++---=⎛⎫=++ ⎪⎝⎭=⎰∑⎰⎰⎰ 即: 所以:()2722cos7cc c c T kT T k c kT c a f t tdt T ω+-=⎰,所以()222cos c c c c T kT T n k c kT c a f t n tdt T ω+-=⎰ 同理:()2021cc c c T kT T k kT c a f t dt T +-=⎰;()222sin c c c c T kT T n k c kT c b f t n tdt T ω+-=⎰阿弥陀佛常思己过断恶积善;明因果知敬畏;阿弥陀佛()()()()()2222222cos 222cos cos cos 222cos 1cos cos sin 2c c c c c k k c c c k k c k k c cc k k c c T kT T n k c kT c T t t kT T k c k c k c kT t t cccT t t kT T c c c kT t t c ccc T c ckT a f t n tdt T f t n tdt f t n tdt f t n tdtT T T n tdt n tdt n tdtT T T n t T n ωωωωωωωωω-+-+-+-++-+-+--==++=+-+=⎰⎰⎰⎰⎰⎰⎰2222sin sin 2sin sin sin 2sin sin sin sin sin sin 22c k k c k k c k k c c k k c T t t kT c c cct t T t t kT T c c c t t kT c c c c c k c c c k c k c c c c c n t n t n n n t n t n t n T T T n t n kT n t n t n kT n t n T ωωωωωωωωωωωωωωω-+-+-+-+++++---+⎛⎫ ⎪-+⎪ ⎪⎝⎭⎛⎫=-+ ⎪⎝⎭⎛⎫⎛⎫=--+-++- ⎪ ⎪⎝⎭⎝⎭()()()()()22sin 2sin sin sin 2222sin 2sin sin 2sin 2242sin 2sin sin sin 42cosk c c c k c k c c c c c c c k c k c c c k c k c k c k c cc cc c cT T n t n t n kT n kT n T n t n t kn n kn n n T n t n t n t n t n T n T n n T ωωωωωωωππππωωωωωωωωω+-+-+-+-+⎛⎫ ⎪⎝⎭⎛⎫⎛⎫⎛⎫=---++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=---++=-=-=sin 22k c k c k c k t n t n t n t ωωω-+-++-根据:阿弥陀佛常思己过断恶积善;明因果知敬畏;阿弥陀佛()()sin 44sin 44c c k r c c c ck c r c T T t m kT kT T T t kT m kT ωϕωϕ-+=++-=+-+知道:()()()()sin sin 24422sin 2sin 4422c c c c c k r c c c r c c c c c c k c c r c r c n T n T n n n t m kT kn T m kT kn n T n T n n n t kn T m kT kn m kT ωωππωωϕωωϕπωωππωωωϕπωϕ-+=++-=++-=+-+=+-+所以:22222c k c k n t n t kn kn ωωππ+-+==()sin 22r c c k c k n m kT n n t n t πωϕπωω-++--=所以上式子等于:()sin 42sin 2r c n c c n m kT n a n T πωϕπω+-=容易知道:阿弥陀佛常思己过断恶积善;明因果知敬畏;阿弥陀佛()()()()()2202222111111111112221221c c c k k c c c c k k c c k k c cc k k T T kT t t kT T T k k k k kT t t kT c cccT t t kT T kT t t c ccc c k c k k c k c k k c c a f t dt f t dt f t dt f t dtT T T T dt dt dtT T T T T t kT t t kT t T t t T T -+-+-+-+++--+---++-+==++=+-+⎛⎫⎛⎫=--+-++- ⎪ ⎪⎝⎭⎝⎭=-+=-⎰⎰⎰⎰⎰⎰⎰()k k ct t T +--阿弥陀佛常思己过断恶积善;明因果知敬畏;阿弥陀佛()()()()()2222222sin 222sin sin sin 222sin 1sin sin cos 2c c c c c k k c c c k k c k k c cc k k c T kT T n k c kT c T t t kT T k c k c k c kT t t cccT t t kT T c c c kT t t c ccc T c ckT b f t n tdt T f t n tdt f t n tdt f t n tdtT T T n tdt n tdt n tdtT T T n t T n ωωωωωωωωω-+-+-+-++-+-+--==++=+-+=-⎰⎰⎰⎰⎰⎰⎰2222cos cos 2cos cos cos 2cos cos cos cos cos cos 22c k k c c k k c k k c c k k c T t t kT c c cct t T t t kT T c c c t t kT c c c c c c c k c k c k c k c c c c n t n t n n n t n t n t n T T T n kT n t n t n t n t n kT n T ωωωωωωωωωωωωωωω-+-+-+-+++++--+-+⎛⎫ ⎪+-⎪ ⎪⎝⎭⎛⎫=-+- ⎪⎝⎭⎛⎫⎛=--+-+-+ ⎪⎝⎭⎝()4cos cos 42sin sin 22c k c k c c c k c k c k c k c c n t n t n T n t n t n t n t n T ωωωωωωωω-++-+-⎛⎫⎫ ⎪ ⎪⎭⎝⎭=-+⎛+-⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以sin 02c k c k n t n t ωω+-+⎛⎫=⎪⎝⎭所以:0n b =阿弥陀佛常思己过断恶积善;明因果知敬畏;阿弥陀佛所以:()()()()()()0111cos sin 2sin 412sin cos 22sin 41sin cos 2k n c n c n k k r c c n c c c k k r c c n c f t a a n t b n t t t n m kT n n t T n T t t n m kT n n t T n ωωπωϕπωωπωϕπωπ∞=∞+-=∞+-==++-+-⎛⎫=-+ ⎪⎝⎭-+-⎛⎫=-+ ⎪⎝⎭∑∑∑注意根据:()()sin 44sin 44c c k r c c c ck c r c T T t m kT kT T T t kT m kT ωϕωϕ-+=++-=+-+()sin 22c c k k r c TT t t m kT ωϕ+-⎛⎫-=-+- ⎪⎝⎭()()()22sin sin 122k k c c r c r c c c t t TT m kT m kT T T ωϕωϕ+--⎛⎫=-+-=-++ ⎪⎝⎭所以:()()21sin k k r c ct t m kT T ωϕ+---=+所以:阿弥陀佛常思己过断恶积善;明因果知敬畏;阿弥陀佛()()()()()()()()()0111cos sin 2sin 412sin cos 2sin 4sin sin cos 2sin sin 4sin sin cos cos 22k n c n c n k k r c c n c c c r c r c c n r c r c r c f t a a n t b n t t t n m kT n n t T n T n m kT n m kT n t n n m kT n m kT n m kT n ωωπωϕπωωπωϕπωϕωππωϕπωϕπωϕπ∞=∞+-=∞==++-+-⎛⎫=-+ ⎪⎝⎭+-⎛⎫=++ ⎪⎝⎭++=++-∑∑∑1sin cos 22c n n n t πω∞=⎛⎫⎛⎫⎪⎪ ⎪⎝⎭⎝⎭∑由c r c r T T ωω⇔ ,所以在,22c c c c T T t kT kT ⎛⎤∈-+ ⎥⎝⎦区间内,()()sin sin r r c t kT ωϕωϕ+≈+ 所以:()()()()()()0111cos sin sin 4sin sin cos 2sin 4sin sin cos 2k n c n c n r c r c c n r r c n f t a a n t b n t n m kT n m kT n t n n m t n m t n t n ωωπωϕπωϕωππωϕπωϕωπ∞=∞=∞==+++-⎛⎫=++ ⎪⎝⎭+-⎛⎫≈++ ⎪⎝⎭∑∑∑所以:阿弥陀佛常思己过断恶积善;明因果知敬畏;阿弥陀佛()()()()()()11sin sin 44sin sin cos sin sin cos ,2220,2r c r c k r c c r c cn n k c c n m kT n n m t n T f t m kT n t m t n t t kT k n n f t T t kT k πωϕππωϕπωϕωωϕωππ∞∞==⎧+-+-⎛⎫⎛⎫⎛=++≈++∈-⎪ ⎪ ⎪ ⎪⎝⎝⎭⎝⎭=⎨⎛⎪∉- ⎪⎝⎩∑∑设:()1,220,22c c c c k c c c c T T t kT kT u t T T t kT kT ⎧⎛⎤∈-+ ⎪⎥⎪⎝⎦=⎨⎛⎤⎪∉-+ ⎥⎪⎝⎦⎩,显然()1k k u t t R ∞=-∞=∈∑则()k f t 满足:()()()()()1sin 4sin sincos 2r k k r k c n n m t n f t u t m t u t n t t R n πωϕπωϕωπ∞=+-⎛⎫≈++∈ ⎪⎝⎭∑ 所以:()()()()()()()()()()()()()11sin 4sin sin cos 2sin 4sin sin cos 2sin 4sin sin r k k r k c k k n r k r k c k k n r r k k n m t n f t f t u t m t u t n t n n m t n u t m t u t n t n n m t m t u t n πωϕπωϕωππωϕπωϕωππωϕωϕπ+∞+∞∞=-∞=-∞=+∞+∞∞=-∞=-∞=+∞=-∞⎛⎫+-⎛⎫=≈++ ⎪⎪ ⎪⎝⎭⎝⎭⎛⎫+-⎛⎫=++ ⎪⎪ ⎪⎝⎭⎝⎭+=++∑∑∑∑∑∑∑()()()11cos 2sin 4sin sin cos 2c k n k r r c n n n t u t n m t n m t n t n πωπωϕπωϕωπ∞+∞==-∞∞=⎛⎫-⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭+-⎛⎫=++ ⎪⎝⎭∑∑∑阿弥陀佛常思己过断恶积善;明因果知敬畏;阿弥陀佛再根据贝塞尔公式:()()()()()()211021sin sin 2sin 21cos sin 2cos 2l l l l x J x l x J x J x l θθθθ∞-=∞==-=+∑∑上式子等于:()()()()()()()()()1210211sin sin 4sin sin cos cos sin cos 22224sin 2sin 21cos 2cos 2sin cos 2222r c r c k r c c n r c l r c l r c l l n m kT n m kT n n f t m kT n t n nm n nm n m kT J l kT J x J l kT n πωϕπωϕππωϕωπππππωϕωϕωϕπ∞=∞∞-==⎛⎫++⎛⎫=++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=++-+--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑1c n n t ω∞=⎛⎫ ⎪⎝⎭∑()()()()()()()()()1210211sin sin 4sin sin cos cos sin cos 22224sin 2sin 21cos 2cos 2sin cos 2222r r k r c n r l r l r c n l l n m t n m t n n f t m t n t n nm n nm n m t J l t J x J l t n t n πωϕπωϕππωϕωπππππωϕωϕωϕωπ∞=∞∞-===⎛⎫++⎛⎫≈++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫=++-+--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑1∞∑参考学习ppt ,可以做进一步后续讨论。
电力电子学—S P W M的谐波特征
第4章直流/交流变换器
01逆变器的类型和性能指标
目录
02电压型单相方波逆变电路工作原理
03单相逆变器的单脉波脉冲宽度调制(PWM)
04正弦脉冲宽度调制技术(SPWM)
05三相逆变电路工作原理
SP WM 的谐波特征
01自然采样SPWM的谐波特征目录
02规则采样SPWM的谐波特征
03异步调制与次谐波
01
自然采样S P W M的谐波特征
t b t a
t 3
t 2o
T b
T a T s 2
T s 2
o
t 1v c
v r
t
ωt
ωT 3
T 4
D 3
D 4
Z
a
i a
V D
T 1
D 1
T 2
D 2
b
i d
自然采样过程图
☐采用载波和调制波交点得到开关时刻的方式称为自然采样。
☐实际中,交点时刻不便于通过实时计算获得。
☐自然采样适用于理论分析计算。
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
谐波特征:1.基波的频率、相位均与调制波或参考波相同,基波幅值为MV D ;
2.输出波形不含载波偶次倍频谐波;
3.
谐波间隔为两倍基波频率,奇次载波频率两侧为偶次边带谐波,偶次载波频率两侧为奇次边带谐波。
()()011(0)
()cos() 41 ()sin cos () 22
41 ()sin ()cos ()() 22ab D r r D c c m D
n c c r r m n n v t V M t V J m M m m t m V J m M m n m t n t m ωθππ
ωθπππωθωθπ∞
=∞
∞==-∞≠=+←++←⎛⎫+++++← ⎪⎝
⎭∑∑∑基波分量
载波倍频谐波边带谐波0
1530456070
0.25
0.5
0.751.0双极性SPWM 频谱图
M =0.75
N =15
自然采样S P W M 的谐波特征-单极性倍频S P W M
()()211()cos 41
()cos (1)cos 2(21) 2ab D r D
n c r m n v t V M t V J m M m n m t n t m
ωππωωπ∞
∞
-==-∞=←++-+-←∑∑基波分量
边带谐波谐波特征:1.基波的频率、相位均与调制波或参考波相同,基波幅值为MV D 。
2.输出电压中不含载波频率奇次倍频及其边带谐波。
3.
输出电压中不含载波偶次倍频谐波,两侧也仅含奇次边带谐波簇。
单极性倍频SPWM 频谱图
10203040506070
0.25
0.50.75
1.0M =0.75N =15
02
规则采样S P W M的谐波特征
r
v c
v 1t ωt
o
ωt
2
s T 2
s T a
T b
T o
2t 3
t a
t b t 不对称规则采样
12()()1,144s s r r a b cm cm T T v t v t T T v v ⎛⎫⎛⎫=+=+ ⎪ ⎪
⎝⎭⎝⎭r
v c
v 1t ωt
o
ωt
2
s T 2
s T a
T b
T o
2
t 3
t a
t b t 对称规则采样
1 2()14s r or a b cm T v t T T v ⎛⎫
==+ ⎪
⎝⎭
两种规则采样的差异:1.
不对称规则采样的脉宽
计算量、采样频率是对称规则采样的2倍
2.
不对称规则调制的采样频率是开关频率的2倍。
3.不对称规则采样的谐波比对称规则采样小。
1.规则采样会产生基波边带谐波,但幅值很小,可忽略。
对称规则采样的
谐波含量比不对称规则采样时高;
2.对称规则采样载波倍频两侧既有奇次边带谐波也有偶次边带谐波;不对
称规则采样时,载波奇次倍频两侧不含偶次边带谐波,载波偶次倍频两侧不含奇次边带谐波。
3.对称规则采样单极倍频SPWM不能完全消除奇次倍频及边带谐波。
不
对称规则采样单极倍频SPWM可以消除奇次倍频及边带谐波。
03
异步调制与次谐波有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
异步调制与次谐波
1.同步调制:载波比是整数。
异步调制:载波比不是整数;
2.次谐波:异步调制时谐波频率不再是基波的整数倍,称为次谐波;
3.低载波比时,可能产生低于基波甚至接近零赫兹的次谐波。
谢谢!。